diff -r 6013ca0e6e22 -r eccd79a974ae thys/UTM.thy --- a/thys/UTM.thy Wed Feb 13 20:08:14 2013 +0000 +++ b/thys/UTM.thy Thu Feb 14 09:31:19 2013 +0000 @@ -5086,16 +5086,16 @@ lemma tutm_uhalt': assumes tm_wf: "tm_wf (tp,0)" - and unhalt: "\ stp. (\ TSTD (steps0 (Suc 0, Bk\(l), ) tp stp))" - shows "\ stp. \ is_final (steps0 (Suc 0, [Bk, Bk], <[code tp, bl2wc ()]>) t_utm stp)" -apply(simp add: t_utm_def) + and unhalt: "\ stp. (\ TSTD (steps0 (1, Bk\(l), ) tp stp))" + shows "\ stp. \ is_final (steps0 (1, [Bk, Bk], <[code tp, bl2wc ()]>) t_utm stp)" +unfolding t_utm_def proof(rule_tac compile_correct_unhalt) show "layout_of F_aprog = layout_of F_aprog" by simp next show "F_tprog = tm_of F_aprog" by(simp add: F_tprog_def) next - show "crsp (layout_of F_aprog) (0, [code tp, bl2wc ()]) (Suc 0, [Bk, Bk], <[code tp, bl2wc ()]>) []" + show "crsp (layout_of F_aprog) (0, [code tp, bl2wc ()]) (1, [Bk, Bk], <[code tp, bl2wc ()]>) []" by(auto simp: crsp.simps start_of.simps) next show "length F_tprog div 2 = length F_tprog div 2" by simp @@ -5154,7 +5154,7 @@ \ stp. (\ TSTD (steps0 (Suc 0, Bk\(l), ) tp stp))\ \ \ stp. \ is_final (steps0 (Suc 0, Bk\(m), <[code tp, bl2wc ()]> @ Bk\(n)) t_utm stp)" apply(rule_tac tape_normalize) -apply(rule_tac tutm_uhalt', simp_all) +apply(rule_tac tutm_uhalt'[simplified], simp_all) done lemma UTM_uhalt_lemma_pre: