diff -r 2068654bdf54 -r b9d0dd18c81e thys/uncomputable.thy --- a/thys/uncomputable.thy Sun Jan 27 17:15:38 2013 +0000 +++ b/thys/uncomputable.thy Sun Jan 27 20:01:13 2013 +0000 @@ -49,7 +49,7 @@ (R, 2), (R, 2), (L, 5), (W0, 4), (R, 0), (L, 5)]" -idefinition +definition tcopy :: "instr list" where "tcopy \ (tcopy_begin |+| tcopy_loop) |+| tcopy_end" @@ -137,7 +137,7 @@ lemma init_halt: "x > 0 \ \ stp. is_final (steps0 (Suc 0, [], Oc\x) tcopy_begin stp)" -proof(rule_tac LE = init_LE in halt_lemma) +proof(rule_tac LE = init_LE in halt_lemma) show "wf init_LE" by(simp add: wf_begin_le) next assume h: "0 < x"