diff -r 582916f289ea -r 99a180fd4194 thys/UF.thy --- a/thys/UF.thy Mon Feb 11 00:08:54 2013 +0000 +++ b/thys/UF.thy Mon Feb 11 08:31:48 2013 +0000 @@ -14,10 +14,6 @@ subsection {* The construction of component functions *} text {* - This section constructs a set of component functions used to construct @{text "rec_F"}. - *} - -text {* The recursive function used to do arithmatic addition. *} definition rec_add :: "recf" @@ -2428,7 +2424,6 @@ Cn 3 rec_eq [recf.id 3 2, Cn 3 (constn 2) [recf.id 3 0]], Cn 3 rec_eq [recf.id 3 2, Cn 3 (constn 3) [recf.id 3 0]], Cn 3 rec_less [Cn 3 (constn 3) [recf.id 3 0], recf.id 3 2]]" - thm embranch_lemma have k1: "rec_exec (rec_embranch (zip ?rgs ?rrs)) [p, r, a] = Embranch (zip (map rec_exec ?rgs) (map (\r args. 0 < rec_exec r args) ?rrs)) [p, r, a]" apply(rule_tac embranch_lemma ) @@ -2644,8 +2639,6 @@ where "rght c = lo c (Pi 2)" -thm Prime.simps - fun inpt :: "nat \ nat list \ nat" where "inpt m xs = trpl 0 1 (strt xs)" @@ -3103,7 +3096,6 @@ apply(rule_tac calc_pr_zero, simp) using ind1[of "rec_exec (Pr n f g) (butlast xs @ [0])"] apply(simp add: rec_exec.simps, simp, simp, simp) - thm calc_pr_ind apply(rule_tac rk = "rec_exec (Pr n f g) (butlast xs@[last xs - Suc 0])" in calc_pr_ind) using ind2[of "rec_exec (Pr n f g) @@ -3540,7 +3532,6 @@ subsection {* Relating interperter functions to the execution of TMs *} lemma [simp]: "bl2wc [] = 0" by(simp add: bl2wc.simps bl2nat.simps) -term trpl lemma [simp]: "\fetch tp 0 b = (nact, ns)\ \ action_map nact = 4" apply(simp add: fetch.simps) @@ -3586,7 +3577,6 @@ apply(simp) done -term set_of lemma prime_coprime: "\Prime x; Prime y; x\y\ \ coprime x y" proof(simp only: Prime.simps coprime_nat, auto simp: dvd_def, rule_tac classical, simp)