diff -r 582916f289ea -r 99a180fd4194 thys/Abacus.thy --- a/thys/Abacus.thy Mon Feb 11 00:08:54 2013 +0000 +++ b/thys/Abacus.thy Mon Feb 11 08:31:48 2013 +0000 @@ -227,7 +227,6 @@ @{text "start_of layout n"} looks out the starting state of @{text "n"}-th TM in the finall TM. *} -thm listsum_def fun start_of :: "nat list \ nat \ nat" where @@ -877,7 +876,6 @@ from a b have c: "steps0 (s + off, l, r) (A @ shift B off) stp = (s'' + off, l'', r'')" by(erule_tac ind, simp) from c b h a k assms show "?case" - thm tm_append_second_step_eq apply(simp add: step_red) by(rule tm_append_second_step_eq, simp_all) qed @@ -902,7 +900,6 @@ and even: "length A mod 2 = 0" shows "steps (Suc off, l, r) (A @ shift B off, 0) stp = (0, l', r')" proof - - thm before_final have "\n. \ is_final (steps0 (1, l, r) B n) \ steps0 (1, l, r) B (Suc n) = (0, l', r')" using exec by(rule_tac before_final, simp) then obtain n where a: @@ -1508,7 +1505,6 @@ and P: "P = (\ ((s, l, r), n). s = Suc (2 * n))" and Q: "Q = (\ ((s, l, r), n). findnth_inv ly n (as, lm) (s, l, r) ires)" shows "\ stp. P (f stp) \ Q (f stp)" -thm halt_lemma2 proof(rule_tac LE = findnth_LE in halt_lemma2) show "wf findnth_LE" by(intro wf_findnth_LE) next @@ -2101,7 +2097,6 @@ shows "\ stp k. steps (Suc 0, l, r) (findnth n @ shift tinc_b (2 * n), 0) stp = (2*n + 10, Bk # Bk # ires, @ Bk\k) \ stp > 0" proof - - thm tm_append_steps have "\ stp l' r'. steps (Suc 0, l, r) (findnth n, 0) stp = (Suc (2 * n), l', r') \ inv_locate_a (as, lm) (n, l', r') ires" using assms @@ -2349,7 +2344,6 @@ lemma start_of_less_2: "start_of ly e \ start_of ly (Suc e)" -thm take_Suc apply(case_tac "e < length ly") apply(auto simp: start_of.simps take_Suc take_Suc_conv_app_nth) done @@ -3234,7 +3228,6 @@ from this obtain stpa la ra where a: "steps (start_of ly as + 2 * n, l, r) (?P, ?off) stpa = (Suc (start_of ly as) + 2*n, la, ra) \ inv_locate_b (as, lm) (n, la, ra) ires" by blast - term dec_inv_1 have "\ stp lb rb. steps (Suc (start_of ly as) + 2 * n, la, ra) (?P, ?off) stp = (start_of ly e, lb, rb) \ dec_inv_1 ly n e (as, lm) (start_of ly e, lb, rb) ires" using assms a @@ -3714,7 +3707,6 @@ text{*The tp @ [(Nop, 0), (Nop, 0)] is nomoral turing machines, so we can use Hoare_plus when composing with Mop machine*} -thm layout_of.simps lemma layout_id_cons: "layout_of (ap @ [p]) = layout_of ap @ [length_of p]" apply(simp add: layout_of.simps) done @@ -3722,11 +3714,6 @@ lemma [simp]: "length (layout_of xs) = length xs" by(simp add: layout_of.simps) -thm tms_of.simps -term ci -thm tms_of.simps -thm tpairs_of.simps - lemma [simp]: "map (start_of (layout_of xs @ [length_of x])) [0..0 < q; q \ n\ \ @@ -4534,7 +4520,6 @@ apply(case_tac "steps (Suc 0, l, r) (mopup_a n @ shift mopup_b (2 * n), 0) na", auto) done then have "mopup_inv (a, b, c) lm n ires" - thm mopup_inv_steps using inv less mopup_inv_steps[of n lm "Suc 0" l r ires na] apply(simp) done @@ -4641,7 +4626,6 @@ then have b: "steps (Suc 0 + off, Bk # Bk # ires, @ Bk \ k) (tp @ shift (mopup n) off, 0) stpb = (0, Bk\i @ Bk # Bk # ires, Oc # Oc\ rs @ Bk\j)" using assms wf_mopup - thm tm_append_second_halt_eq apply(drule_tac tm_append_second_halt_eq, auto) done from a b show "?thesis"