diff -r df4c7bb6c79e -r 251e192339b7 thys/uncomputable.thy --- a/thys/uncomputable.thy Wed Jan 16 15:17:02 2013 +0000 +++ b/thys/uncomputable.thy Thu Jan 17 11:51:00 2013 +0000 @@ -1071,13 +1071,6 @@ and the final configuration is standard. *} - -fun tape_of_nat_list :: "nat list \ cell list" ("< _ >" [0] 100) - where - "tape_of_nat_list [] = []" | - "tape_of_nat_list [n] = Oc\(Suc n)" | - "tape_of_nat_list (n#ns) = Oc\(Suc n) @ Bk # (tape_of_nat_list ns)" - definition haltP :: "tprog \ nat list \ bool" where "haltP t lm = (\n a b c. steps (Suc 0, [], ) t n = (0, Bk\a, Oc\b @ Bk\c))" @@ -1341,7 +1334,7 @@ using Hoare_def nh_newcase[of ?tcontr "[code ?tcontr]" 1] h apply(auto) apply(rule_tac x = na in exI) - apply(simp add: replicate_Suc) + apply(simp add: replicate_Suc tape_of_nl_abv) done qed next @@ -1364,8 +1357,9 @@ apply(erule_tac x = n in allE) apply(case_tac "steps (Suc 0, [], Oc \ ?cn) (?tcontr, 0) n") apply(simp, auto) - apply(erule_tac x = 2 in allE, erule_tac x = 0 in allE) - apply(simp add: numeral_2_eq_2 replicate_Suc) + apply(erule_tac x = nd in allE, erule_tac x = 2 in allE) + apply(simp add: numeral_2_eq_2 replicate_Suc tape_of_nl_abv) + apply(erule_tac x = 0 in allE, simp) done qed @@ -1416,7 +1410,7 @@ using Hoare_def h_newcase[of ?tcontr "[code ?tcontr]" 1] h apply(auto) apply(rule_tac x = na in exI) - apply(simp add: replicate_Suc) + apply(simp add: replicate_Suc tape_of_nl_abv) done qed next @@ -1434,7 +1428,8 @@ using h apply(auto simp: haltP_def Hoare_unhalt_def) apply(erule_tac x = n in allE) - apply(case_tac "steps (Suc 0, [], Oc \ ?cn) (?tcontr, 0) n", simp) + apply(case_tac "steps (Suc 0, [], Oc \ ?cn) (?tcontr, 0) n") + apply(simp add: tape_of_nl_abv) done qed