diff -r 00ac265b251b -r 02b6fab379ba Journal/document/root.tex --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Journal/document/root.tex Sat Jul 27 08:17:54 2013 +0200 @@ -0,0 +1,86 @@ +\documentclass[runningheads]{llncs} +%\documentclass[10pt, conference, compsocconf]{IEEEtran} +\usepackage{isabelle} +\usepackage{isabellesym} +\usepackage{times} +\usepackage{amssymb} +\usepackage{amsmath} +\usepackage{stmaryrd} +\usepackage{mathpartir} +\usepackage{pdfsetup} +\usepackage{tikz} +\usepackage{pgf} +\usepackage{color} + +%% for testing +%\usepackage{endnotes} +%\let\footnote=\endnote + +% urls in roman style, theory text in math-similar italics +\urlstyle{rm} +\isabellestyle{it} + +% gray boxes +\definecolor{mygrey}{rgb}{.80,.80,.80} + +% mathpatir +\mprset{sep=0.9em} +\mprset{center=false} +\mprset{flushleft=true} + +% for uniform font size +%\renewcommand{\isastyle}{\isastyleminor} + +\def\dn{\,\stackrel{\mbox{\scriptsize def}}{=}\,} +\renewcommand{\isasymequiv}{$\dn$} +\renewcommand{\isasymemptyset}{$\varnothing$} +\renewcommand{\isacharunderscore}{\mbox{$\_$}} +\renewcommand{\isasymiota}{} +\newcommand{\isasymulcorner}{$\ulcorner$} +\newcommand{\isasymurcorner}{$\urcorner$} +\begin{document} + + +\title{Mechanising Turing Machines and Computability Theory in Isabelle/HOL} +\author{Jian Xu\inst{1} \and Xingyuan Zhang\inst{1} \and Christian Urban\inst{2}} +\institute{PLA University of Science and Technology, China \and King's College London, UK} + +\maketitle + + +\begin{abstract} +We formalise results from computability theory in the theorem prover +Isabelle/HOL. +%This theorem prover is based on classical logic which +%precludes \emph{direct} reasoning about computability: every boolean +%predicate is either true or false because of the law of excluded +%middle. The only way to reason about computability in a classical +%theorem prover is to formalise a concrete model of computation. +Following the textbook by Boolos et al, we formalise Turing machines +and relate them to abacus machines and recursive functions. We ``tie +the know'' between these three computational models by formalising a +universal function and obtaining from it a universal Turing machine by +our verified translation from recursive functions to abacus programs +and from abacus programs to Turing machine programs. Hoare-style reasoning techniques allow us +to reason about concrete Turing machine and abacus programs. +%Our theory can be +%used to formalise other computability results. +%We give one example about the computational equivalence of +%single-sided Turing machines. +%{\it we give one example about the undecidability of Wang's tiling problem, whose proof uses +%the notion of a universal Turing machine.} +\end{abstract} + +% generated text of all theories +\input{session} + +% optional bibliography +\bibliographystyle{abbrv} +\bibliography{root} + +\end{document} + +%%% Local Variables: +%%% mode: latex +%%% TeX-master: t +%%% End: