theory turing_hoare
imports turing_basic
begin
type_synonym assert = "tape \<Rightarrow> bool"
definition
assert_imp :: "assert \<Rightarrow> assert \<Rightarrow> bool" ("_ \<mapsto> _" [0, 0] 100)
where
"P \<mapsto> Q \<equiv> \<forall>l r. P (l, r) \<longrightarrow> Q (l, r)"
fun
holds_for :: "(tape \<Rightarrow> bool) \<Rightarrow> config \<Rightarrow> bool" ("_ holds'_for _" [100, 99] 100)
where
"P holds_for (s, l, r) = P (l, r)"
lemma is_final_holds[simp]:
assumes "is_final c"
shows "Q holds_for (steps c p n) = Q holds_for c"
using assms
apply(induct n)
apply(auto)
apply(case_tac [!] c)
apply(auto)
done
(* Hoare Rules *)
(* halting case *)
definition
Hoare_halt :: "assert \<Rightarrow> tprog0 \<Rightarrow> assert \<Rightarrow> bool" ("({(1_)}/ (_)/ {(1_)})" [50, 49] 50)
where
"{P} p {Q} \<equiv> \<forall>tp. P tp \<longrightarrow> (\<exists>n. is_final (steps0 (1, tp) p n) \<and> Q holds_for (steps0 (1, tp) p n))"
(* not halting case *)
definition
Hoare_unhalt :: "assert \<Rightarrow> tprog0 \<Rightarrow> bool" ("({(1_)}/ (_)) \<up>" [50, 49] 50)
where
"{P} p \<up> \<equiv> \<forall>tp. P tp \<longrightarrow> (\<forall> n . \<not> (is_final (steps0 (1, tp) p n)))"
lemma Hoare_haltI:
assumes "\<And>l r. P (l, r) \<Longrightarrow> \<exists>n. is_final (steps0 (1, (l, r)) p n) \<and> Q holds_for (steps0 (1, (l, r)) p n)"
shows "{P} p {Q}"
unfolding Hoare_halt_def
using assms by auto
lemma Hoare_unhaltI:
assumes "\<And>l r n. P (l, r) \<Longrightarrow> \<not> is_final (steps0 (1, (l, r)) p n)"
shows "{P} p \<up>"
unfolding Hoare_unhalt_def
using assms by auto
text {*
{P1} A {Q1} {P2} B {Q2} Q1 \<mapsto> P2 A well-formed
---------------------------------------------------
{P1} A |+| B {Q2}
*}
lemma Hoare_plus_halt [case_names A_halt B_halt Imp A_wf]:
assumes A_halt : "{P1} A {Q1}"
and B_halt : "{P2} B {Q2}"
and a_imp: "Q1 \<mapsto> P2"
and A_wf : "tm_wf (A, 0)"
shows "{P1} A |+| B {Q2}"
proof(rule Hoare_haltI)
fix l r
assume h: "P1 (l, r)"
then obtain n1 l' r'
where "is_final (steps0 (1, l, r) A n1)"
and a1: "Q1 holds_for (steps0 (1, l, r) A n1)"
and a2: "steps0 (1, l, r) A n1 = (0, l', r')"
using A_halt unfolding Hoare_halt_def
by (metis is_final_eq surj_pair)
then obtain n2
where "steps0 (1, l, r) (A |+| B) n2 = (Suc (length A div 2), l', r')"
using A_wf by (rule_tac tm_comp_pre_halt_same)
moreover
from a1 a2 a_imp have "P2 (l', r')" by (simp add: assert_imp_def)
then obtain n3 l'' r''
where "is_final (steps0 (1, l', r') B n3)"
and b1: "Q2 holds_for (steps0 (1, l', r') B n3)"
and b2: "steps0 (1, l', r') B n3 = (0, l'', r'')"
using B_halt unfolding Hoare_halt_def
by (metis is_final_eq surj_pair)
then have "steps0 (Suc (length A div 2), l', r') (A |+| B) n3 = (0, l'', r'')"
using A_wf by (rule_tac tm_comp_second_halt_same)
ultimately show
"\<exists>n. is_final (steps0 (1, l, r) (A |+| B) n) \<and> Q2 holds_for (steps0 (1, l, r) (A |+| B) n)"
using b1 b2 by (rule_tac x = "n2 + n3" in exI) (simp)
qed
lemma Hoare_plus_halt_simple [case_names A_halt B_halt A_wf]:
assumes A_halt : "{P1} A {P2}"
and B_halt : "{P2} B {P3}"
and A_wf : "tm_wf (A, 0)"
shows "{P1} A |+| B {P3}"
by (rule Hoare_plus_halt[OF A_halt B_halt _ A_wf])
(simp add: assert_imp_def)
text {*
{P1} A {Q1} {P2} B loops Q1 \<mapsto> P2 A well-formed
------------------------------------------------------
{P1} A |+| B loops
*}
lemma Hoare_plus_unhalt [case_names A_halt B_unhalt Imp A_wf]:
assumes A_halt: "{P1} A {Q1}"
and B_uhalt: "{P2} B \<up>"
and a_imp: "Q1 \<mapsto> P2"
and A_wf : "tm_wf (A, 0)"
shows "{P1} (A |+| B) \<up>"
proof(rule_tac Hoare_unhaltI)
fix n l r
assume h: "P1 (l, r)"
then obtain n1 l' r'
where a: "is_final (steps0 (1, l, r) A n1)"
and b: "Q1 holds_for (steps0 (1, l, r) A n1)"
and c: "steps0 (1, l, r) A n1 = (0, l', r')"
using A_halt unfolding Hoare_halt_def
by (metis is_final_eq surj_pair)
then obtain n2 where eq: "steps0 (1, l, r) (A |+| B) n2 = (Suc (length A div 2), l', r')"
using A_wf by (rule_tac tm_comp_pre_halt_same)
then show "\<not> is_final (steps0 (1, l, r) (A |+| B) n)"
proof(cases "n2 \<le> n")
case True
from b c a_imp have "P2 (l', r')" by (simp add: assert_imp_def)
then have "\<forall> n. \<not> is_final (steps0 (1, l', r') B n) "
using B_uhalt unfolding Hoare_unhalt_def by simp
then have "\<not> is_final (steps0 (Suc 0, l', r') B (n - n2))" by auto
then obtain s'' l'' r''
where "steps0 (Suc 0, l', r') B (n - n2) = (s'', l'', r'')"
and "\<not> is_final (s'', l'', r'')" by (metis surj_pair)
then have "steps0 (Suc (length A div 2), l', r') (A |+| B) (n - n2) = (s''+ length A div 2, l'', r'')"
using A_wf by (auto dest: tm_comp_second_same simp del: tm_wf.simps)
then have "\<not> is_final (steps0 (1, l, r) (A |+| B) (n2 + (n - n2)))"
using A_wf by (simp only: steps_add eq) (simp add: tm_wf.simps)
then show "\<not> is_final (steps0 (1, l, r) (A |+| B) n)"
using `n2 \<le> n` by simp
next
case False
then obtain n3 where "n = n2 - n3"
by (metis diff_le_self le_imp_diff_is_add nat_add_commute nat_le_linear)
moreover
with eq show "\<not> is_final (steps0 (1, l, r) (A |+| B) n)"
by (simp add: not_is_final[where ?n1.0="n2"])
qed
qed
lemma Hoare_plus_unhalt_simple [case_names A_halt B_unhalt A_wf]:
assumes A_halt: "{P1} A {P2}"
and B_uhalt: "{P2} B \<up>"
and A_wf : "tm_wf (A, 0)"
shows "{P1} (A |+| B) \<up>"
by (rule Hoare_plus_unhalt[OF A_halt B_uhalt _ A_wf])
(simp add: assert_imp_def)
lemma Hoare_weaken:
assumes a: "{P} p {Q}"
and b: "P' \<mapsto> P"
and c: "Q \<mapsto> Q'"
shows "{P'} p {Q'}"
using assms
unfolding Hoare_halt_def assert_imp_def
by (metis holds_for.simps surj_pair)
end