header {*
{\em abacus} a kind of register machine
*}
theory abacus
imports Main "~~/src/HOL/Algebra/IntRing"
begin
text {*
{\em Abacus} instructions:
*}
datatype abc_inst =
-- {* @{text "Inc n"} increments the memory cell (or register)
with address @{text "n"} by one.
*}
Inc nat
-- {*
@{text "Dec n label"} decrements the memory cell with address @{text "n"} by one.
If cell @{text "n"} is already zero, no decrements happens and the executio jumps to
the instruction labeled by @{text "label"}.
*}
| Dec nat nat
-- {*
@{text "Goto label"} unconditionally jumps to the instruction labeled by @{text "label"}.
*}
| Goto nat
definition "stimes p q = {s . \<exists> u v. u \<in> p \<and> v \<in> q \<and> (u \<union> v = s) \<and> (u \<inter> v = {})}"
no_notation times (infixl "*" 70)
notation stimes (infixl "*" 70)
lemma stimes_comm: "p * q = q * p"
by (unfold stimes_def, auto)
lemma stimes_assoc: "(p * q) * r = p * (q * r)"
by (unfold stimes_def, blast)
definition
"emp = {{}}"
lemma emp_unit_r [simp]: "p * emp = p"
by (unfold stimes_def emp_def, auto)
lemma emp_unit_l [simp]: "emp * p = p"
by (metis emp_unit_r stimes_comm)
lemma stimes_mono: "p \<subseteq> q \<Longrightarrow> p * r \<subseteq> q * r"
by (unfold stimes_def, auto)
thm mult_cancel_left
lemma stimes_left_commute:
"(p * (q * r)) = (q * (p * r))"
by (metis stimes_assoc stimes_comm)
lemmas stimes_ac = stimes_comm stimes_assoc stimes_left_commute
definition pasrt :: "bool \<Rightarrow> ('a set set)" ("<_>" [71] 71)
where "pasrt b = {s . s = {} \<and> b}"
datatype apg =
Instr abc_inst
| Label nat
| Seq apg apg
| Local "(nat \<Rightarrow> apg)"
abbreviation prog_instr :: "abc_inst \<Rightarrow> apg" ("\<guillemotright>_" [61] 61)
where "\<guillemotright>i \<equiv> Instr i"
abbreviation prog_seq :: "apg \<Rightarrow> apg \<Rightarrow> apg" (infixl ";" 52)
where "c1 ; c2 \<equiv> Seq c1 c2"
type_synonym aconf = "((nat \<rightharpoonup> abc_inst) \<times> nat \<times> (nat \<rightharpoonup> nat) \<times> nat)"
fun astep :: "aconf \<Rightarrow> aconf"
where "astep (prog, pc, m, faults) =
(case (prog pc) of
Some (Inc i) \<Rightarrow>
case m(i) of
Some n \<Rightarrow> (prog, pc + 1, m(i:= Some (n + 1)), faults)
| None \<Rightarrow> (prog, pc, m, faults + 1)
| Some (Dec i e) \<Rightarrow>
case m(i) of
Some n \<Rightarrow> if (n = 0) then (prog, e, m, faults)
else (prog, pc + 1, m(i:= Some (n - 1)), faults)
| None \<Rightarrow> (prog, pc, m, faults + 1)
| Some (Goto pc') \<Rightarrow> (prog, pc', m, faults)
| None \<Rightarrow> (prog, pc, m, faults + 1))"
definition "run n = astep ^^ n"
datatype aresource =
M nat nat
| C nat abc_inst
| At nat
| Faults nat
fun rset_of :: "aconf \<Rightarrow> aresource set"
where "rset_of (prog, pc, m, faults) =
{M i n | i n. m (i) = Some n} \<union> {At pc} \<union>
{C i inst | i inst. prog i = Some inst} \<union> {Faults faults}"
type_synonym assert = "aresource set set"
primrec assemble_to :: "apg \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> assert"
where
"assemble_to (Instr ai) i j = ({{C i ai}} * <(j = i + 1)>)" |
"assemble_to (Seq p1 p2) i j = (\<Union> j'. (assemble_to p1 i j') * (assemble_to p2 j' j))" |
"assemble_to (Local fp) i j = (\<Union> l. (assemble_to (fp l) i j))" |
"assemble_to (Label l) i j = <(i = j \<and> j = l)>"
abbreviation asmb_to :: "nat \<Rightarrow> apg \<Rightarrow> nat \<Rightarrow> assert" ("_ :[ _ ]: _" [60, 60, 60] 60)
where "i :[ apg ]: j \<equiv> assemble_to apg i j"
definition
Hoare_abc :: "assert \<Rightarrow> assert \<Rightarrow> assert \<Rightarrow> bool" ("({(1_)}/ (_)/ {(1_)})" 50)
where
"{p} c {q} \<equiv> (\<forall> s r. (rset_of s) \<in> (p*c*r) \<longrightarrow> (\<exists> k. ((rset_of (run k s)) \<in> (q*c*r))))"
definition "pc l = {{At l}}"
definition "m a v = {{M a v}}"
lemma hoare_dec_suc: "{pc i * m a v * <(v > 0)>}
i:[ \<guillemotright>(Dec a e) ]:j
{pc (i+1) * m a (v - 1)}"
sorry
lemma hoare_dec_fail: "{pc i * m a 0}
i:[ \<guillemotright>(Dec a e) ]:j
{pc e * m a 0}"
sorry
lemma hoare_inc: "{pc i * m a v}
i:[ \<guillemotright>(Inc a) ]:j
{pc (i+1) * m a (v + 1)}"
sorry
interpretation foo: comm_monoid_mult "op * :: 'a set set => 'a set set => 'a set set" "{{}}::'a set set"
apply(default)
apply(simp add: stimes_assoc)
apply(simp add: stimes_comm)
apply(simp add: emp_def[symmetric])
done
(*used by simplifier for numbers *)
thm mult_cancel_left
(*
interpretation foo: comm_ring_1 "op * :: 'a set set => 'a set set => 'a set set" "{{}}::'a set set"
apply(default)
*)
lemma frame: "{p} c {q} \<Longrightarrow> \<forall> r. {p * r} c {q * r}"
apply (unfold Hoare_abc_def, clarify)
apply (erule_tac x = "(a, aa, ab, b)" in allE)
apply (erule_tac x = "r*ra" in allE)
apply(simp add: stimes_ac)
done
lemma code_extension: "\<lbrakk>{p} c {q}\<rbrakk> \<Longrightarrow> (\<forall> e. {p} c * e {q})"
apply (unfold Hoare_abc_def, clarify)
apply (erule_tac x = "(a, aa, ab, b)" in allE)
apply (erule_tac x = "e * r" in allE)
apply(simp add: stimes_ac)
done
lemma run_add: "run (n1 + n2) s = run n1 (run n2 s)"
apply (unfold run_def)
by (metis funpow_add o_apply)
lemma composition: "\<lbrakk>{p} c1 {q}; {q} c2 {r}\<rbrakk> \<Longrightarrow> {p} c1 * c2 {r}"
proof -
assume h: "{p} c1 {q}" "{q} c2 {r}"
from code_extension [OF h(1), rule_format, of "c2"]
have "{p} c1 * c2 {q}" .
moreover from code_extension [OF h(2), rule_format, of "c1"] and stimes_comm
have "{q} c1 * c2 {r}" by metis
ultimately show "{p} c1 * c2 {r}"
apply (unfold Hoare_abc_def, clarify)
proof -
fix a aa ab b ra
assume h1: "\<forall>s r. rset_of s \<in> p * (c1 * c2) * r \<longrightarrow>
(\<exists>k. rset_of (run k s) \<in> q * (c1 * c2) * r)"
and h2: "\<forall>s ra. rset_of s \<in> q * (c1 * c2) * ra \<longrightarrow>
(\<exists>k. rset_of (run k s) \<in> r * (c1 * c2) * ra)"
and h3: "rset_of (a, aa, ab, b) \<in> p * (c1 * c2) * ra"
show "\<exists>k. rset_of (run k (a, aa, ab, b)) \<in> r * (c1 * c2) * ra"
proof -
let ?s = "(a, aa, ab, b)"
from h1 [rule_format, of ?s, OF h3]
obtain n1 where "rset_of (run n1 ?s) \<in> q * (c1 * c2) * ra" by blast
from h2 [rule_format, OF this]
obtain n2 where "rset_of (run n2 (run n1 ?s)) \<in> r * (c1 * c2) * ra" by blast
with run_add show ?thesis by metis
qed
qed
qed
lemma asm_end_unique: "\<lbrakk>s \<in> (i:[c]:j1); s' \<in> (i:[c]:j2)\<rbrakk> \<Longrightarrow> j1 = j2"
(* proof(induct c arbitrary:i j1 j2 s s') *) sorry
lemma union_unique: "(\<forall> j. j \<noteq> i \<longrightarrow> c(j) = {}) \<Longrightarrow> (\<Union> j. c(j)) = (c i)"
by auto
lemma asm_consist: "i:[c1]:j \<noteq> {}"
sorry
lemma seq_comp: "\<lbrakk>{p} i:[c1]:j {q};
{q} j:[c2]:k {r}\<rbrakk> \<Longrightarrow> {p} i:[(c1 ; c2)]:k {r}"
apply (unfold assemble_to.simps)
proof -
assume h: "{p} i :[ c1 ]: j {q}" "{q} j :[ c2 ]: k {r}"
have " (\<Union>j'. (i :[ c1 ]: j') * (j' :[ c2 ]: k)) =
(i :[ c1 ]: j) * (j :[ c2 ]: k)"
proof -
{ fix j'
assume "j' \<noteq> j"
have "(i :[ c1 ]: j') * (j' :[ c2 ]: k) = {}" (is "?X * ?Y = {}")
proof -
{ fix s
assume "s \<in> ?X*?Y"
then obtain s1 s2 where h1: "s1 \<in> ?X" by (unfold stimes_def, auto)
}
qed
} thus ?thesis by (auto intro!:union_unique)
qed
moreover have "{p} \<dots> {r}" by (rule composition [OF h])
ultimately show "{p} \<Union>j'. (i :[ c1 ]: j') * (j' :[ c2 ]: k) {r}" by metis
qed
end