(* Title: thys/Turing_Hoare.thy
Author: Jian Xu, Xingyuan Zhang, and Christian Urban
*)
header {* Hoare Rules for TMs *}
theory Turing_Hoare
imports Turing
begin
type_synonym assert = "tape \<Rightarrow> bool"
definition
assert_imp :: "assert \<Rightarrow> assert \<Rightarrow> bool" ("_ \<mapsto> _" [0, 0] 100)
where
"P \<mapsto> Q \<equiv> \<forall>l r. P (l, r) \<longrightarrow> Q (l, r)"
lemma [intro, simp]:
"P \<mapsto> P"
unfolding assert_imp_def by simp
fun
holds_for :: "(tape \<Rightarrow> bool) \<Rightarrow> config \<Rightarrow> bool" ("_ holds'_for _" [100, 99] 100)
where
"P holds_for (s, l, r) = P (l, r)"
lemma is_final_holds[simp]:
assumes "is_final c"
shows "Q holds_for (steps c p n) = Q holds_for c"
using assms
apply(induct n)
apply(auto)
apply(case_tac [!] c)
apply(auto)
done
(* Hoare Rules *)
(* halting case *)
definition
Hoare_halt :: "assert \<Rightarrow> tprog0 \<Rightarrow> assert \<Rightarrow> bool" ("({(1_)}/ (_)/ {(1_)})" 50)
where
"{P} p {Q} \<equiv> \<forall>tp. P tp \<longrightarrow> (\<exists>n. is_final (steps0 (1, tp) p n) \<and> Q holds_for (steps0 (1, tp) p n))"
(* not halting case *)
definition
Hoare_unhalt :: "assert \<Rightarrow> tprog0 \<Rightarrow> bool" ("({(1_)}/ (_)) \<up>" 50)
where
"{P} p \<up> \<equiv> \<forall>tp. P tp \<longrightarrow> (\<forall> n . \<not> (is_final (steps0 (1, tp) p n)))"
lemma Hoare_haltI:
assumes "\<And>l r. P (l, r) \<Longrightarrow> \<exists>n. is_final (steps0 (1, (l, r)) p n) \<and> Q holds_for (steps0 (1, (l, r)) p n)"
shows "{P} p {Q}"
unfolding Hoare_halt_def
using assms by auto
lemma Hoare_unhaltI:
assumes "\<And>l r n. P (l, r) \<Longrightarrow> \<not> is_final (steps0 (1, (l, r)) p n)"
shows "{P} p \<up>"
unfolding Hoare_unhalt_def
using assms by auto
text {*
{P} A {Q} {Q} B {S} A well-formed
-----------------------------------------
{P} A |+| B {S}
*}
lemma Hoare_plus_halt [case_names A_halt B_halt A_wf]:
assumes A_halt : "{P} A {Q}"
and B_halt : "{Q} B {S}"
and A_wf : "tm_wf (A, 0)"
shows "{P} A |+| B {S}"
proof(rule Hoare_haltI)
fix l r
assume h: "P (l, r)"
then obtain n1 l' r'
where "is_final (steps0 (1, l, r) A n1)"
and a1: "Q holds_for (steps0 (1, l, r) A n1)"
and a2: "steps0 (1, l, r) A n1 = (0, l', r')"
using A_halt unfolding Hoare_halt_def
by (metis is_final_eq surj_pair)
then obtain n2
where "steps0 (1, l, r) (A |+| B) n2 = (Suc (length A div 2), l', r')"
using A_wf by (rule_tac tm_comp_next)
moreover
from a1 a2 have "Q (l', r')" by (simp)
then obtain n3 l'' r''
where "is_final (steps0 (1, l', r') B n3)"
and b1: "S holds_for (steps0 (1, l', r') B n3)"
and b2: "steps0 (1, l', r') B n3 = (0, l'', r'')"
using B_halt unfolding Hoare_halt_def
by (metis is_final_eq surj_pair)
then have "steps0 (Suc (length A div 2), l', r') (A |+| B) n3 = (0, l'', r'')"
using A_wf by (rule_tac tm_comp_final)
ultimately show
"\<exists>n. is_final (steps0 (1, l, r) (A |+| B) n) \<and> S holds_for (steps0 (1, l, r) (A |+| B) n)"
using b1 b2 by (rule_tac x = "n2 + n3" in exI) (simp)
qed
text {*
{P} A {Q} {Q} B loops A well-formed
------------------------------------------
{P} A |+| B loops
*}
lemma Hoare_plus_unhalt [case_names A_halt B_unhalt A_wf]:
assumes A_halt: "{P} A {Q}"
and B_uhalt: "{Q} B \<up>"
and A_wf : "tm_wf (A, 0)"
shows "{P} (A |+| B) \<up>"
proof(rule_tac Hoare_unhaltI)
fix n l r
assume h: "P (l, r)"
then obtain n1 l' r'
where a: "is_final (steps0 (1, l, r) A n1)"
and b: "Q holds_for (steps0 (1, l, r) A n1)"
and c: "steps0 (1, l, r) A n1 = (0, l', r')"
using A_halt unfolding Hoare_halt_def
by (metis is_final_eq surj_pair)
then obtain n2 where eq: "steps0 (1, l, r) (A |+| B) n2 = (Suc (length A div 2), l', r')"
using A_wf by (rule_tac tm_comp_next)
then show "\<not> is_final (steps0 (1, l, r) (A |+| B) n)"
proof(cases "n2 \<le> n")
case True
from b c have "Q (l', r')" by simp
then have "\<forall> n. \<not> is_final (steps0 (1, l', r') B n) "
using B_uhalt unfolding Hoare_unhalt_def by simp
then have "\<not> is_final (steps0 (1, l', r') B (n - n2))" by auto
then obtain s'' l'' r''
where "steps0 (1, l', r') B (n - n2) = (s'', l'', r'')"
and "\<not> is_final (s'', l'', r'')" by (metis surj_pair)
then have "steps0 (Suc (length A div 2), l', r') (A |+| B) (n - n2) = (s''+ length A div 2, l'', r'')"
using A_wf by (auto dest: tm_comp_second simp del: tm_wf.simps)
then have "\<not> is_final (steps0 (1, l, r) (A |+| B) (n2 + (n - n2)))"
using A_wf by (simp only: steps_add eq) (simp add: tm_wf.simps)
then show "\<not> is_final (steps0 (1, l, r) (A |+| B) n)"
using `n2 \<le> n` by simp
next
case False
then obtain n3 where "n = n2 - n3"
by (metis diff_le_self le_imp_diff_is_add nat_add_commute nat_le_linear)
moreover
with eq show "\<not> is_final (steps0 (1, l, r) (A |+| B) n)"
by (simp add: not_is_final[where ?n1.0="n2"])
qed
qed
lemma Hoare_consequence:
assumes "P' \<mapsto> P" "{P} p {Q}" "Q \<mapsto> Q'"
shows "{P'} p {Q'}"
using assms
unfolding Hoare_halt_def assert_imp_def
by (metis holds_for.simps surj_pair)
end