\documentclass[10pt, conference, compsocconf]{IEEEtran}
\usepackage{isabelle}
\usepackage{isabellesym}
\usepackage{times}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{mathpartir}
\usepackage{pdfsetup}
\usepackage{tikz}
\usepackage{pgf}
% urls in roman style, theory text in math-similar italics
\urlstyle{rm}
\isabellestyle{it}
% for uniform font size
%\renewcommand{\isastyle}{\isastyleminor}
\def\dn{\,\stackrel{\mbox{\scriptsize def}}{=}\,}
\renewcommand{\isasymequiv}{$\dn$}
\renewcommand{\isasymemptyset}{$\varnothing$}
\renewcommand{\isacharunderscore}{\mbox{$\_$}}
\renewcommand{\isasymiota}{}
\begin{document}
\title{Formalising Computability Theory in Isabelle/HOL}
\author{
\IEEEauthorblockN{Jian Xu, Xingyuan Zhang}
\IEEEauthorblockA{PLA University of Science and Technology Nanjing, China}
\and
\IEEEauthorblockN{Christian Urban}
\IEEEauthorblockA{King's College London, UK}
}
\maketitle
\begin{abstract}
We present a formalised theory of computability in the
theorem prover Isabelle/HOL. This theorem prover is based on classical
logic which precludes \emph{direct} reasoning about computability: every
boolean predicate is either true or false because of the law of excluded
middle. The only way to reason about computability in a classical theorem
prover is to formalise a concrete model for computation.
We formalise Turing machines and relate them to abacus machines and recursive
functions. Our theory can be used to formalise other computability results:
we give one example about the undecidability of Wang's tiling problem, whose proof uses
the notion of a universal Turing machine.
\end{abstract}
\begin{IEEEkeywords}
Turing Machines, Computability, Isabelle/HOL, Wang tilings
\end{IEEEkeywords}
\IEEEpeerreviewmaketitle
% generated text of all theories
\input{session}
% optional bibliography
\bibliographystyle{abbrv}
\bibliography{root}
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End: