thys/Recs.thy
author Christian Urban <christian dot urban at kcl dot ac dot uk>
Thu, 02 May 2013 08:31:48 +0100
changeset 245 af60d84e0677
parent 244 8dba6ae39bf0
child 246 e113420a2fce
permissions -rwxr-xr-x
introduced rec_if

theory Recs
imports Main Fact "~~/src/HOL/Number_Theory/Primes"
begin

(*
  some definitions from 

    A Course in Formal Languages, Automata and Groups
    I M Chiswell 

  and

    Lecture on undecidability
    Michael M. Wolf 
*)

lemma if_zero_one [simp]:
  "(if P then 1 else 0) = (0::nat) \<longleftrightarrow> \<not> P"
  "(0::nat) < (if P then 1 else 0) = P"
  "(if P then 0 else 1) = (if \<not>P then 1 else (0::nat))"
by (simp_all)

lemma nth:
  "(x # xs) ! 0 = x"
  "(x # y # xs) ! 1 = y"
  "(x # y # z # xs) ! 2 = z"
  "(x # y # z # u # xs) ! 3 = u"
by (simp_all)


section {* Some auxiliary lemmas about @{text "\<Sum>"} and @{text "\<Prod>"} *}

lemma setprod_atMost_Suc[simp]: 
  "(\<Prod>i \<le> Suc n. f i) = (\<Prod>i \<le> n. f i) * f(Suc n)"
by(simp add:atMost_Suc mult_ac)

lemma setprod_lessThan_Suc[simp]: 
  "(\<Prod>i < Suc n. f i) = (\<Prod>i < n. f i) * f n"
by (simp add:lessThan_Suc mult_ac)

lemma setsum_add_nat_ivl2: "n \<le> p  \<Longrightarrow>
  setsum f {..<n} + setsum f {n..p} = setsum f {..p::nat}"
apply(subst setsum_Un_disjoint[symmetric])
apply(auto simp add: ivl_disj_un_one)
done

lemma setsum_eq_zero [simp]:
  fixes f::"nat \<Rightarrow> nat"
  shows "(\<Sum>i < n. f i) = 0 \<longleftrightarrow> (\<forall>i < n. f i = 0)" 
        "(\<Sum>i \<le> n. f i) = 0 \<longleftrightarrow> (\<forall>i \<le> n. f i = 0)" 
by (auto)

lemma setprod_eq_zero [simp]:
  fixes f::"nat \<Rightarrow> nat"
  shows "(\<Prod>i < n. f i) = 0 \<longleftrightarrow> (\<exists>i < n. f i = 0)" 
        "(\<Prod>i \<le> n. f i) = 0 \<longleftrightarrow> (\<exists>i \<le> n. f i = 0)" 
by (auto)

lemma setsum_one_less:
  fixes n::nat
  assumes "\<forall>i < n. f i \<le> 1" 
  shows "(\<Sum>i < n. f i) \<le> n"  
using assms
by (induct n) (auto)

lemma setsum_one_le:
  fixes n::nat
  assumes "\<forall>i \<le> n. f i \<le> 1" 
  shows "(\<Sum>i \<le> n. f i) \<le> Suc n"  
using assms
by (induct n) (auto)

lemma setsum_eq_one_le:
  fixes n::nat
  assumes "\<forall>i \<le> n. f i = 1" 
  shows "(\<Sum>i \<le> n. f i) = Suc n"  
using assms
by (induct n) (auto)

lemma setsum_least_eq:
  fixes f::"nat \<Rightarrow> nat"
  assumes h0: "p \<le> n"
  assumes h1: "\<forall>i \<in> {..<p}. f i = 1"
  assumes h2: "\<forall>i \<in> {p..n}. f i = 0"
  shows "(\<Sum>i \<le> n. f i) = p"  
proof -
  have eq_p: "(\<Sum>i \<in> {..<p}. f i) = p" 
    using h1 by (induct p) (simp_all)
  have eq_zero: "(\<Sum>i \<in> {p..n}. f i) = 0" 
    using h2 by auto
  have "(\<Sum>i \<le> n. f i) = (\<Sum>i \<in> {..<p}. f i) + (\<Sum>i \<in> {p..n}. f i)"
    using h0 by (simp add: setsum_add_nat_ivl2) 
  also have "... = (\<Sum>i \<in> {..<p}. f i)" using eq_zero by simp
  finally show "(\<Sum>i \<le> n. f i) = p" using eq_p by simp
qed

lemma nat_mult_le_one:
  fixes m n::nat
  assumes "m \<le> 1" "n \<le> 1"
  shows "m * n \<le> 1"
using assms by (induct n) (auto)

lemma setprod_one_le:
  fixes f::"nat \<Rightarrow> nat"
  assumes "\<forall>i \<le> n. f i \<le> 1" 
  shows "(\<Prod>i \<le> n. f i) \<le> 1" 
using assms by (induct n) (auto intro: nat_mult_le_one)

lemma setprod_greater_zero:
  fixes f::"nat \<Rightarrow> nat"
  assumes "\<forall>i \<le> n. f i \<ge> 0" 
  shows "(\<Prod>i \<le> n. f i) \<ge> 0" 
using assms by (induct n) (auto)

lemma setprod_eq_one:
  fixes f::"nat \<Rightarrow> nat"
  assumes "\<forall>i \<le> n. f i = Suc 0" 
  shows "(\<Prod>i \<le> n. f i) = Suc 0" 
using assms by (induct n) (auto)

lemma setsum_cut_off_less:
  fixes f::"nat \<Rightarrow> nat"
  assumes h1: "m \<le> n"
  and     h2: "\<forall>i \<in> {m..<n}. f i = 0"
  shows "(\<Sum>i < n. f i) = (\<Sum>i < m. f i)"
proof -
  have eq_zero: "(\<Sum>i \<in> {m..<n}. f i) = 0" 
    using h2 by auto
  have "(\<Sum>i < n. f i) = (\<Sum>i \<in> {..<m}. f i) + (\<Sum>i \<in> {m..<n}. f i)"
    using h1 by (metis atLeast0LessThan le0 setsum_add_nat_ivl) 
  also have "... = (\<Sum>i \<in> {..<m}. f i)" using eq_zero by simp
  finally show "(\<Sum>i < n. f i) = (\<Sum>i < m. f i)" by simp
qed

lemma setsum_cut_off_le:
  fixes f::"nat \<Rightarrow> nat"
  assumes h1: "m \<le> n"
  and     h2: "\<forall>i \<in> {m..n}. f i = 0"
  shows "(\<Sum>i \<le> n. f i) = (\<Sum>i < m. f i)"
proof -
  have eq_zero: "(\<Sum>i \<in> {m..n}. f i) = 0" 
    using h2 by auto
  have "(\<Sum>i \<le> n. f i) = (\<Sum>i \<in> {..<m}. f i) + (\<Sum>i \<in> {m..n}. f i)"
    using h1 by (simp add: setsum_add_nat_ivl2)
  also have "... = (\<Sum>i \<in> {..<m}. f i)" using eq_zero by simp
  finally show "(\<Sum>i \<le> n. f i) = (\<Sum>i < m. f i)" by simp
qed

lemma setprod_one [simp]:
  fixes n::nat
  shows "(\<Prod>i < n. Suc 0) = Suc 0"
        "(\<Prod>i \<le> n. Suc 0) = Suc 0"
by (induct n) (simp_all)



section {* Recursive Functions *}

datatype recf =  Z
              |  S
              |  Id nat nat
              |  Cn nat recf "recf list"
              |  Pr nat recf recf
              |  Mn nat recf 

fun arity :: "recf \<Rightarrow> nat"
  where
  "arity Z = 1" 
| "arity S = 1"
| "arity (Id m n) = m"
| "arity (Cn n f gs) = n"
| "arity (Pr n f g) = Suc n"
| "arity (Mn n f) = n"

abbreviation
  "CN f gs \<equiv> Cn (arity (hd gs)) f gs"

abbreviation
  "PR f g \<equiv> Pr (arity f) f g"

abbreviation
  "MN f \<equiv> Mn (arity f - 1) f"

fun rec_eval :: "recf \<Rightarrow> nat list \<Rightarrow> nat"
  where
  "rec_eval Z xs = 0" 
| "rec_eval S xs = Suc (xs ! 0)" 
| "rec_eval (Id m n) xs = xs ! n" 
| "rec_eval (Cn n f gs) xs = rec_eval f (map (\<lambda>x. rec_eval x xs) gs)" 
| "rec_eval (Pr n f g) (0 # xs) = rec_eval f xs"
| "rec_eval (Pr n f g) (Suc x # xs) = 
     rec_eval g (x # (rec_eval (Pr n f g) (x # xs)) # xs)"
| "rec_eval (Mn n f) xs = (LEAST x. rec_eval f (x # xs) = 0)"

inductive 
  terminates :: "recf \<Rightarrow> nat list \<Rightarrow> bool"
where
  termi_z: "terminates Z [n]"
| termi_s: "terminates S [n]"
| termi_id: "\<lbrakk>n < m; length xs = m\<rbrakk> \<Longrightarrow> terminates (Id m n) xs"
| termi_cn: "\<lbrakk>terminates f (map (\<lambda>g. rec_eval g xs) gs); 
              \<forall>g \<in> set gs. terminates g xs; length xs = n\<rbrakk> \<Longrightarrow> terminates (Cn n f gs) xs"
| termi_pr: "\<lbrakk>\<forall> y < x. terminates g (y # (rec_eval (Pr n f g) (y # xs) # xs));
              terminates f xs;
              length xs = n\<rbrakk> 
              \<Longrightarrow> terminates (Pr n f g) (xs @ [x])"
| termi_mn: "\<lbrakk>length xs = n; terminates f (r # xs); 
              rec_eval f (r # xs) = 0;
              \<forall> i < r. terminates f (i # xs) \<and> rec_eval f (i # xs) > 0\<rbrakk> \<Longrightarrow> terminates (Mn n f) xs"


section {* Recursive Function Definitions *}

text {*
  @{text "constn n"} is the recursive function which computes 
  natural number @{text "n"}.
*}
fun constn :: "nat \<Rightarrow> recf"
  where
  "constn 0 = Z"  |
  "constn (Suc n) = CN S [constn n]"

definition
  "rec_swap f = CN f [Id 2 1, Id 2 0]"

definition
  "rec_add = PR (Id 1 0) (CN S [Id 3 1])"

definition 
  "rec_mult = PR Z (CN rec_add [Id 3 1, Id 3 2])"

definition 
  "rec_power_swap = PR (constn 1) (CN rec_mult [Id 3 1, Id 3 2])"

definition
  "rec_power = rec_swap rec_power_swap"

definition
  "rec_fact = PR (constn 1) (CN rec_mult [CN S [Id 3 0], Id 3 1])"

definition 
  "rec_pred = CN (PR Z (Id 3 0)) [Id 1 0, Id 1 0]"

definition 
  "rec_minus_swap = (PR (Id 1 0) (CN rec_pred [Id 3 1]))"

definition
  "rec_minus = rec_swap rec_minus_swap"

text {* Sign function returning 1 when the input argument is greater than @{text "0"}. *}

definition 
  "rec_sign = CN rec_minus [constn 1, CN rec_minus [constn 1, Id 1 0]]"

definition 
  "rec_not = CN rec_minus [constn 1, Id 1 0]"

text {*
  @{text "rec_eq"} compares two arguments: returns @{text "1"}
  if they are equal; @{text "0"} otherwise. *}
definition 
  "rec_eq = CN rec_minus 
             [CN (constn 1) [Id 2 0], 
              CN rec_add [rec_minus, rec_swap rec_minus]]"

definition 
  "rec_noteq = CN rec_not [rec_eq]"

definition 
  "rec_conj = CN rec_sign [rec_mult]"

definition 
  "rec_disj = CN rec_sign [rec_add]"

definition 
  "rec_imp = CN rec_disj [CN rec_not [Id 2 0], Id 2 1]"

text {* @{term "rec_ifz [z, x, y]"} returns x if z is zero,
  y otherwise *}
definition 
  "rec_ifz = PR (Id 2 0) (Id 4 3)"

text {* @{term "rec_if [z, x, y]"} returns x if z is *not* zero,
  y otherwise *}

definition 
  "rec_if = CN rec_ifz [CN rec_not [Id 3 0], Id 3 1, Id 3 2]"

text {*
  @{text "rec_less"} compares two arguments and returns @{text "1"} if
  the first is less than the second; otherwise returns @{text "0"}. *}
definition 
  "rec_less = CN rec_sign [rec_swap rec_minus]"

definition 
  "rec_le = CN rec_disj [rec_less, rec_eq]"

text {* Sigma and Accum for function with one and two arguments *}

definition 
  "rec_sigma1 f = PR (CN f [Z, Id 1 0]) (CN rec_add [Id 3 1, CN f [S, Id 3 2]])"

definition 
  "rec_sigma2 f = PR (CN f [Z, Id 2 0, Id 2 1]) (CN rec_add [Id 4 1, CN f [S, Id 4 2, Id 4 3]])"

definition 
  "rec_accum1 f = PR (CN f [Z, Id 1 0]) (CN rec_mult [Id 3 1, CN f [S, Id 3 2]])"

definition 
  "rec_accum2 f = PR (CN f [Z, Id 2 0, Id 2 1]) (CN rec_mult [Id 4 1, CN f [S, Id 4 2, Id 4 3]])"

text {* Bounded quantifiers for one and two arguments *}

definition
  "rec_all1 f = CN rec_sign [rec_accum1 f]"

definition
  "rec_all2 f = CN rec_sign [rec_accum2 f]"

definition
  "rec_ex1 f = CN rec_sign [rec_sigma1 f]"

definition
  "rec_ex2 f = CN rec_sign [rec_sigma2 f]"

text {* Dvd, Quotient, Reminder *}

definition 
  "rec_dvd_swap = CN (rec_ex2 (CN rec_eq [Id 3 2, CN rec_mult [Id 3 1, Id 3 0]])) [Id 2 0, Id 2 1, Id 2 0]"  

definition 
  "rec_dvd = rec_swap rec_dvd_swap" 

definition
  "rec_quo = (let lhs = CN S [Id 3 0] in
              let rhs = CN rec_mult [Id 3 2, CN S [Id 3 1]] in
              let cond = CN rec_eq [lhs, rhs] in
              let if_stmt = CN rec_if [cond, CN S [Id 3 1], Id 3 1]
              in PR Z if_stmt)"

definition
  "rec_rem = CN rec_minus [Id 2 0, CN rec_mult [Id 2 1, rec_quo]]"

section {* Correctness of Recursive Functions *}

lemma constn_lemma [simp]: 
  "rec_eval (constn n) xs = n"
by (induct n) (simp_all)

lemma swap_lemma [simp]:
  "rec_eval (rec_swap f) [x, y] = rec_eval f [y, x]"
by (simp add: rec_swap_def)

lemma add_lemma [simp]: 
  "rec_eval rec_add [x, y] =  x + y"
by (induct x) (simp_all add: rec_add_def)

lemma mult_lemma [simp]: 
  "rec_eval rec_mult [x, y] = x * y"
by (induct x) (simp_all add: rec_mult_def)

lemma power_swap_lemma [simp]: 
  "rec_eval rec_power_swap [y, x] = x ^ y"
by (induct y) (simp_all add: rec_power_swap_def)

lemma power_lemma [simp]: 
  "rec_eval rec_power [x, y] = x ^ y"
by (simp add: rec_power_def)

lemma fact_lemma [simp]: 
  "rec_eval rec_fact [x] = fact x"
by (induct x) (simp_all add: rec_fact_def)

lemma pred_lemma [simp]: 
  "rec_eval rec_pred [x] =  x - 1"
by (induct x) (simp_all add: rec_pred_def)

lemma minus_swap_lemma [simp]: 
  "rec_eval rec_minus_swap [x, y] = y - x"
by (induct x) (simp_all add: rec_minus_swap_def)

lemma minus_lemma [simp]: 
  "rec_eval rec_minus [x, y] = x - y"
by (simp add: rec_minus_def)

lemma sign_lemma [simp]: 
  "rec_eval rec_sign [x] = (if x = 0 then 0 else 1)"
by (simp add: rec_sign_def)

lemma not_lemma [simp]: 
  "rec_eval rec_not [x] = (if x = 0 then 1 else 0)"
by (simp add: rec_not_def)

lemma eq_lemma [simp]: 
  "rec_eval rec_eq [x, y] = (if x = y then 1 else 0)"
by (simp add: rec_eq_def)

lemma noteq_lemma [simp]: 
  "rec_eval rec_noteq [x, y] = (if x \<noteq> y then 1 else 0)"
by (simp add: rec_noteq_def)

lemma conj_lemma [simp]: 
  "rec_eval rec_conj [x, y] = (if x = 0 \<or> y = 0 then 0 else 1)"
by (simp add: rec_conj_def)

lemma disj_lemma [simp]: 
  "rec_eval rec_disj [x, y] = (if x = 0 \<and> y = 0 then 0 else 1)"
by (simp add: rec_disj_def)

lemma imp_lemma [simp]: 
  "rec_eval rec_imp [x, y] = (if 0 < x \<and> y = 0 then 0 else 1)"
by (simp add: rec_imp_def)

lemma less_lemma [simp]: 
  "rec_eval rec_less [x, y] = (if x < y then 1 else 0)"
by (simp add: rec_less_def)

lemma le_lemma [simp]: 
  "rec_eval rec_le [x, y] = (if (x \<le> y) then 1 else 0)"
by(simp add: rec_le_def)

lemma ifz_lemma [simp]:
  "rec_eval rec_ifz [z, x, y] = (if z = 0 then x else y)" 
by (case_tac z) (simp_all add: rec_ifz_def)

lemma if_lemma [simp]:
  "rec_eval rec_if [z, x, y] = (if 0 < z then x else y)" 
by (simp add: rec_if_def)

lemma sigma1_lemma [simp]: 
  shows "rec_eval (rec_sigma1 f) [x, y] = (\<Sum> z \<le> x. (rec_eval f)  [z, y])"
by (induct x) (simp_all add: rec_sigma1_def)

lemma sigma2_lemma [simp]: 
  shows "rec_eval (rec_sigma2 f) [x, y1, y2] = (\<Sum> z \<le> x. (rec_eval f)  [z, y1, y2])"
by (induct x) (simp_all add: rec_sigma2_def)

lemma accum1_lemma [simp]: 
  shows "rec_eval (rec_accum1 f) [x, y] = (\<Prod> z \<le> x. (rec_eval f)  [z, y])"
by (induct x) (simp_all add: rec_accum1_def)

lemma accum2_lemma [simp]: 
  shows "rec_eval (rec_accum2 f) [x, y1, y2] = (\<Prod> z \<le> x. (rec_eval f)  [z, y1, y2])"
by (induct x) (simp_all add: rec_accum2_def)

lemma ex1_lemma [simp]:
 "rec_eval (rec_ex1 f) [x, y] = (if (\<exists>z \<le> x. 0 < rec_eval f [z, y]) then 1 else 0)"
by (simp add: rec_ex1_def)

lemma ex2_lemma [simp]:
 "rec_eval (rec_ex2 f) [x, y1, y2] = (if (\<exists>z \<le> x. 0 < rec_eval f [z, y1, y2]) then 1 else 0)"
by (simp add: rec_ex2_def)

lemma all1_lemma [simp]:
 "rec_eval (rec_all1 f) [x, y] = (if (\<forall>z \<le> x. 0 < rec_eval f [z, y]) then 1 else 0)"
by (simp add: rec_all1_def)

lemma all2_lemma [simp]:
 "rec_eval (rec_all2 f) [x, y1, y2] = (if (\<forall>z \<le> x. 0 < rec_eval f [z, y1, y2]) then 1 else 0)"
by (simp add: rec_all2_def)


lemma dvd_alt_def:
  fixes x y k:: nat
  shows "(x dvd y) = (\<exists> k \<le> y. y = x * k)"
apply(auto simp add: dvd_def)
apply(case_tac x)
apply(auto)
done

lemma dvd_swap_lemma [simp]:
  "rec_eval rec_dvd_swap [x, y] = (if y dvd x then 1 else 0)"
unfolding dvd_alt_def
by (auto simp add: rec_dvd_swap_def)

lemma dvd_lemma [simp]:
  "rec_eval rec_dvd [x, y] = (if x dvd y then 1 else 0)"
by (simp add: rec_dvd_def)


fun Quo where
  "Quo x 0 = 0"
| "Quo x (Suc y) = (if (Suc y = x * (Suc (Quo x y))) then Suc (Quo x y) else Quo x y)"

lemma Quo0:
  shows "Quo 0 y = 0"
apply(induct y)
apply(auto)
done

lemma Quo1:
  "x * (Quo x y) \<le> y"
by (induct y) (simp_all)

lemma Quo2: 
  "b * (Quo b a) + a mod b = a"
by (induct a) (auto simp add: mod_Suc)

lemma Quo3:
  "n * (Quo n m) = m - m mod n"
using Quo2[of n m] by (auto)

lemma Quo4:
  assumes h: "0 < x"
  shows "y < x + x * Quo x y"
proof -
  have "x - (y mod x) > 0" using mod_less_divisor assms by auto
  then have "y < y + (x - (y mod x))" by simp
  then have "y < x + (y - (y mod x))" by simp
  then show "y < x + x * (Quo x y)" by (simp add: Quo3) 
qed

lemma Quo_div: 
  shows "Quo x y = y div x"
apply(case_tac "x = 0")
apply(simp add: Quo0)
apply(subst split_div_lemma[symmetric])
apply(auto intro: Quo1 Quo4)
done

lemma Quo_rec_quo:
  shows "rec_eval rec_quo [y, x] = Quo x y"
by (induct y) (simp_all add: rec_quo_def)

lemma quo_lemma [simp]:
  shows "rec_eval rec_quo [y, x] = y div x"
by (simp add: Quo_div Quo_rec_quo)

lemma rem_lemma [simp]:
  shows "rec_eval rec_rem [y, x] = y mod x"
by (simp add: rec_rem_def mod_div_equality' nat_mult_commute)


section {* Prime Numbers *}

lemma prime_alt_def:
  fixes p::nat
  shows "prime p = (1 < p \<and> (\<forall>m \<le> p. m dvd p \<longrightarrow> m = 1 \<or> m = p))"
apply(auto simp add: prime_nat_def dvd_def)
apply(drule_tac x="k" in spec)
apply(auto)
done

definition 
  "rec_prime = 
    (let conj1 = CN rec_less [constn 1, Id 1 0] in
     let disj  = CN rec_disj [CN rec_eq [Id 2 0, constn 1], rec_eq] in
     let imp   = CN rec_imp [rec_dvd, disj] in
     let conj2 = CN (rec_all1 imp) [Id 1 0, Id 1 0] in
     CN rec_conj [conj1, conj2])"

lemma prime_lemma [simp]: 
  "rec_eval rec_prime [x] = (if prime x then 1 else 0)"
by (auto simp add: rec_prime_def Let_def prime_alt_def)

section {* Bounded Min and Maximisation *}

fun BMax_rec where
  "BMax_rec R 0 = 0"
| "BMax_rec R (Suc n) = (if R (Suc n) then (Suc n) else BMax_rec R n)"

definition BMax_set :: "(nat \<Rightarrow> bool) \<Rightarrow> nat \<Rightarrow> nat"
  where "BMax_set R x = Max ({z | z. z \<le> x \<and> R z} \<union> {0})"

definition (in ord)
  Great :: "('a \<Rightarrow> bool) \<Rightarrow> 'a" (binder "GREAT " 10) where
  "Great P = (THE x. P x \<and> (\<forall>y. P y \<longrightarrow> y \<le> x))"

lemma Great_equality:
  fixes x::nat
  assumes "P x" "\<And>y. P y \<Longrightarrow> y \<le> x"
  shows "Great P = x"
unfolding Great_def 
using assms 
by(rule_tac the_equality) (auto intro: le_antisym)

lemma BMax_rec_eq1:
 "BMax_rec R x = (GREAT z. (R z \<and> z \<le> x) \<or> z = 0)"
apply(induct x)
apply(auto intro: Great_equality Great_equality[symmetric])
apply(simp add: le_Suc_eq)
by metis

lemma BMax_rec_eq2:
  "BMax_rec R x = Max ({z | z. z \<le> x \<and> R z} \<union> {0})"
apply(induct x)
apply(auto intro: Max_eqI Max_eqI[symmetric])
apply(simp add: le_Suc_eq)
by metis

definition 
  "rec_max1 f = PR (constn 0)
                   (CN rec_ifz [CN f [CN S [Id 3 0], Id 3 2], CN S [Id 4 0], Id 4 1])"
 
lemma max1_lemma [simp]:
  "rec_eval (rec_max1 f) [x, y] = BMax_rec (\<lambda>u. rec_eval f [u, y] = 0) x"
by (induct x) (simp_all add: rec_max1_def)

definition 
  "rec_max2 f = PR (constn 0)
                   (CN rec_ifz [CN f [CN S [Id 4 0], Id 4 2, Id 4 3], CN S [Id 4 0], Id 4 1])"
 
lemma max2_lemma [simp]:
  "rec_eval (rec_max2 f) [x, y1, y2] = BMax_rec (\<lambda>u. rec_eval f [u, y1, y2] = 0) x"
by (induct x) (simp_all add: rec_max2_def)


section {* Discrete Logarithms *}

definition
  "rec_lg = 
     (let calc = CN rec_not [CN rec_le [CN rec_power [Id 3 2, Id 3 0], Id 3 1]] in
      let max  = CN (rec_max2 calc) [Id 2 0, Id 2 0, Id 2 1] in
      let cond = CN rec_conj [CN rec_less [constn 1, Id 2 0], CN rec_less [constn 1, Id 2 1]] 
      in CN rec_ifz [cond, Z, max])"

definition
  "Lg x y = (if 1 < x \<and> 1 < y then BMax_rec (\<lambda>u. y ^ u \<le> x) x else 0)"

lemma lg_lemma [simp]:
  "rec_eval rec_lg [x, y] = Lg x y"
by (simp add: rec_lg_def Lg_def Let_def)

definition
  "Lo x y = (if 1 < x \<and> 1 < y then BMax_rec (\<lambda>u. x mod (y ^ u) = 0) x else 0)"

definition
  "rec_lo = 
     (let calc = CN rec_noteq [CN rec_rem [Id 3 1, CN rec_power [Id 3 2, Id 3 0]], Z] in
      let max  = CN (rec_max2 calc) [Id 2 0, Id 2 0, Id 2 1] in
      let cond = CN rec_conj [CN rec_less [constn 1, Id 2 0], CN rec_less [constn 1, Id 2 1]] 
      in CN rec_ifz [cond, Z, max])"

lemma lo_lemma [simp]:
  "rec_eval rec_lo [x, y] = Lo x y"
by (simp add: rec_lo_def Lo_def Let_def)


section {* Universal Function *}

text {* @{text "NextPrime x"} returns the first prime number after @{text "x"}. *}

fun NextPrime ::"nat \<Rightarrow> nat"
  where
  "NextPrime x = (LEAST y. y \<le> Suc (fact x) \<and> x < y \<and> prime y)"

definition rec_nextprime :: "recf"
  where
  "rec_nextprime = (let conj1 = CN rec_le [Id 2 0, CN S [CN rec_fact [Id 2 1]]] in
                    let conj2 = CN rec_less [Id 2 1, Id 2 0] in
                    let conj3 = CN rec_prime [Id 2 0] in 
                    let conjs = CN rec_conj [CN rec_conj [conj2, conj1], conj3]
                    in MN (CN rec_not [conjs]))"

lemma nextprime_lemma [simp]:
  "rec_eval rec_nextprime [x] = NextPrime x"
by (simp add: rec_nextprime_def Let_def)


fun Pi :: "nat \<Rightarrow> nat"
  where
  "Pi 0 = 2" |
  "Pi (Suc x) = NextPrime (Pi x)"

definition 
  "rec_pi = PR (constn 2) (CN rec_nextprime [Id 2 1])"

lemma pi_lemma [simp]:
  "rec_eval rec_pi [x] = Pi x"
by (induct x) (simp_all add: rec_pi_def)


fun Left where
  "Left c = Lo c (Pi 0)"

definition
  "rec_left = CN rec_lo [Id 1 0, constn (Pi 0)]"

lemma left_lemma [simp]:
  "rec_eval rec_left [c] = Left c" 
by(simp add: rec_left_def)

fun Right where
  "Right c = Lo c (Pi 2)"

definition 
  "rec_right = CN rec_lo [Id 1 0, constn (Pi 2)]"

lemma right_lemma [simp]:
  "rec_eval rec_right [c] = Right c" 
by(simp add: rec_right_def)

fun Stat where
  "Stat c = Lo c (Pi 1)"

definition 
  "rec_stat = CN rec_lo [Id 1 0, constn (Pi 1)]"

lemma stat_lemma [simp]:
  "rec_eval rec_stat [c] = Stat c" 
by(simp add: rec_stat_def)



text{* coding of the configuration *}

text {*
  @{text "Entry sr i"} returns the @{text "i"}-th entry of a list of natural 
  numbers encoded by number @{text "sr"} using Godel's coding.
  *}
fun Entry where
  "Entry sr i = Lo sr (Pi (Suc i))"

definition 
  "rec_entry = CN rec_lo [Id 2 0, CN rec_pi [CN S [Id 2 1]]]"

lemma entry_lemma [simp]:
  "rec_eval rec_entry [sr, i] = Entry sr i"
by(simp add: rec_entry_def)


fun Listsum2 :: "nat list \<Rightarrow> nat \<Rightarrow> nat"
  where
  "Listsum2 xs 0 = 0"
| "Listsum2 xs (Suc n) = Listsum2 xs n + xs ! n"

fun rec_listsum2 :: "nat \<Rightarrow> nat \<Rightarrow> recf"
  where
  "rec_listsum2 vl 0 = CN Z [Id vl 0]"
| "rec_listsum2 vl (Suc n) = CN rec_add [rec_listsum2 vl n, Id vl n]"

lemma listsum2_lemma [simp]: 
  "length xs = vl \<Longrightarrow> rec_eval (rec_listsum2 vl n) xs = Listsum2 xs n"
by (induct n) (simp_all)

text {*
  @{text "Strt"} corresponds to the @{text "strt"} function on page 90 of the 
  B book, but this definition generalises the original one to deal with multiple 
  input arguments.
  *}
fun Strt' :: "nat list \<Rightarrow> nat \<Rightarrow> nat"
  where
  "Strt' xs 0 = 0"
| "Strt' xs (Suc n) = (let dbound = Listsum2 xs n + n 
                       in Strt' xs n + (2 ^ (xs ! n + dbound) - 2 ^ dbound))"

fun Strt :: "nat list \<Rightarrow> nat"
  where
  "Strt xs = (let ys = map Suc xs in Strt' ys (length ys))"

fun rec_strt' :: "nat \<Rightarrow> nat \<Rightarrow> recf"
  where
  "rec_strt' xs 0 = Z"
| "rec_strt' xs (Suc n) = 
      (let dbound = CN rec_add [rec_listsum2 xs n, constn n] in
       let t1 = CN rec_power [constn 2, dbound] in
       let t2 = CN rec_power [constn 2, CN rec_add [Id xs n, dbound]] in
       CN rec_add [rec_strt' xs n, CN rec_minus [t2, t1]])"

fun rec_map :: "recf \<Rightarrow> nat \<Rightarrow> recf list"
  where
  "rec_map rf vl = map (\<lambda>i. CN rf [Id vl i]) [0..<vl]"

fun rec_strt :: "nat \<Rightarrow> recf"
  where
  "rec_strt xs = CN (rec_strt' xs xs) (rec_map S xs)"

lemma strt'_lemma [simp]:
  "length xs = vl \<Longrightarrow> rec_eval (rec_strt' vl n) xs = Strt' xs n"
by (induct n) (simp_all add: Let_def)


lemma map_suc:
  "map (\<lambda>x. Suc (xs ! x)) [0..<length xs] = map Suc xs"
proof -
  have "Suc \<circ> (\<lambda>x. xs ! x) = (\<lambda>x. Suc (xs ! x))" by (simp add: comp_def)
  then have "map (\<lambda>x. Suc (xs ! x)) [0..<length xs] = map (Suc \<circ> (\<lambda>x. xs ! x)) [0..<length xs]" by simp
  also have "... = map Suc (map (\<lambda>x. xs ! x) [0..<length xs])" by simp
  also have "... = map Suc xs" by (simp add: map_nth)
  finally show "map (\<lambda>x. Suc (xs ! x)) [0..<length xs] = map Suc xs" .
qed

lemma strt_lemma [simp]: 
  "length xs = vl \<Longrightarrow> rec_eval (rec_strt vl) xs = Strt xs"
by (simp add: comp_def map_suc[symmetric])


text {* The @{text "Scan"} function on page 90 of B book. *}
fun Scan :: "nat \<Rightarrow> nat"
  where
  "Scan r = r mod 2"

definition 
  "rec_scan = CN rec_rem [Id 1 0, constn 2]"

lemma scan_lemma [simp]: 
  "rec_eval rec_scan [r] = r mod 2"
by(simp add: rec_scan_def)


text {* The specifation of the mutli-way branching statement on
  page 79 of Boolos's book. *}

type_synonym ftype = "nat list \<Rightarrow> nat"
type_synonym rtype = "nat list \<Rightarrow> bool"

fun Embranch :: "(ftype * rtype) list \<Rightarrow> nat list \<Rightarrow> nat"
  where
  "Embranch [] xs = 0" |
  "Embranch ((g, c) # gcs) xs = (if c xs then g xs else Embranch gcs xs)"

fun rec_embranch' :: "(recf * recf) list \<Rightarrow> nat \<Rightarrow> recf"
  where
  "rec_embranch' [] xs = Z" |
  "rec_embranch' ((g, c) # gcs) xs = 
      CN rec_add [CN rec_mult [g, c], rec_embranch' gcs xs]"

fun rec_embranch :: "(recf * recf) list \<Rightarrow> recf"
  where
  "rec_embranch [] = Z"
| "rec_embranch ((rg, rc) # rgcs) = (let vl = arity rg in 
                                     rec_embranch' ((rg, rc) # rgcs) vl)"

(*
lemma embranch_lemma [simp]:
  shows "rec_eval (rec_embranch (zip rgs rcs)) xs =
           Embranch (zip (map rec_eval rgs) (map (\<lambda>r args. 0 < rec_eval r args) rcs)) xs"
apply(induct rcs arbitrary: rgs)
apply(simp)
apply(simp)
apply(case_tac rgs)
apply(simp)
apply(simp)
apply(case_tac rcs)
apply(simp_all)
apply(rule conjI)
*)

fun Newleft0 :: "nat list \<Rightarrow> nat"
  where
  "Newleft0 [p, r] = p"

definition rec_newleft0 :: "recf"
  where
  "rec_newleft0 = Id 2 0"

fun Newrgt0 :: "nat list \<Rightarrow> nat"
  where
  "Newrgt0 [p, r] = r - Scan r"

definition rec_newrgt0 :: "recf"
  where
  "rec_newrgt0 = CN rec_minus [Id 2 1, CN rec_scan [Id 2 1]]"

(*newleft1, newrgt1: left rgt number after execute on step*)
fun Newleft1 :: "nat list \<Rightarrow> nat"
  where
  "Newleft1 [p, r] = p"

definition rec_newleft1 :: "recf"
  where
  "rec_newleft1 = Id 2 0"

fun Newrgt1 :: "nat list \<Rightarrow> nat"
  where
  "Newrgt1 [p, r] = r + 1 - Scan r"

definition 
  "rec_newrgt1 = CN rec_minus [CN rec_add [Id 2 1, constn 1], CN rec_scan [Id 2 1]]"

fun Newleft2 :: "nat list \<Rightarrow> nat"
  where
  "Newleft2 [p, r] = p div 2"

definition 
  "rec_newleft2 = CN rec_quo [Id 2 0, constn 2]"

fun Newrgt2 :: "nat list \<Rightarrow> nat"
  where
  "Newrgt2 [p, r] = 2 * r + p mod 2"

definition 
  "rec_newrgt2 = CN rec_add [CN rec_mult [constn 2, Id 2 1],                     
                             CN rec_rem [Id 2 0, constn 2]]"

fun Newleft3 :: "nat list \<Rightarrow> nat"
  where
  "Newleft3 [p, r] = 2 * p + r mod 2"

definition rec_newleft3 :: "recf"
  where
  "rec_newleft3 = CN rec_add [CN rec_mult [constn 2, Id 2 0], 
                              CN rec_rem [Id 2 1, constn 2]]"

fun Newrgt3 :: "nat list \<Rightarrow> nat"
  where
  "Newrgt3 [p, r] = r div 2"

definition 
  "rec_newrgt3 = CN rec_quo [Id 2 1, constn 2]"

text {* The @{text "new_left"} function on page 91 of B book. *}

fun Newleft :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
  where
  "Newleft p r a = (if a = 0 \<or> a = 1 then Newleft0 [p, r] 
                    else if a = 2 then Newleft2 [p, r]
                    else if a = 3 then Newleft3 [p, r]
                    else p)"

definition
    "rec_newleft =
       (let g0 = CN rec_newleft0 [Id 3 0, Id 3 1] in 
        let g1 = CN rec_newleft2 [Id 3 0, Id 3 1] in 
        let g2 = CN rec_newleft3 [Id 3 0, Id 3 1] in 
        let g3 = Id 3 0 in
        let r0 = CN rec_disj [CN rec_eq [Id 3 2, constn 0],
                              CN rec_eq [Id 3 2, constn 1]] in 
        let r1 = CN rec_eq [Id 3 2, constn 2] in 
        let r2 = CN rec_eq [Id 3 2, constn 3] in
        let r3 = CN rec_less [constn 3, Id 3 2] in 
        let gs = [g0, g1, g2, g3] in 
        let rs = [r0, r1, r2, r3] in 
        rec_embranch (zip gs rs))"


fun Trpl :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
  where
  "Trpl p q r = (Pi 0) ^ p * (Pi 1) ^ q * (Pi 2) ^ r"



text {*
  @{text "Nstd c"} returns true if the configuration coded 
  by @{text "c"} is not a stardard final configuration.
  *}
fun Nstd :: "nat \<Rightarrow> bool"
  where
  "Nstd c = (Stat c \<noteq> 0 \<or> Left c \<noteq> 0 \<or> 
             Right c \<noteq> 2 ^ (Lg (Suc (Right c)) 2) - 1 \<or> 
             Right c = 0)"

text {*
  @{text "Conf m r k"} computes the TM configuration after 
  @{text "k"} steps of execution of the TM coded as @{text "m"} 
  starting from the initial configuration where the left number 
  equals @{text "0"} and the right number equals @{text "r"}. 
  *}
fun Conf 
  where
  "Conf m r 0 = Trpl 0 (Suc 0) r"
| "Conf m r (Suc t) = Newconf m (Conf m r t)"


text{* 
  @{text "Nonstop m r t"} means that afer @{text "t"} steps of 
  execution, the TM coded by @{text "m"} is not at a stardard 
  final configuration.
  *}
fun Nostop 
  where
  "Nostop m r t = Nstd (Conf m r t)"

fun Value where
  "Value x = (Lg (Suc x) 2) - 1"

definition 
  "rec_value = CN rec_pred [CN rec_lg [S, constn 2]]"

lemma value_lemma [simp]:
  "rec_eval rec_value [x] = Value x"
by (simp add: rec_value_def)

definition 
  "rec_UF = CN rec_value [CN rec_right [CN rec_conf [Id 2 0, Id 2 1, rec_halt]]]"

end


(*



fun mtest where
  "mtest R 0 = if R 0 then 0 else 1"
| "mtest R (Suc n) = (if R n then mtest R n else (Suc n))"


lemma 
  "rec_eval (rec_maxr2 f) [x, y1, y2] = XXX"
apply(simp only: rec_maxr2_def)
apply(case_tac x)
apply(clarify)
apply(subst rec_eval.simps)
apply(simp only: constn_lemma)
defer
apply(clarify)
apply(subst rec_eval.simps)
apply(simp only: rec_maxr2_def[symmetric])
apply(subst rec_eval.simps)
apply(simp only: map.simps nth)
apply(subst rec_eval.simps)
apply(simp only: map.simps nth)
apply(subst rec_eval.simps)
apply(simp only: map.simps nth)
apply(subst rec_eval.simps)
apply(simp only: map.simps nth)
apply(subst rec_eval.simps)
apply(simp only: map.simps nth)
apply(subst rec_eval.simps)
apply(simp only: map.simps nth)


definition
  "rec_minr2 f = rec_sigma2 (rec_accum2 (CN rec_not [f]))"

definition
  "rec_maxr2 f = rec_sigma2 (CN rec_sign [CN (rec_sigma2 f) [S]])"

definition Minr :: "(nat \<Rightarrow> nat list \<Rightarrow> bool) \<Rightarrow> nat \<Rightarrow> nat list \<Rightarrow> nat"
  where "Minr R x ys = Min ({z | z. z \<le> x \<and> R z ys} \<union> {Suc x})"

definition Maxr :: "(nat \<Rightarrow> nat list \<Rightarrow> bool) \<Rightarrow> nat \<Rightarrow> nat list \<Rightarrow> nat"
  where "Maxr R x ys = Max ({z | z. z \<le> x \<and> R z ys} \<union> {0})"

lemma rec_minr2_le_Suc:
  "rec_eval (rec_minr2 f) [x, y1, y2] \<le> Suc x"
apply(simp add: rec_minr2_def)
apply(auto intro!: setsum_one_le setprod_one_le)
done

lemma rec_minr2_eq_Suc:
  assumes "\<forall>z \<le> x. rec_eval f [z, y1, y2] = 0"
  shows "rec_eval (rec_minr2 f) [x, y1, y2] = Suc x"
using assms by (simp add: rec_minr2_def)

lemma rec_minr2_le:
  assumes h1: "y \<le> x" 
  and     h2: "0 < rec_eval f [y, y1, y2]" 
  shows "rec_eval (rec_minr2 f) [x, y1, y2] \<le> y"
apply(simp add: rec_minr2_def)
apply(subst setsum_cut_off_le[OF h1])
using h2 apply(auto)
apply(auto intro!: setsum_one_less setprod_one_le)
done

(* ??? *)
lemma setsum_eq_one_le2:
  fixes n::nat
  assumes "\<forall>i \<le> n. f i \<le> 1" 
  shows "((\<Sum>i \<le> n. f i) \<ge> Suc n) \<Longrightarrow> (\<forall>i \<le> n. f i = 1)"  
using assms
apply(induct n)
apply(simp add: One_nat_def)
apply(simp)
apply(auto simp add: One_nat_def)
apply(drule_tac x="Suc n" in spec)
apply(auto)
by (metis le_Suc_eq)


lemma rec_min2_not:
  assumes "rec_eval (rec_minr2 f) [x, y1, y2] = Suc x"
  shows "\<forall>z \<le> x. rec_eval f [z, y1, y2] = 0"
using assms
apply(simp add: rec_minr2_def)
apply(subgoal_tac "\<forall>i \<le> x. (\<Prod>z\<le>i. if rec_eval f [z, y1, y2] = 0 then 1 else 0) = (1::nat)")
apply(simp)
apply (metis atMost_iff le_refl zero_neq_one)
apply(rule setsum_eq_one_le2)
apply(auto)
apply(rule setprod_one_le)
apply(auto)
done

lemma disjCI2:
  assumes "~P ==> Q" shows "P|Q"
apply (rule classical)
apply (iprover intro: assms disjI1 disjI2 notI elim: notE)
done

lemma minr_lemma [simp]:
shows "rec_eval (rec_minr2 f) [x, y1, y2] = (LEAST z.  (z \<le> x \<and> 0 < rec_eval f [z, y1, y2]) \<or> z = Suc x)"
apply(induct x)
apply(rule Least_equality[symmetric])
apply(simp add: rec_minr2_def)
apply(erule disjE)
apply(rule rec_minr2_le)
apply(auto)[2]
apply(simp)
apply(rule rec_minr2_le_Suc)
apply(simp)

apply(rule rec_minr2_le)


apply(rule rec_minr2_le_Suc)
apply(rule disjCI)
apply(simp add: rec_minr2_def)

apply(ru le setsum_one_less)
apply(clarify)
apply(rule setprod_one_le)
apply(auto)[1]
apply(simp)
apply(rule setsum_one_le)
apply(clarify)
apply(rule setprod_one_le)
apply(auto)[1]
thm disj_CE
apply(auto)

lemma minr_lemma:
shows "rec_eval (rec_minr2 f) [x, y1, y2] = Minr (\<lambda>x xs. (0 < rec_eval f (x #xs))) x [y1, y2]"
apply(simp only: Minr_def)
apply(rule sym)
apply(rule Min_eqI)
apply(auto)[1]
apply(simp)
apply(erule disjE)
apply(simp)
apply(rule rec_minr2_le_Suc)
apply(rule rec_minr2_le)
apply(auto)[2]
apply(simp)
apply(induct x)
apply(simp add: rec_minr2_def)
apply(
apply(rule disjCI)
apply(rule rec_minr2_eq_Suc)
apply(simp)
apply(auto)

apply(rule setsum_one_le)
apply(auto)[1]
apply(rule setprod_one_le)
apply(auto)[1]
apply(subst setsum_cut_off_le)
apply(auto)[2]
apply(rule setsum_one_less)
apply(auto)[1]
apply(rule setprod_one_le)
apply(auto)[1]
apply(simp)
thm setsum_eq_one_le
apply(subgoal_tac "(\<forall>z\<le>x. (\<Prod>z\<le>z. if rec_eval f [z, y1, y2] = (0::nat) then 1 else 0) > (0::nat)) \<or>
                   (\<not> (\<forall>z\<le>x. (\<Prod>z\<le>z. if rec_eval f [z, y1, y2] = (0::nat) then 1 else 0) > (0::nat)))")
prefer 2
apply(auto)[1]
apply(erule disjE)
apply(rule disjI1)
apply(rule setsum_eq_one_le)
apply(simp)
apply(rule disjI2)
apply(simp)
apply(clarify)
apply(subgoal_tac "\<exists>l. l = (LEAST z. 0 < rec_eval f [z, y1, y2])")
defer
apply metis
apply(erule exE)
apply(subgoal_tac "l \<le> x")
defer
apply (metis not_leE not_less_Least order_trans)
apply(subst setsum_least_eq)
apply(rotate_tac 4)
apply(assumption)
apply(auto)[1]
apply(subgoal_tac "a < (LEAST z. 0 < rec_eval f [z, y1, y2])")
prefer 2
apply(auto)[1]
apply(rotate_tac 5)
apply(drule not_less_Least)
apply(auto)[1]
apply(auto)
apply(rule_tac x="(LEAST z. 0 < rec_eval f [z, y1, y2])" in exI)
apply(simp)
apply (metis LeastI_ex)
apply(subst setsum_least_eq)
apply(rotate_tac 3)
apply(assumption)
apply(simp)
apply(auto)[1]
apply(subgoal_tac "a < (LEAST z. 0 < rec_eval f [z, y1, y2])")
prefer 2
apply(auto)[1]
apply (metis neq0_conv not_less_Least)
apply(auto)[1]
apply (metis (mono_tags) LeastI_ex)
by (metis LeastI_ex)

lemma minr_lemma:
shows "rec_eval (rec_minr2 f) [x, y1, y2] = Minr (\<lambda>x xs. (0 < rec_eval f (x #xs))) x [y1, y2]"
apply(simp only: Minr_def rec_minr2_def)
apply(simp)
apply(rule sym)
apply(rule Min_eqI)
apply(auto)[1]
apply(simp)
apply(erule disjE)
apply(simp)
apply(rule setsum_one_le)
apply(auto)[1]
apply(rule setprod_one_le)
apply(auto)[1]
apply(subst setsum_cut_off_le)
apply(auto)[2]
apply(rule setsum_one_less)
apply(auto)[1]
apply(rule setprod_one_le)
apply(auto)[1]
apply(simp)
thm setsum_eq_one_le
apply(subgoal_tac "(\<forall>z\<le>x. (\<Prod>z\<le>z. if rec_eval f [z, y1, y2] = (0::nat) then 1 else 0) > (0::nat)) \<or>
                   (\<not> (\<forall>z\<le>x. (\<Prod>z\<le>z. if rec_eval f [z, y1, y2] = (0::nat) then 1 else 0) > (0::nat)))")
prefer 2
apply(auto)[1]
apply(erule disjE)
apply(rule disjI1)
apply(rule setsum_eq_one_le)
apply(simp)
apply(rule disjI2)
apply(simp)
apply(clarify)
apply(subgoal_tac "\<exists>l. l = (LEAST z. 0 < rec_eval f [z, y1, y2])")
defer
apply metis
apply(erule exE)
apply(subgoal_tac "l \<le> x")
defer
apply (metis not_leE not_less_Least order_trans)
apply(subst setsum_least_eq)
apply(rotate_tac 4)
apply(assumption)
apply(auto)[1]
apply(subgoal_tac "a < (LEAST z. 0 < rec_eval f [z, y1, y2])")
prefer 2
apply(auto)[1]
apply(rotate_tac 5)
apply(drule not_less_Least)
apply(auto)[1]
apply(auto)
apply(rule_tac x="(LEAST z. 0 < rec_eval f [z, y1, y2])" in exI)
apply(simp)
apply (metis LeastI_ex)
apply(subst setsum_least_eq)
apply(rotate_tac 3)
apply(assumption)
apply(simp)
apply(auto)[1]
apply(subgoal_tac "a < (LEAST z. 0 < rec_eval f [z, y1, y2])")
prefer 2
apply(auto)[1]
apply (metis neq0_conv not_less_Least)
apply(auto)[1]
apply (metis (mono_tags) LeastI_ex)
by (metis LeastI_ex)

lemma disjCI2:
  assumes "~P ==> Q" shows "P|Q"
apply (rule classical)
apply (iprover intro: assms disjI1 disjI2 notI elim: notE)
done


lemma minr_lemma [simp]:
shows "rec_eval (rec_minr2 f) [x, y1, y2] = (LEAST z.  (z \<le> x \<and> 0 < rec_eval f [z, y1, y2]) \<or> z = Suc x)"
(*apply(simp add: rec_minr2_def)*)
apply(rule Least_equality[symmetric])
prefer 2
apply(erule disjE)
apply(rule rec_minr2_le)
apply(auto)[2]
apply(clarify)
apply(rule rec_minr2_le_Suc)
apply(rule disjCI)
apply(simp add: rec_minr2_def)

apply(ru le setsum_one_less)
apply(clarify)
apply(rule setprod_one_le)
apply(auto)[1]
apply(simp)
apply(rule setsum_one_le)
apply(clarify)
apply(rule setprod_one_le)
apply(auto)[1]
thm disj_CE
apply(auto)
apply(auto)
prefer 2
apply(rule le_tran

apply(rule le_trans)
apply(simp)
defer
apply(auto)
apply(subst setsum_cut_off_le)


lemma 
  "Minr R x ys = (LEAST z. (R z ys \<or> z = Suc x))" 
apply(simp add: Minr_def)
apply(rule Min_eqI)
apply(auto)[1]
apply(simp)
apply(rule Least_le)
apply(auto)[1]
apply(rule LeastI2_wellorder)
apply(auto)
done

definition (in ord)
  Great :: "('a \<Rightarrow> bool) \<Rightarrow> 'a" (binder "GREAT " 10) where
  "Great P = (THE x. P x \<and> (\<forall>y. P y \<longrightarrow> y \<le> x))"

(*
lemma Great_equality:
  assumes "P x"
    and "\<And>y. P y \<Longrightarrow> y \<le> x"
  shows "Great P = x"
unfolding Great_def 
apply(rule the_equality)
apply(blast intro: assms)
*)



lemma 
  "Maxr R x ys = (GREAT z. (R z ys \<or> z = 0))" 
apply(simp add: Maxr_def)
apply(rule Max_eqI)
apply(auto)[1]
apply(simp)
thm Least_le Greatest_le
oops

lemma
  "Maxr R x ys = x - Minr (\<lambda>z. R (x - z)) x ys"
apply(simp add: Maxr_def Minr_def)
apply(rule Max_eqI)
apply(auto)[1]
apply(simp)
apply(erule disjE)
apply(simp)
apply(auto)[1]
defer
apply(simp)
apply(auto)[1]
thm Min_insert
defer
oops



definition quo :: "nat \<Rightarrow> nat \<Rightarrow> nat"
  where
  "quo x y = (if y = 0 then 0 else x div y)"


definition 
  "rec_quo = CN rec_mult [CN rec_sign [Id 2 1],  
      CN (rec_minr2 (CN rec_less [Id 3 1, CN rec_mult [CN S [Id 3 0], Id 3 2]])) 
                [Id 2 0, Id 2 0, Id 2 1]]"

lemma div_lemma [simp]:
  "rec_eval rec_quo [x, y] = quo x y"
apply(simp add: rec_quo_def quo_def)
apply(rule impI)
apply(rule Min_eqI)
apply(auto)[1]
apply(simp)
apply(erule disjE)
apply(simp)
apply(auto)[1]
apply (metis div_le_dividend le_SucI)
defer
apply(simp)
apply(auto)[1]
apply (metis mult_Suc_right nat_mult_commute split_div_lemma)
apply(auto)[1]

apply (smt div_le_dividend fst_divmod_nat)
apply(simp add: quo_def)
apply(auto)[1]

apply(auto)

fun Minr :: "(nat list \<Rightarrow> bool) \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
  where "Minr R x y = (let setx = {z | z. z \<le> x \<and> R [z, y]} in 
                        if (setx = {}) then (Suc x) else (Min setx))"

definition
  "rec_minr f = rec_sigma1 (rec_accum1 (CN rec_not [f]))"

lemma minr_lemma [simp]:
shows "rec_eval (rec_minr f) [x, y] = Minr (\<lambda>xs. (0 < rec_eval f xs)) x y"
apply(simp only: rec_minr_def)
apply(simp only: sigma1_lemma)
apply(simp only: accum1_lemma)
apply(subst rec_eval.simps)
apply(simp only: map.simps nth)
apply(simp only: Minr.simps Let_def)
apply(auto simp del: not_lemma)
apply(simp)
apply(simp only: not_lemma sign_lemma)
apply(rule sym)
apply(rule Min_eqI)
apply(auto)[1]
apply(simp)
apply(subst setsum_cut_off_le[where m="ya"])
apply(simp)
apply(simp)
apply(metis Icc_subset_Ici_iff atLeast_def in_mono le_refl mem_Collect_eq)
apply(rule setsum_one_less)
apply(default)
apply(rule impI)
apply(rule setprod_one_le)
apply(auto split: if_splits)[1]
apply(simp)
apply(rule conjI)
apply(subst setsum_cut_off_le[where m="xa"])
apply(simp)
apply(simp)
apply (metis Icc_subset_Ici_iff atLeast_def in_mono le_refl mem_Collect_eq)
apply(rule le_trans)
apply(rule setsum_one_less)
apply(default)
apply(rule impI)
apply(rule setprod_one_le)
apply(auto split: if_splits)[1]
apply(simp)
apply(subgoal_tac "\<exists>l. l = (LEAST z. 0 < rec_eval f [z, y])")
defer
apply metis
apply(erule exE)
apply(subgoal_tac "l \<le> x")
defer
apply (metis not_leE not_less_Least order_trans)
apply(subst setsum_least_eq)
apply(rotate_tac 3)
apply(assumption)
prefer 3
apply (metis LeastI_ex)
apply(auto)[1]
apply(subgoal_tac "a < (LEAST z. 0 < rec_eval f [z, y])")
prefer 2
apply(auto)[1]
apply(rotate_tac 5)
apply(drule not_less_Least)
apply(auto)[1]
apply(auto)
by (metis (mono_tags) LeastI_ex)


fun Minr2 :: "(nat list \<Rightarrow> bool) \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
  where "Minr2 R x y = (let setx = {z | z. z \<le> x \<and> R [z, y]} in 
                        Min (setx \<union> {Suc x}))"

lemma Minr2_Minr: 
  "Minr2 R x y = Minr R x y"
apply(auto)
apply (metis (lifting, no_types) Min_singleton empty_Collect_eq)
apply(rule min_absorb2)
apply(subst Min_le_iff)
apply(auto)  
done
 *)