header {*
{\em abacus} a kind of register machine
*}
theory abacus
imports uncomputable
begin
(*
declare tm_comp.simps [simp add]
declare adjust.simps[simp add]
declare shift.simps[simp add]
declare tm_wf.simps[simp add]
declare step.simps[simp add]
declare steps.simps[simp add]
*)
declare replicate_Suc[simp add]
text {*
{\em Abacus} instructions:
*}
datatype abc_inst =
-- {* @{text "Inc n"} increments the memory cell (or register) with address @{text "n"} by one.
*}
Inc nat
-- {*
@{text "Dec n label"} decrements the memory cell with address @{text "n"} by one.
If cell @{text "n"} is already zero, no decrements happens and the executio jumps to
the instruction labeled by @{text "label"}.
*}
| Dec nat nat
-- {*
@{text "Goto label"} unconditionally jumps to the instruction labeled by @{text "label"}.
*}
| Goto nat
text {*
Abacus programs are defined as lists of Abacus instructions.
*}
type_synonym abc_prog = "abc_inst list"
section {*
Sample Abacus programs
*}
text {*
Abacus for addition and clearance.
*}
fun plus_clear :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> abc_prog"
where
"plus_clear m n e = [Dec m e, Inc n, Goto 0]"
text {*
Abacus for clearing memory untis.
*}
fun clear :: "nat \<Rightarrow> nat \<Rightarrow> abc_prog"
where
"clear n e = [Dec n e, Goto 0]"
fun plus:: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> abc_prog"
where
"plus m n p e = [Dec m 4, Inc n, Inc p,
Goto 0, Dec p e, Inc m, Goto 4]"
fun mult :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> abc_prog"
where
"mult m1 m2 n p e = [Dec m1 e]@ plus m1 m2 p 1"
fun expo :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> abc_prog"
where
"expo n m1 m2 p e = [Inc n, Dec m1 e] @ mult m2 n n p 2"
text {*
The state of Abacus machine.
*}
type_synonym abc_state = nat
(* text {*
The memory of Abacus machine is defined as a function from address to contents.
*}
type_synonym abc_mem = "nat \<Rightarrow> nat" *)
text {*
The memory of Abacus machine is defined as a list of contents, with
every units addressed by index into the list.
*}
type_synonym abc_lm = "nat list"
text {*
Fetching contents out of memory. Units not represented by list elements are considered
as having content @{text "0"}.
*}
fun abc_lm_v :: "abc_lm \<Rightarrow> nat \<Rightarrow> nat"
where
"abc_lm_v lm n = (if (n < length lm) then (lm!n) else 0)"
text {*
Set the content of memory unit @{text "n"} to value @{text "v"}.
@{text "am"} is the Abacus memory before setting.
If address @{text "n"} is outside to scope of @{text "am"}, @{text "am"}
is extended so that @{text "n"} becomes in scope.
*}
fun abc_lm_s :: "abc_lm \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> abc_lm"
where
"abc_lm_s am n v = (if (n < length am) then (am[n:=v]) else
am@ (replicate (n - length am) 0) @ [v])"
text {*
The configuration of Abaucs machines consists of its current state and its
current memory:
*}
type_synonym abc_conf = "abc_state \<times> abc_lm"
text {*
Fetch instruction out of Abacus program:
*}
fun abc_fetch :: "nat \<Rightarrow> abc_prog \<Rightarrow> abc_inst option"
where
"abc_fetch s p = (if (s < length p) then Some (p ! s)
else None)"
text {*
Single step execution of Abacus machine. If no instruction is feteched,
configuration does not change.
*}
fun abc_step_l :: "abc_conf \<Rightarrow> abc_inst option \<Rightarrow> abc_conf"
where
"abc_step_l (s, lm) a = (case a of
None \<Rightarrow> (s, lm) |
Some (Inc n) \<Rightarrow> (let nv = abc_lm_v lm n in
(s + 1, abc_lm_s lm n (nv + 1))) |
Some (Dec n e) \<Rightarrow> (let nv = abc_lm_v lm n in
if (nv = 0) then (e, abc_lm_s lm n 0)
else (s + 1, abc_lm_s lm n (nv - 1))) |
Some (Goto n) \<Rightarrow> (n, lm)
)"
text {*
Multi-step execution of Abacus machine.
*}
fun abc_steps_l :: "abc_conf \<Rightarrow> abc_prog \<Rightarrow> nat \<Rightarrow> abc_conf"
where
"abc_steps_l (s, lm) p 0 = (s, lm)" |
"abc_steps_l (s, lm) p (Suc n) =
abc_steps_l (abc_step_l (s, lm) (abc_fetch s p)) p n"
section {*
Compiling Abacus machines into Truing machines
*}
subsection {*
Compiling functions
*}
text {*
@{text "findnth n"} returns the TM which locates the represention of
memory cell @{text "n"} on the tape and changes representation of zero
on the way.
*}
fun findnth :: "nat \<Rightarrow> instr list"
where
"findnth 0 = []" |
"findnth (Suc n) = (findnth n @ [(W1, 2 * n + 1),
(R, 2 * n + 2), (R, 2 * n + 3), (R, 2 * n + 2)])"
text {*
@{text "tinc_b"} returns the TM which increments the representation
of the memory cell under rw-head by one and move the representation
of cells afterwards to the right accordingly.
*}
definition tinc_b :: "instr list"
where
"tinc_b \<equiv> [(W1, 1), (R, 2), (W1, 3), (R, 2), (W1, 3), (R, 4),
(L, 7), (W0, 5), (R, 6), (W0, 5), (W1, 3), (R, 6),
(L, 8), (L, 7), (R, 9), (L, 7), (R, 10), (W0, 9)]"
text {*
@{text "tinc ss n"} returns the TM which simulates the execution of
Abacus instruction @{text "Inc n"}, assuming that TM is located at
location @{text "ss"} in the final TM complied from the whole
Abacus program.
*}
fun tinc :: "nat \<Rightarrow> nat \<Rightarrow> instr list"
where
"tinc ss n = shift (findnth n @ shift tinc_b (2 * n)) (ss - 1)"
text {*
@{text "tinc_b"} returns the TM which decrements the representation
of the memory cell under rw-head by one and move the representation
of cells afterwards to the left accordingly.
*}
definition tdec_b :: "instr list"
where
"tdec_b \<equiv> [(W1, 1), (R, 2), (L, 14), (R, 3), (L, 4), (R, 3),
(R, 5), (W0, 4), (R, 6), (W0, 5), (L, 7), (L, 8),
(L, 11), (W0, 7), (W1, 8), (R, 9), (L, 10), (R, 9),
(R, 5), (W0, 10), (L, 12), (L, 11), (R, 13), (L, 11),
(R, 17), (W0, 13), (L, 15), (L, 14), (R, 16), (L, 14),
(R, 0), (W0, 16)]"
text {*
@{text "sete tp e"} attaches the termination edges (edges leading to state @{text "0"})
of TM @{text "tp"} to the intruction labelled by @{text "e"}.
*}
fun sete :: "instr list \<Rightarrow> nat \<Rightarrow> instr list"
where
"sete tp e = map (\<lambda> (action, state). (action, if state = 0 then e else state)) tp"
text {*
@{text "tdec ss n label"} returns the TM which simulates the execution of
Abacus instruction @{text "Dec n label"}, assuming that TM is located at
location @{text "ss"} in the final TM complied from the whole
Abacus program.
*}
fun tdec :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> instr list"
where
"tdec ss n e = shift (findnth n) (ss - 1) @ sete (shift (shift tdec_b (2 * n)) (ss - 1)) e"
text {*
@{text "tgoto f(label)"} returns the TM simulating the execution of Abacus instruction
@{text "Goto label"}, where @{text "f(label)"} is the corresponding location of
@{text "label"} in the final TM compiled from the overall Abacus program.
*}
fun tgoto :: "nat \<Rightarrow> instr list"
where
"tgoto n = [(Nop, n), (Nop, n)]"
text {*
The layout of the final TM compiled from an Abacus program is represented
as a list of natural numbers, where the list element at index @{text "n"} represents the
starting state of the TM simulating the execution of @{text "n"}-th instruction
in the Abacus program.
*}
type_synonym layout = "nat list"
text {*
@{text "length_of i"} is the length of the
TM simulating the Abacus instruction @{text "i"}.
*}
fun length_of :: "abc_inst \<Rightarrow> nat"
where
"length_of i = (case i of
Inc n \<Rightarrow> 2 * n + 9 |
Dec n e \<Rightarrow> 2 * n + 16 |
Goto n \<Rightarrow> 1)"
text {*
@{text "layout_of ap"} returns the layout of Abacus program @{text "ap"}.
*}
fun layout_of :: "abc_prog \<Rightarrow> layout"
where "layout_of ap = map length_of ap"
text {*
@{text "start_of layout n"} looks out the starting state of @{text "n"}-th
TM in the finall TM.
*}
thm listsum_def
fun start_of :: "nat list \<Rightarrow> nat \<Rightarrow> nat"
where
"start_of ly x = (Suc (listsum (take x ly))) "
text {*
@{text "ci lo ss i"} complies Abacus instruction @{text "i"}
assuming the TM of @{text "i"} starts from state @{text "ss"}
within the overal layout @{text "lo"}.
*}
fun ci :: "layout \<Rightarrow> nat \<Rightarrow> abc_inst \<Rightarrow> instr list"
where
"ci ly ss (Inc n) = tinc ss n"
| "ci ly ss (Dec n e) = tdec ss n (start_of ly e)"
| "ci ly ss (Goto n) = tgoto (start_of ly n)"
text {*
@{text "tpairs_of ap"} transfroms Abacus program @{text "ap"} pairing
every instruction with its starting state.
*}
fun tpairs_of :: "abc_prog \<Rightarrow> (nat \<times> abc_inst) list"
where "tpairs_of ap = (zip (map (start_of (layout_of ap))
[0..<(length ap)]) ap)"
text {*
@{text "tms_of ap"} returns the list of TMs, where every one of them simulates
the corresponding Abacus intruction in @{text "ap"}.
*}
fun tms_of :: "abc_prog \<Rightarrow> (instr list) list"
where "tms_of ap = map (\<lambda> (n, tm). ci (layout_of ap) n tm)
(tpairs_of ap)"
text {*
@{text "tm_of ap"} returns the final TM machine compiled from Abacus program @{text "ap"}.
*}
fun tm_of :: "abc_prog \<Rightarrow> instr list"
where "tm_of ap = concat (tms_of ap)"
text {*
The following two functions specify the well-formedness of complied TM.
*}
(*
fun t_ncorrect :: "tprog \<Rightarrow> bool"
where
"t_ncorrect tp = (length tp mod 2 = 0)"
fun abc2t_correct :: "abc_prog \<Rightarrow> bool"
where
"abc2t_correct ap = list_all (\<lambda> (n, tm).
t_ncorrect (ci (layout_of ap) n tm)) (tpairs_of ap)"
*)
lemma length_findnth:
"length (findnth n) = 4 * n"
apply(induct n, auto)
done
lemma ci_length : "length (ci ns n ai) div 2 = length_of ai"
apply(auto simp: ci.simps tinc_b_def tdec_b_def length_findnth
split: abc_inst.splits)
done
subsection {*
Representation of Abacus memory by TM tape
*}
text {*
@{text "crsp acf tcf"} meams the abacus configuration @{text "acf"}
is corretly represented by the TM configuration @{text "tcf"}.
*}
fun crsp :: "layout \<Rightarrow> abc_conf \<Rightarrow> config \<Rightarrow> cell list \<Rightarrow> bool"
where
"crsp ly (as, lm) (s, l, r) inres =
(s = start_of ly as \<and> (\<exists> x. r = <lm> @ Bk\<up>x) \<and>
l = Bk # Bk # inres)"
declare crsp.simps[simp del]
subsection {*
A more general definition of TM execution.
*}
(*
fun nnth_of :: "(taction \<times> nat) list \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> (taction \<times> nat)"
where
"nnth_of p s b = (if 2*s < length p
then (p ! (2*s + b)) else (Nop, 0))"
thm nth_of.simps
fun nfetch :: "tprog \<Rightarrow> nat \<Rightarrow> block \<Rightarrow> taction \<times> nat"
where
"nfetch p 0 b = (Nop, 0)" |
"nfetch p (Suc s) b =
(case b of
Bk \<Rightarrow> nnth_of p s 0 |
Oc \<Rightarrow> nnth_of p s 1)"
*)
text {*
The type of invarints expressing correspondence between
Abacus configuration and TM configuration.
*}
type_synonym inc_inv_t = "abc_conf \<Rightarrow> config \<Rightarrow> cell list \<Rightarrow> bool"
declare tms_of.simps[simp del] tm_of.simps[simp del]
layout_of.simps[simp del] abc_fetch.simps [simp del]
tpairs_of.simps[simp del] start_of.simps[simp del]
ci.simps [simp del] length_of.simps[simp del]
layout_of.simps[simp del]
(*
subsection {* The compilation of @{text "Inc n"} *}
*)
text {*
The lemmas in this section lead to the correctness of
the compilation of @{text "Inc n"} instruction.
*}
declare abc_step_l.simps[simp del] abc_steps_l.simps[simp del]
lemma [simp]: "start_of ly as > 0"
apply(simp add: start_of.simps)
done
lemma abc_steps_l_0: "abc_steps_l ac ap 0 = ac"
by(case_tac ac, simp add: abc_steps_l.simps)
lemma abc_step_red:
"abc_steps_l (as, am) ap stp = (bs, bm) \<Longrightarrow>
abc_steps_l (as, am) ap (Suc stp) = abc_step_l (bs, bm) (abc_fetch bs ap) "
proof(induct stp arbitrary: as am bs bm)
case 0
thus "?case"
by(simp add: abc_steps_l.simps abc_steps_l_0)
next
case (Suc stp as am bs bm)
have ind: "\<And>as am bs bm. abc_steps_l (as, am) ap stp = (bs, bm) \<Longrightarrow>
abc_steps_l (as, am) ap (Suc stp) = abc_step_l (bs, bm) (abc_fetch bs ap)"
by fact
have h:" abc_steps_l (as, am) ap (Suc stp) = (bs, bm)" by fact
obtain as' am' where g: "abc_step_l (as, am) (abc_fetch as ap) = (as', am')"
by(case_tac "abc_step_l (as, am) (abc_fetch as ap)", auto)
then have "abc_steps_l (as', am') ap (Suc stp) = abc_step_l (bs, bm) (abc_fetch bs ap)"
using h
by(rule_tac ind, simp add: abc_steps_l.simps)
thus "?case"
using g
by(simp add: abc_steps_l.simps)
qed
lemma tm_shift_fetch:
"\<lbrakk>fetch A s b = (ac, ns); ns \<noteq> 0 \<rbrakk>
\<Longrightarrow> fetch (shift A off) s b = (ac, ns + off)"
apply(case_tac b)
apply(case_tac [!] s, auto simp: fetch.simps shift.simps)
done
lemma tm_shift_eq_step:
assumes exec: "step (s, l, r) (A, 0) = (s', l', r')"
and notfinal: "s' \<noteq> 0"
shows "step (s + off, l, r) (shift A off, off) = (s' + off, l', r')"
using assms
apply(simp add: step.simps)
apply(case_tac "fetch A s (read r)", auto)
apply(drule_tac [!] off = off in tm_shift_fetch, simp_all)
done
declare step.simps[simp del] steps.simps[simp del] shift.simps[simp del]
lemma tm_shift_eq_steps:
assumes exec: "steps (s, l, r) (A, 0) stp = (s', l', r')"
and notfinal: "s' \<noteq> 0"
shows "steps (s + off, l, r) (shift A off, off) stp = (s' + off, l', r')"
using exec notfinal
proof(induct stp arbitrary: s' l' r', simp add: steps.simps)
fix stp s' l' r'
assume ind: "\<And>s' l' r'. \<lbrakk>steps (s, l, r) (A, 0) stp = (s', l', r'); s' \<noteq> 0\<rbrakk>
\<Longrightarrow> steps (s + off, l, r) (shift A off, off) stp = (s' + off, l', r')"
and h: " steps (s, l, r) (A, 0) (Suc stp) = (s', l', r')" "s' \<noteq> 0"
obtain s1 l1 r1 where g: "steps (s, l, r) (A, 0) stp = (s1, l1, r1)"
apply(case_tac "steps (s, l, r) (A, 0) stp") by blast
moreover then have "s1 \<noteq> 0"
using h
apply(simp add: step_red)
apply(case_tac "0 < s1", auto)
done
ultimately have "steps (s + off, l, r) (shift A off, off) stp =
(s1 + off, l1, r1)"
apply(rule_tac ind, simp_all)
done
thus "steps (s + off, l, r) (shift A off, off) (Suc stp) = (s' + off, l', r')"
using h g assms
apply(simp add: step_red)
apply(rule_tac tm_shift_eq_step, auto)
done
qed
lemma startof_not0[simp]: "0 < start_of ly as"
apply(simp add: start_of.simps)
done
lemma startof_ge1[simp]: "Suc 0 \<le> start_of ly as"
apply(simp add: start_of.simps)
done
lemma start_of_Suc1: "\<lbrakk>ly = layout_of ap;
abc_fetch as ap = Some (Inc n)\<rbrakk>
\<Longrightarrow> start_of ly (Suc as) = start_of ly as + 2 * n + 9"
apply(auto simp: start_of.simps layout_of.simps
length_of.simps abc_fetch.simps
take_Suc_conv_app_nth split: if_splits)
done
lemma start_of_Suc2:
"\<lbrakk>ly = layout_of ap;
abc_fetch as ap = Some (Dec n e)\<rbrakk> \<Longrightarrow>
start_of ly (Suc as) =
start_of ly as + 2 * n + 16"
apply(auto simp: start_of.simps layout_of.simps
length_of.simps abc_fetch.simps
take_Suc_conv_app_nth split: if_splits)
done
lemma start_of_Suc3:
"\<lbrakk>ly = layout_of ap;
abc_fetch as ap = Some (Goto n)\<rbrakk> \<Longrightarrow>
start_of ly (Suc as) = start_of ly as + 1"
apply(auto simp: start_of.simps layout_of.simps
length_of.simps abc_fetch.simps
take_Suc_conv_app_nth split: if_splits)
done
lemma length_ci_inc:
"length (ci ly ss (Inc n)) = 4*n + 18"
apply(auto simp: ci.simps length_findnth tinc_b_def)
done
lemma length_ci_dec:
"length (ci ly ss (Dec n e)) = 4*n + 32"
apply(auto simp: ci.simps length_findnth tdec_b_def)
done
lemma length_ci_goto:
"length (ci ly ss (Goto n )) = 2"
apply(auto simp: ci.simps length_findnth tdec_b_def)
done
lemma take_Suc_last[elim]: "Suc as \<le> length xs \<Longrightarrow>
take (Suc as) xs = take as xs @ [xs ! as]"
apply(induct xs arbitrary: as, simp, simp)
apply(case_tac as, simp, simp)
done
lemma concat_suc: "Suc as \<le> length xs \<Longrightarrow>
concat (take (Suc as) xs) = concat (take as xs) @ xs! as"
apply(subgoal_tac "take (Suc as) xs = take as xs @ [xs ! as]", simp)
by auto
lemma concat_take_suc_iff: "Suc n \<le> length tps \<Longrightarrow>
concat (take n tps) @ (tps ! n) = concat (take (Suc n) tps)"
apply(drule_tac concat_suc, simp)
done
lemma concat_drop_suc_iff:
"Suc n < length tps \<Longrightarrow> concat (drop (Suc n) tps) =
tps ! Suc n @ concat (drop (Suc (Suc n)) tps)"
apply(induct tps arbitrary: n, simp, simp)
apply(case_tac tps, simp, simp)
apply(case_tac n, simp, simp)
done
declare append_assoc[simp del]
lemma tm_append:
"\<lbrakk>n < length tps; tp = tps ! n\<rbrakk> \<Longrightarrow>
\<exists> tp1 tp2. concat tps = tp1 @ tp @ tp2 \<and> tp1 =
concat (take n tps) \<and> tp2 = concat (drop (Suc n) tps)"
apply(rule_tac x = "concat (take n tps)" in exI)
apply(rule_tac x = "concat (drop (Suc n) tps)" in exI)
apply(auto)
apply(induct n, simp)
apply(case_tac tps, simp, simp, simp)
apply(subgoal_tac "concat (take n tps) @ (tps ! n) =
concat (take (Suc n) tps)")
apply(simp only: append_assoc[THEN sym], simp only: append_assoc)
apply(subgoal_tac " concat (drop (Suc n) tps) = tps ! Suc n @
concat (drop (Suc (Suc n)) tps)", simp)
apply(rule_tac concat_drop_suc_iff, simp)
apply(rule_tac concat_take_suc_iff, simp)
done
declare append_assoc[simp]
lemma map_of: "n < length xs \<Longrightarrow> (map f xs) ! n = f (xs ! n)"
by(auto)
lemma [simp]: "length (tms_of aprog) = length aprog"
apply(auto simp: tms_of.simps tpairs_of.simps)
done
lemma ci_nth:
"\<lbrakk>ly = layout_of aprog;
abc_fetch as aprog = Some ins\<rbrakk>
\<Longrightarrow> ci ly (start_of ly as) ins = tms_of aprog ! as"
apply(simp add: tms_of.simps tpairs_of.simps
abc_fetch.simps map_of del: map_append split: if_splits)
done
lemma t_split:"\<lbrakk>
ly = layout_of aprog;
abc_fetch as aprog = Some ins\<rbrakk>
\<Longrightarrow> \<exists> tp1 tp2. concat (tms_of aprog) =
tp1 @ (ci ly (start_of ly as) ins) @ tp2
\<and> tp1 = concat (take as (tms_of aprog)) \<and>
tp2 = concat (drop (Suc as) (tms_of aprog))"
apply(insert tm_append[of "as" "tms_of aprog"
"ci ly (start_of ly as) ins"], simp)
apply(subgoal_tac "ci ly (start_of ly as) ins = (tms_of aprog) ! as")
apply(subgoal_tac "length (tms_of aprog) = length aprog")
apply(simp add: abc_fetch.simps split: if_splits, simp)
apply(rule_tac ci_nth, auto)
done
lemma math_sub: "\<lbrakk>x >= Suc 0; x - 1 = z\<rbrakk> \<Longrightarrow> x + y - Suc 0 = z + y"
by auto
lemma start_more_one: "as \<noteq> 0 \<Longrightarrow> start_of ly as >= Suc 0"
apply(induct as, simp add: start_of.simps)
apply(case_tac as, auto simp: start_of.simps)
done
lemma div_apart: "\<lbrakk>x mod (2::nat) = 0; y mod 2 = 0\<rbrakk>
\<Longrightarrow> (x + y) div 2 = x div 2 + y div 2"
apply(drule mod_eqD)+
apply(auto)
done
lemma div_apart_iff: "\<lbrakk>x mod (2::nat) = 0; y mod 2 = 0\<rbrakk> \<Longrightarrow>
(x + y) mod 2 = 0"
apply(auto)
done
lemma [simp]: "length (layout_of aprog) = length aprog"
apply(auto simp: layout_of.simps)
done
lemma start_of_ind: "\<lbrakk>as < length aprog; ly = layout_of aprog\<rbrakk> \<Longrightarrow>
start_of ly (Suc as) = start_of ly as +
length ((tms_of aprog) ! as) div 2"
apply(simp only: start_of.simps, simp)
apply(auto simp: start_of.simps tms_of.simps layout_of.simps
tpairs_of.simps)
apply(simp add: ci_length take_Suc take_Suc_conv_app_nth)
done
lemma concat_take_suc: "Suc n \<le> length xs \<Longrightarrow>
concat (take (Suc n) xs) = concat (take n xs) @ (xs ! n)"
apply(subgoal_tac "take (Suc n) xs =
take n xs @ [xs ! n]")
apply(auto)
done
lemma [simp]:
"\<lbrakk>as < length aprog; (abc_fetch as aprog) = Some ins\<rbrakk>
\<Longrightarrow> ci (layout_of aprog)
(start_of (layout_of aprog) as) (ins) \<in> set (tms_of aprog)"
apply(insert ci_nth[of "layout_of aprog" aprog as], simp)
done
lemma [simp]: "length (tms_of ap) = length ap"
by(auto simp: tms_of.simps tpairs_of.simps)
lemma [intro]: "n < length ap \<Longrightarrow> length (tms_of ap ! n) mod 2 = 0"
apply(auto simp: tms_of.simps tpairs_of.simps)
apply(case_tac "ap ! n", auto simp: ci.simps length_findnth tinc_b_def tdec_b_def)
apply arith
by arith
lemma compile_mod2: "length (concat (take n (tms_of ap))) mod 2 = 0"
apply(induct n, auto)
apply(case_tac "n < length (tms_of ap)", simp add: take_Suc_conv_app_nth, auto)
apply(subgoal_tac "length (tms_of ap ! n) mod 2 = 0")
apply arith
by auto
lemma tpa_states:
"\<lbrakk>tp = concat (take as (tms_of ap));
as \<le> length ap\<rbrakk> \<Longrightarrow>
start_of (layout_of ap) as = Suc (length tp div 2)"
proof(induct as arbitrary: tp)
case 0
thus "?case"
by(simp add: start_of.simps)
next
case (Suc as tp)
have ind: "\<And>tp. \<lbrakk>tp = concat (take as (tms_of ap)); as \<le> length ap\<rbrakk> \<Longrightarrow>
start_of (layout_of ap) as = Suc (length tp div 2)" by fact
have tp: "tp = concat (take (Suc as) (tms_of ap))" by fact
have le: "Suc as \<le> length ap" by fact
have a: "start_of (layout_of ap) as = Suc (length (concat (take as (tms_of ap))) div 2)"
using le
by(rule_tac ind, simp_all)
from a tp le show "?case"
apply(simp add: start_of.simps take_Suc_conv_app_nth)
apply(subgoal_tac "length (concat (take as (tms_of ap))) mod 2= 0")
apply(subgoal_tac " length (tms_of ap ! as) mod 2 = 0")
apply(simp add: abacus.div_apart)
apply(simp add: layout_of.simps ci_length tms_of.simps tpairs_of.simps)
apply(auto intro: compile_mod2)
done
qed
lemma append_append_fetch:
"\<lbrakk>length tp1 mod 2 = 0; length tp mod 2 = 0;
length tp1 div 2 < a \<and> a \<le> length tp1 div 2 + length tp div 2\<rbrakk>
\<Longrightarrow>fetch (tp1 @ tp @ tp2) a b = fetch tp (a - length tp1 div 2) b "
apply(subgoal_tac "\<exists> x. a = length tp1 div 2 + x", erule exE, simp)
apply(case_tac x, simp)
apply(subgoal_tac "length tp1 div 2 + Suc nat =
Suc (length tp1 div 2 + nat)")
apply(simp only: fetch.simps nth_of.simps, auto)
apply(case_tac b, simp)
apply(subgoal_tac "2 * (length tp1 div 2) = length tp1", simp)
apply(subgoal_tac "2 * nat < length tp", simp add: nth_append, simp)
apply(subgoal_tac "2 * (length tp1 div 2) = length tp1", simp)
apply(subgoal_tac "2 * nat < length tp", simp add: nth_append, auto)
apply(auto simp: nth_append)
apply(rule_tac x = "a - length tp1 div 2" in exI, simp)
done
lemma step_eq_fetch':
assumes layout: "ly = layout_of ap"
and compile: "tp = tm_of ap"
and fetch: "abc_fetch as ap = Some ins"
and range1: "s \<ge> start_of ly as"
and range2: "s < start_of ly (Suc as)"
shows "fetch tp s b = fetch (ci ly (start_of ly as) ins)
(Suc s - start_of ly as) b "
proof -
have "\<exists>tp1 tp2. concat (tms_of ap) = tp1 @ ci ly (start_of ly as) ins @ tp2 \<and>
tp1 = concat (take as (tms_of ap)) \<and> tp2 = concat (drop (Suc as) (tms_of ap))"
using assms
by(rule_tac t_split, simp_all)
then obtain tp1 tp2 where a: "concat (tms_of ap) = tp1 @ ci ly (start_of ly as) ins @ tp2 \<and>
tp1 = concat (take as (tms_of ap)) \<and> tp2 = concat (drop (Suc as) (tms_of ap))" by blast
then have b: "start_of (layout_of ap) as = Suc (length tp1 div 2)"
using fetch
apply(rule_tac tpa_states, simp, simp add: abc_fetch.simps split: if_splits)
done
have "fetch (tp1 @ (ci ly (start_of ly as) ins) @ tp2) s b =
fetch (ci ly (start_of ly as) ins) (s - length tp1 div 2) b"
proof(rule_tac append_append_fetch)
show "length tp1 mod 2 = 0"
using a
by(auto, rule_tac compile_mod2)
next
show "length (ci ly (start_of ly as) ins) mod 2 = 0"
apply(case_tac ins, auto simp: ci.simps length_findnth tinc_b_def tdec_b_def)
by(arith, arith)
next
show "length tp1 div 2 < s \<and> s \<le>
length tp1 div 2 + length (ci ly (start_of ly as) ins) div 2"
proof -
have "length (ci ly (start_of ly as) ins) div 2 = length_of ins"
using ci_length by simp
moreover have "start_of ly (Suc as) = start_of ly as + length_of ins"
using fetch layout
apply(simp add: start_of.simps abc_fetch.simps List.take_Suc_conv_app_nth
split: if_splits)
apply(simp add: layout_of.simps)
done
ultimately show "?thesis"
using b layout range1 range2
apply(simp)
done
qed
qed
thus "?thesis"
using b layout a compile
apply(simp add: tm_of.simps)
done
qed
lemma step_eq_fetch:
assumes layout: "ly = layout_of ap"
and compile: "tp = tm_of ap"
and abc_fetch: "abc_fetch as ap = Some ins"
and fetch: "fetch (ci ly (start_of ly as) ins)
(Suc s - start_of ly as) b = (ac, ns)"
and notfinal: "ns \<noteq> 0"
shows "fetch tp s b = (ac, ns)"
proof -
have "s \<ge> start_of ly as"
proof(cases "s \<ge> start_of ly as")
case True thus "?thesis" by simp
next
case False
have "\<not> start_of ly as \<le> s" by fact
then have "Suc s - start_of ly as = 0"
by arith
then have "fetch (ci ly (start_of ly as) ins)
(Suc s - start_of ly as) b = (Nop, 0)"
by(simp add: fetch.simps)
with notfinal fetch show "?thesis"
by(simp)
qed
moreover have "s < start_of ly (Suc as)"
proof(cases "s < start_of ly (Suc as)")
case True thus "?thesis" by simp
next
case False
have h: "\<not> s < start_of ly (Suc as)"
by fact
then have "s > start_of ly as"
using abc_fetch layout
apply(simp add: start_of.simps abc_fetch.simps split: if_splits)
apply(simp add: List.take_Suc_conv_app_nth, auto)
apply(subgoal_tac "layout_of ap ! as > 0")
apply arith
apply(simp add: layout_of.simps)
apply(case_tac "ap!as", auto simp: length_of.simps)
done
from this and h have "fetch (ci ly (start_of ly as) ins) (Suc s - start_of ly as) b = (Nop, 0)"
using abc_fetch layout
apply(case_tac b, simp_all add: Suc_diff_le)
apply(case_tac [!] ins, simp_all add: start_of_Suc2 start_of_Suc1 start_of_Suc3)
apply(simp_all only: length_ci_inc length_ci_dec length_ci_goto, auto)
using layout
apply(subgoal_tac [!] "start_of ly (Suc as) = start_of ly as + 2*nat1 + 16", simp_all)
apply(rule_tac [!] start_of_Suc2, auto)
done
from fetch and notfinal this show "?thesis"by simp
qed
ultimately show "?thesis"
using assms
apply(drule_tac b= b and ins = ins in step_eq_fetch', auto)
done
qed
lemma step_eq_in:
assumes layout: "ly = layout_of ap"
and compile: "tp = tm_of ap"
and fetch: "abc_fetch as ap = Some ins"
and exec: "step (s, l, r) (ci ly (start_of ly as) ins, start_of ly as - 1)
= (s', l', r')"
and notfinal: "s' \<noteq> 0"
shows "step (s, l, r) (tp, 0) = (s', l', r')"
using assms
apply(simp add: step.simps)
apply(case_tac "fetch (ci (layout_of ap) (start_of (layout_of ap) as) ins)
(Suc s - start_of (layout_of ap) as) (read r)", simp)
using layout
apply(drule_tac s = s and b = "read r" and ac = a in step_eq_fetch, auto)
done
lemma steps_eq_in:
assumes layout: "ly = layout_of ap"
and compile: "tp = tm_of ap"
and crsp: "crsp ly (as, lm) (s, l, r) ires"
and fetch: "abc_fetch as ap = Some ins"
and exec: "steps (s, l, r) (ci ly (start_of ly as) ins, start_of ly as - 1) stp
= (s', l', r')"
and notfinal: "s' \<noteq> 0"
shows "steps (s, l, r) (tp, 0) stp = (s', l', r')"
using exec notfinal
proof(induct stp arbitrary: s' l' r', simp add: steps.simps)
fix stp s' l' r'
assume ind:
"\<And>s' l' r'. \<lbrakk>steps (s, l, r) (ci ly (start_of ly as) ins, start_of ly as - 1) stp = (s', l', r'); s' \<noteq> 0\<rbrakk>
\<Longrightarrow> steps (s, l, r) (tp, 0) stp = (s', l', r')"
and h: "steps (s, l, r) (ci ly (start_of ly as) ins, start_of ly as - 1) (Suc stp) = (s', l', r')" "s' \<noteq> 0"
obtain s1 l1 r1 where g: "steps (s, l, r) (ci ly (start_of ly as) ins, start_of ly as - 1) stp =
(s1, l1, r1)"
apply(case_tac "steps (s, l, r) (ci ly (start_of ly as) ins, start_of ly as - 1) stp") by blast
moreover hence "s1 \<noteq> 0"
using h
apply(simp add: step_red)
apply(case_tac "0 < s1", simp_all)
done
ultimately have "steps (s, l, r) (tp, 0) stp = (s1, l1, r1)"
apply(rule_tac ind, auto)
done
thus "steps (s, l, r) (tp, 0) (Suc stp) = (s', l', r')"
using h g assms
apply(simp add: step_red)
apply(rule_tac step_eq_in, auto)
done
qed
lemma tm_append_fetch_first:
"\<lbrakk>fetch A s b = (ac, ns); ns \<noteq> 0\<rbrakk> \<Longrightarrow>
fetch (A @ B) s b = (ac, ns)"
apply(case_tac b)
apply(case_tac [!] s, auto simp: fetch.simps nth_append split: if_splits)
done
lemma tm_append_first_step_eq:
assumes "step (s, l, r) (A, off) = (s', l', r')"
and "s' \<noteq> 0"
shows "step (s, l, r) (A @ B, off) = (s', l', r')"
using assms
apply(simp add: step.simps)
apply(case_tac "fetch A (s - off) (read r)")
apply(frule_tac B = B and b = "read r" in tm_append_fetch_first, auto)
done
lemma tm_append_first_steps_eq:
assumes "steps (s, l, r) (A, off) stp = (s', l', r')"
and "s' \<noteq> 0"
shows "steps (s, l, r) (A @ B, off) stp = (s', l', r')"
using assms
proof(induct stp arbitrary: s' l' r', simp add: steps.simps)
fix stp s' l' r'
assume ind: "\<And>s' l' r'. \<lbrakk>steps (s, l, r) (A, off) stp = (s', l', r'); s' \<noteq> 0\<rbrakk>
\<Longrightarrow> steps (s, l, r) (A @ B, off) stp = (s', l', r')"
and h: "steps (s, l, r) (A, off) (Suc stp) = (s', l', r')" "s' \<noteq> 0"
obtain sa la ra where a: "steps (s, l, r) (A, off) stp = (sa, la, ra)"
apply(case_tac "steps (s, l, r) (A, off) stp") by blast
hence "steps (s, l, r) (A @ B, off) stp = (sa, la, ra) \<and> sa \<noteq> 0"
using h ind[of sa la ra]
apply(case_tac sa, simp_all)
done
thus "steps (s, l, r) (A @ B, off) (Suc stp) = (s', l', r')"
using h a
apply(simp add: step_red)
apply(rule_tac tm_append_first_step_eq, simp_all)
done
qed
lemma tm_append_second_fetch_eq:
assumes
even: "length A mod 2 = 0"
and off: "off = length A div 2"
and fetch: "fetch B s b = (ac, ns)"
and notfinal: "ns \<noteq> 0"
shows "fetch (A @ shift B off) (s + off) b = (ac, ns + off)"
using assms
apply(case_tac b)
apply(case_tac [!] s, auto simp: fetch.simps nth_append shift.simps
split: if_splits)
done
lemma tm_append_second_step_eq:
assumes
exec: "step0 (s, l, r) B = (s', l', r')"
and notfinal: "s' \<noteq> 0"
and off: "off = length A div 2"
and even: "length A mod 2 = 0"
shows "step0 (s + off, l, r) (A @ shift B off) = (s' + off, l', r')"
using assms
apply(simp add: step.simps)
apply(case_tac "fetch B s (read r)")
apply(frule_tac tm_append_second_fetch_eq, simp_all, auto)
done
lemma tm_append_second_steps_eq:
assumes
exec: "steps (s, l, r) (B, 0) stp = (s', l', r')"
and notfinal: "s' \<noteq> 0"
and off: "off = length A div 2"
and even: "length A mod 2 = 0"
shows "steps (s + off, l, r) (A @ shift B off, 0) stp = (s' + off, l', r')"
using exec notfinal
proof(induct stp arbitrary: s' l' r')
case 0
thus "steps0 (s + off, l, r) (A @ shift B off) 0 = (s' + off, l', r')"
by(simp add: steps.simps)
next
case (Suc stp s' l' r')
have ind: "\<And>s' l' r'. \<lbrakk>steps0 (s, l, r) B stp = (s', l', r'); s' \<noteq> 0\<rbrakk> \<Longrightarrow>
steps0 (s + off, l, r) (A @ shift B off) stp = (s' + off, l', r')"
by fact
have h: "steps0 (s, l, r) B (Suc stp) = (s', l', r')" by fact
have k: "s' \<noteq> 0" by fact
obtain s'' l'' r'' where a: "steps0 (s, l, r) B stp = (s'', l'', r'')"
by (metis prod_cases3)
then have b: "s'' \<noteq> 0"
using h k
by(rule_tac notI, auto simp: step_red)
from a b have c: "steps0 (s + off, l, r) (A @ shift B off) stp = (s'' + off, l'', r'')"
by(erule_tac ind, simp)
from c b h a k assms show "?case"
thm tm_append_second_step_eq
apply(simp add: step_red) by(rule tm_append_second_step_eq, simp_all)
qed
lemma tm_append_second_fetch0_eq:
assumes
even: "length A mod 2 = 0"
and off: "off = length A div 2"
and fetch: "fetch B s b = (ac, 0)"
and notfinal: "s \<noteq> 0"
shows "fetch (A @ shift B off) (s + off) b = (ac, 0)"
using assms
apply(case_tac b)
apply(case_tac [!] s, auto simp: fetch.simps nth_append shift.simps
split: if_splits)
done
lemma tm_append_second_halt_eq:
assumes
exec: "steps (Suc 0, l, r) (B, 0) stp = (0, l', r')"
and wf_B: "tm_wf (B, 0)"
and off: "off = length A div 2"
and even: "length A mod 2 = 0"
shows "steps (Suc off, l, r) (A @ shift B off, 0) stp = (0, l', r')"
proof -
thm before_final
have "\<exists>n. \<not> is_final (steps0 (1, l, r) B n) \<and> steps0 (1, l, r) B (Suc n) = (0, l', r')"
using exec by(rule_tac before_final, simp)
then obtain n where a:
"\<not> is_final (steps0 (1, l, r) B n) \<and> steps0 (1, l, r) B (Suc n) = (0, l', r')" ..
obtain s'' l'' r'' where b: "steps0 (1, l, r) B n = (s'', l'', r'') \<and> s'' >0"
using a
by(case_tac "steps0 (1, l, r) B n", auto)
have c: "steps (Suc 0 + off, l, r) (A @ shift B off, 0) n = (s'' + off, l'', r'')"
using a b assms
by(rule_tac tm_append_second_steps_eq, simp_all)
obtain ac where d: "fetch B s'' (read r'') = (ac, 0)"
using b a
by(case_tac "fetch B s'' (read r'')", auto simp: step_red step.simps)
then have "fetch (A @ shift B off) (s'' + off) (read r'') = (ac, 0)"
using assms b
by(rule_tac tm_append_second_fetch0_eq, simp_all)
then have e: "steps (Suc 0 + off, l, r) (A @ shift B off, 0) (Suc n) = (0, l', r')"
using a b assms c d
by(simp add: step_red step.simps)
from a have "n < stp"
using exec
proof(cases "n < stp")
case True thus "?thesis" by simp
next
case False
have "\<not> n < stp" by fact
then obtain d where "n = stp + d"
by (metis add.comm_neutral less_imp_add_positive nat_neq_iff)
thus "?thesis"
using a e exec
by(simp add: steps_add)
qed
then obtain d where "stp = Suc n + d"
by(metis add_Suc less_iff_Suc_add)
thus "?thesis"
using e
by(simp only: steps_add, simp)
qed
lemma tm_append_steps:
assumes
aexec: "steps (s, l, r) (A, 0) stpa = (Suc (length A div 2), la, ra)"
and bexec: "steps (Suc 0, la, ra) (B, 0) stpb = (sb, lb, rb)"
and notfinal: "sb \<noteq> 0"
and off: "off = length A div 2"
and even: "length A mod 2 = 0"
shows "steps (s, l, r) (A @ shift B off, 0) (stpa + stpb) = (sb + off, lb, rb)"
proof -
have "steps (s, l, r) (A@shift B off, 0) stpa = (Suc (length A div 2), la, ra)"
apply(rule_tac tm_append_first_steps_eq)
apply(auto simp: assms)
done
moreover have "steps (1 + off, la, ra) (A @ shift B off, 0) stpb = (sb + off, lb, rb)"
apply(rule_tac tm_append_second_steps_eq)
apply(auto simp: assms bexec)
done
ultimately show "steps (s, l, r) (A @ shift B off, 0) (stpa + stpb) = (sb + off, lb, rb)"
apply(simp add: steps_add off)
done
qed
subsection {* Crsp of Inc*}
fun at_begin_fst_bwtn :: "inc_inv_t"
where
"at_begin_fst_bwtn (as, lm) (s, l, r) ires =
(\<exists> lm1 tn rn. lm1 = (lm @ 0\<up>tn) \<and> length lm1 = s \<and>
(if lm1 = [] then l = Bk # Bk # ires
else l = [Bk]@<rev lm1>@Bk#Bk#ires) \<and> r = Bk\<up>rn)"
fun at_begin_fst_awtn :: "inc_inv_t"
where
"at_begin_fst_awtn (as, lm) (s, l, r) ires =
(\<exists> lm1 tn rn. lm1 = (lm @ 0\<up>tn) \<and> length lm1 = s \<and>
(if lm1 = [] then l = Bk # Bk # ires
else l = [Bk]@<rev lm1>@Bk#Bk#ires) \<and> r = [Oc]@Bk\<up>rn)"
fun at_begin_norm :: "inc_inv_t"
where
"at_begin_norm (as, lm) (s, l, r) ires=
(\<exists> lm1 lm2 rn. lm = lm1 @ lm2 \<and> length lm1 = s \<and>
(if lm1 = [] then l = Bk # Bk # ires
else l = Bk # <rev lm1> @ Bk # Bk # ires ) \<and> r = <lm2>@Bk\<up>rn)"
fun in_middle :: "inc_inv_t"
where
"in_middle (as, lm) (s, l, r) ires =
(\<exists> lm1 lm2 tn m ml mr rn. lm @ 0\<up>tn = lm1 @ [m] @ lm2
\<and> length lm1 = s \<and> m + 1 = ml + mr \<and>
ml \<noteq> 0 \<and> tn = s + 1 - length lm \<and>
(if lm1 = [] then l = Oc\<up>ml @ Bk # Bk # ires
else l = Oc\<up>ml@[Bk]@<rev lm1>@
Bk # Bk # ires) \<and> (r = Oc\<up>mr @ [Bk] @ <lm2>@ Bk\<up>rn \<or>
(lm2 = [] \<and> r = Oc\<up>mr))
)"
fun inv_locate_a :: "inc_inv_t"
where "inv_locate_a (as, lm) (s, l, r) ires =
(at_begin_norm (as, lm) (s, l, r) ires \<or>
at_begin_fst_bwtn (as, lm) (s, l, r) ires \<or>
at_begin_fst_awtn (as, lm) (s, l, r) ires
)"
fun inv_locate_b :: "inc_inv_t"
where "inv_locate_b (as, lm) (s, l, r) ires =
(in_middle (as, lm) (s, l, r)) ires "
fun inv_after_write :: "inc_inv_t"
where "inv_after_write (as, lm) (s, l, r) ires =
(\<exists> rn m lm1 lm2. lm = lm1 @ m # lm2 \<and>
(if lm1 = [] then l = Oc\<up>m @ Bk # Bk # ires
else Oc # l = Oc\<up>Suc m@ Bk # <rev lm1> @
Bk # Bk # ires) \<and> r = [Oc] @ <lm2> @ Bk\<up>rn)"
fun inv_after_move :: "inc_inv_t"
where "inv_after_move (as, lm) (s, l, r) ires =
(\<exists> rn m lm1 lm2. lm = lm1 @ m # lm2 \<and>
(if lm1 = [] then l = Oc\<up>Suc m @ Bk # Bk # ires
else l = Oc\<up>Suc m@ Bk # <rev lm1> @ Bk # Bk # ires) \<and>
r = <lm2> @ Bk\<up>rn)"
fun inv_after_clear :: "inc_inv_t"
where "inv_after_clear (as, lm) (s, l, r) ires =
(\<exists> rn m lm1 lm2 r'. lm = lm1 @ m # lm2 \<and>
(if lm1 = [] then l = Oc\<up>Suc m @ Bk # Bk # ires
else l = Oc\<up>Suc m @ Bk # <rev lm1> @ Bk # Bk # ires) \<and>
r = Bk # r' \<and> Oc # r' = <lm2> @ Bk\<up>rn)"
fun inv_on_right_moving :: "inc_inv_t"
where "inv_on_right_moving (as, lm) (s, l, r) ires =
(\<exists> lm1 lm2 m ml mr rn. lm = lm1 @ [m] @ lm2 \<and>
ml + mr = m \<and>
(if lm1 = [] then l = Oc\<up>ml @ Bk # Bk # ires
else l = Oc\<up>ml @ [Bk] @ <rev lm1> @ Bk # Bk # ires) \<and>
((r = Oc\<up>mr @ [Bk] @ <lm2> @ Bk\<up>rn) \<or>
(r = Oc\<up>mr \<and> lm2 = [])))"
fun inv_on_left_moving_norm :: "inc_inv_t"
where "inv_on_left_moving_norm (as, lm) (s, l, r) ires =
(\<exists> lm1 lm2 m ml mr rn. lm = lm1 @ [m] @ lm2 \<and>
ml + mr = Suc m \<and> mr > 0 \<and> (if lm1 = [] then l = Oc\<up>ml @ Bk # Bk # ires
else l = Oc\<up>ml @ Bk # <rev lm1> @ Bk # Bk # ires)
\<and> (r = Oc\<up>mr @ Bk # <lm2> @ Bk\<up>rn \<or>
(lm2 = [] \<and> r = Oc\<up>mr)))"
fun inv_on_left_moving_in_middle_B:: "inc_inv_t"
where "inv_on_left_moving_in_middle_B (as, lm) (s, l, r) ires =
(\<exists> lm1 lm2 rn. lm = lm1 @ lm2 \<and>
(if lm1 = [] then l = Bk # ires
else l = <rev lm1> @ Bk # Bk # ires) \<and>
r = Bk # <lm2> @ Bk\<up>rn)"
fun inv_on_left_moving :: "inc_inv_t"
where "inv_on_left_moving (as, lm) (s, l, r) ires =
(inv_on_left_moving_norm (as, lm) (s, l, r) ires \<or>
inv_on_left_moving_in_middle_B (as, lm) (s, l, r) ires)"
fun inv_check_left_moving_on_leftmost :: "inc_inv_t"
where "inv_check_left_moving_on_leftmost (as, lm) (s, l, r) ires =
(\<exists> rn. l = ires \<and> r = [Bk, Bk] @ <lm> @ Bk\<up>rn)"
fun inv_check_left_moving_in_middle :: "inc_inv_t"
where "inv_check_left_moving_in_middle (as, lm) (s, l, r) ires =
(\<exists> lm1 lm2 r' rn. lm = lm1 @ lm2 \<and>
(Oc # l = <rev lm1> @ Bk # Bk # ires) \<and> r = Oc # Bk # r' \<and>
r' = <lm2> @ Bk\<up>rn)"
fun inv_check_left_moving :: "inc_inv_t"
where "inv_check_left_moving (as, lm) (s, l, r) ires =
(inv_check_left_moving_on_leftmost (as, lm) (s, l, r) ires \<or>
inv_check_left_moving_in_middle (as, lm) (s, l, r) ires)"
fun inv_after_left_moving :: "inc_inv_t"
where "inv_after_left_moving (as, lm) (s, l, r) ires=
(\<exists> rn. l = Bk # ires \<and> r = Bk # <lm> @ Bk\<up>rn)"
fun inv_stop :: "inc_inv_t"
where "inv_stop (as, lm) (s, l, r) ires=
(\<exists> rn. l = Bk # Bk # ires \<and> r = <lm> @ Bk\<up>rn)"
lemma halt_lemma2':
"\<lbrakk>wf LE; \<forall> n. ((\<not> P (f n) \<and> Q (f n)) \<longrightarrow>
(Q (f (Suc n)) \<and> (f (Suc n), (f n)) \<in> LE)); Q (f 0)\<rbrakk>
\<Longrightarrow> \<exists> n. P (f n)"
apply(intro exCI, simp)
apply(subgoal_tac "\<forall> n. Q (f n)", simp)
apply(drule_tac f = f in wf_inv_image)
apply(simp add: inv_image_def)
apply(erule wf_induct, simp)
apply(erule_tac x = x in allE)
apply(erule_tac x = n in allE, erule_tac x = n in allE)
apply(erule_tac x = "Suc x" in allE, simp)
apply(rule_tac allI)
apply(induct_tac n, simp)
apply(erule_tac x = na in allE, simp)
done
lemma halt_lemma2'':
"\<lbrakk>P (f n); \<not> P (f (0::nat))\<rbrakk> \<Longrightarrow>
\<exists> n. (P (f n) \<and> (\<forall> i < n. \<not> P (f i)))"
apply(induct n rule: nat_less_induct, auto)
done
lemma halt_lemma2''':
"\<lbrakk>\<forall>n. \<not> P (f n) \<and> Q (f n) \<longrightarrow> Q (f (Suc n)) \<and> (f (Suc n), f n) \<in> LE;
Q (f 0); \<forall>i<na. \<not> P (f i)\<rbrakk> \<Longrightarrow> Q (f na)"
apply(induct na, simp, simp)
done
lemma halt_lemma2:
"\<lbrakk>wf LE;
Q (f 0); \<not> P (f 0);
\<forall> n. ((\<not> P (f n) \<and> Q (f n)) \<longrightarrow> (Q (f (Suc n)) \<and> (f (Suc n), (f n)) \<in> LE))\<rbrakk>
\<Longrightarrow> \<exists> n. P (f n) \<and> Q (f n)"
apply(insert halt_lemma2' [of LE P f Q], simp, erule_tac exE)
apply(subgoal_tac "\<exists> n. (P (f n) \<and> (\<forall> i < n. \<not> P (f i)))")
apply(erule_tac exE)+
apply(rule_tac x = na in exI, auto)
apply(rule halt_lemma2''', simp, simp, simp)
apply(erule_tac halt_lemma2'', simp)
done
fun findnth_inv :: "layout \<Rightarrow> nat \<Rightarrow> inc_inv_t"
where
"findnth_inv ly n (as, lm) (s, l, r) ires =
(if s = 0 then False
else if s \<le> Suc (2*n) then
if s mod 2 = 1 then inv_locate_a (as, lm) ((s - 1) div 2, l, r) ires
else inv_locate_b (as, lm) ((s - 1) div 2, l, r) ires
else False)"
fun findnth_state :: "config \<Rightarrow> nat \<Rightarrow> nat"
where
"findnth_state (s, l, r) n = (Suc (2*n) - s)"
fun findnth_step :: "config \<Rightarrow> nat \<Rightarrow> nat"
where
"findnth_step (s, l, r) n =
(if s mod 2 = 1 then
(if (r \<noteq> [] \<and> hd r = Oc) then 0
else 1)
else length r)"
fun findnth_measure :: "config \<times> nat \<Rightarrow> nat \<times> nat"
where
"findnth_measure (c, n) =
(findnth_state c n, findnth_step c n)"
definition lex_pair :: "((nat \<times> nat) \<times> nat \<times> nat) set"
where
"lex_pair \<equiv> less_than <*lex*> less_than"
definition findnth_LE :: "((config \<times> nat) \<times> (config \<times> nat)) set"
where
"findnth_LE \<equiv> (inv_image lex_pair findnth_measure)"
lemma wf_findnth_LE: "wf findnth_LE"
by(auto intro:wf_inv_image simp: findnth_LE_def lex_pair_def)
declare findnth_inv.simps[simp del]
lemma [simp]:
"\<lbrakk>x < Suc (Suc (2 * n)); Suc x mod 2 = Suc 0; \<not> x < 2 * n\<rbrakk>
\<Longrightarrow> x = 2*n"
by arith
lemma [simp]:
"\<lbrakk>0 < a; a < Suc (2 * n); a mod 2 = Suc 0\<rbrakk>
\<Longrightarrow> fetch (findnth n) a Bk = (W1, a)"
apply(case_tac a, simp_all)
apply(induct n, auto simp: findnth.simps length_findnth nth_append)
apply arith
done
lemma [simp]:
"\<lbrakk>0 < a; a < Suc (2 * n); a mod 2 = Suc 0\<rbrakk>
\<Longrightarrow> fetch (findnth n) a Oc = (R, Suc a)"
apply(case_tac a, simp_all)
apply(induct n, auto simp: findnth.simps length_findnth nth_append)
apply(subgoal_tac "nat = 2 * n", simp)
by arith
lemma [simp]:
"\<lbrakk>0 < a; a < Suc (2*n); a mod 2 \<noteq> Suc 0\<rbrakk>
\<Longrightarrow> fetch (findnth n) a Oc = (R, a)"
apply(case_tac a, simp_all)
apply(induct n, auto simp: findnth.simps length_findnth nth_append)
apply(subgoal_tac "nat = Suc (2 * n)", simp)
apply arith
done
lemma [simp]:
"\<lbrakk>0 < a; a < Suc (2*n); a mod 2 \<noteq> Suc 0\<rbrakk>
\<Longrightarrow> fetch (findnth n) a Bk = (R, Suc a)"
apply(case_tac a, simp_all)
apply(induct n, auto simp: findnth.simps length_findnth nth_append)
apply(subgoal_tac "nat = Suc (2 * n)", simp)
by arith
declare at_begin_norm.simps[simp del] at_begin_fst_bwtn.simps[simp del]
at_begin_fst_awtn.simps[simp del] in_middle.simps[simp del]
abc_lm_s.simps[simp del] abc_lm_v.simps[simp del]
ci.simps[simp del] inv_after_move.simps[simp del]
inv_on_left_moving_norm.simps[simp del]
inv_on_left_moving_in_middle_B.simps[simp del]
inv_after_clear.simps[simp del]
inv_after_write.simps[simp del] inv_on_left_moving.simps[simp del]
inv_on_right_moving.simps[simp del]
inv_check_left_moving.simps[simp del]
inv_check_left_moving_in_middle.simps[simp del]
inv_check_left_moving_on_leftmost.simps[simp del]
inv_after_left_moving.simps[simp del]
inv_stop.simps[simp del] inv_locate_a.simps[simp del]
inv_locate_b.simps[simp del]
lemma [intro]: "\<exists>rn. [Bk] = Bk \<up> rn"
by (metis replicate_0 replicate_Suc)
lemma [intro]: "at_begin_norm (as, am) (q, aaa, []) ires
\<Longrightarrow> at_begin_norm (as, am) (q, aaa, [Bk]) ires"
apply(simp add: at_begin_norm.simps, erule_tac exE, erule_tac exE)
apply(rule_tac x = lm1 in exI, simp, auto)
done
lemma [intro]: "at_begin_fst_bwtn (as, am) (q, aaa, []) ires
\<Longrightarrow> at_begin_fst_bwtn (as, am) (q, aaa, [Bk]) ires"
apply(simp only: at_begin_fst_bwtn.simps, erule_tac exE, erule_tac exE, erule_tac exE)
apply(rule_tac x = "am @ 0\<up>tn" in exI, auto)
done
lemma [intro]: "at_begin_fst_awtn (as, am) (q, aaa, []) ires
\<Longrightarrow> at_begin_fst_awtn (as, am) (q, aaa, [Bk]) ires"
apply(auto simp: at_begin_fst_awtn.simps)
done
lemma [intro]: "inv_locate_a (as, am) (q, aaa, []) ires
\<Longrightarrow> inv_locate_a (as, am) (q, aaa, [Bk]) ires"
apply(simp only: inv_locate_a.simps)
apply(erule disj_forward)
defer
apply(erule disj_forward, auto)
done
lemma tape_of_nl_cons: "<m # lm> = (if lm = [] then Oc\<up>(Suc m)
else Oc\<up>(Suc m) @ Bk # <lm>)"
apply(case_tac lm, simp_all add: tape_of_nl_abv tape_of_nat_abv split: if_splits)
done
lemma locate_a_2_locate_a[simp]: "inv_locate_a (as, am) (q, aaa, Bk # xs) ires
\<Longrightarrow> inv_locate_a (as, am) (q, aaa, Oc # xs) ires"
apply(simp only: inv_locate_a.simps at_begin_norm.simps
at_begin_fst_bwtn.simps at_begin_fst_awtn.simps)
apply(erule_tac disjE, erule exE, erule exE, erule exE,
rule disjI2, rule disjI2)
defer
apply(erule_tac disjE, erule exE, erule exE,
erule exE, rule disjI2, rule disjI2)
prefer 2
apply(simp)
proof-
fix lm1 tn rn
assume k: "lm1 = am @ 0\<up>tn \<and> length lm1 = q \<and> (if lm1 = [] then aaa = Bk # Bk #
ires else aaa = [Bk] @ <rev lm1> @ Bk # Bk # ires) \<and> Bk # xs = Bk\<up>rn"
thus "\<exists>lm1 tn rn. lm1 = am @ 0 \<up> tn \<and> length lm1 = q \<and>
(if lm1 = [] then aaa = Bk # Bk # ires else aaa = [Bk] @ <rev lm1> @ Bk # Bk # ires) \<and> Oc # xs = [Oc] @ Bk \<up> rn"
(is "\<exists>lm1 tn rn. ?P lm1 tn rn")
proof -
from k have "?P lm1 tn (rn - 1)"
apply(auto simp: Oc_def)
by(case_tac [!] "rn::nat", auto)
thus ?thesis by blast
qed
next
fix lm1 lm2 rn
assume h1: "am = lm1 @ lm2 \<and> length lm1 = q \<and> (if lm1 = []
then aaa = Bk # Bk # ires else aaa = Bk # <rev lm1> @ Bk # Bk # ires) \<and>
Bk # xs = <lm2> @ Bk\<up>rn"
from h1 have h2: "lm2 = []"
apply(auto split: if_splits)
apply(case_tac [!] lm2, simp_all add: tape_of_nl_cons split: if_splits)
done
from h1 and h2 show "\<exists>lm1 tn rn. lm1 = am @ 0\<up>tn \<and> length lm1 = q \<and>
(if lm1 = [] then aaa = Bk # Bk # ires else aaa = [Bk] @ <rev lm1> @ Bk # Bk # ires) \<and>
Oc # xs = [Oc] @ Bk\<up>rn"
(is "\<exists>lm1 tn rn. ?P lm1 tn rn")
proof -
from h1 and h2 have "?P lm1 0 (rn - 1)"
apply(auto simp: Oc_def
tape_of_nl_abv tape_of_nat_list.simps)
by(case_tac "rn::nat", simp, simp)
thus ?thesis by blast
qed
qed
lemma [simp]: "inv_locate_a (as, am) (q, aaa, []) ires \<Longrightarrow>
inv_locate_a (as, am) (q, aaa, [Oc]) ires"
apply(insert locate_a_2_locate_a [of as am q aaa "[]"])
apply(subgoal_tac "inv_locate_a (as, am) (q, aaa, [Bk]) ires", auto)
done
(*inv: from locate_b to locate_b*)
lemma [simp]: "inv_locate_b (as, am) (q, aaa, Oc # xs) ires
\<Longrightarrow> inv_locate_b (as, am) (q, Oc # aaa, xs) ires"
apply(simp only: inv_locate_b.simps in_middle.simps)
apply(erule exE)+
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI,
rule_tac x = tn in exI, rule_tac x = m in exI)
apply(rule_tac x = "Suc ml" in exI, rule_tac x = "mr - 1" in exI,
rule_tac x = rn in exI)
apply(case_tac mr, simp_all, auto)
done
(*
lemma zero_and_nil[intro]: "(Bk # Bk\<^bsup>n\<^esup> = Oc\<^bsup>mr\<^esup> @ Bk # <lm::nat list> @
Bk\<^bsup>rn \<^esup>) \<or> (lm2 = [] \<and> Bk # Bk\<^bsup>n\<^esup> = Oc\<^bsup>mr\<^esup>)
\<Longrightarrow> mr = 0 \<and> lm = []"
apply(rule context_conjI)
apply(case_tac mr, auto simp:exponent_def)
apply(insert BkCons_nil[of "replicate (n - 1) Bk" lm rn])
apply(case_tac n, auto simp: exponent_def Bk_def tape_of_nl_nil_eq)
done
lemma tape_of_nat_def: "<[m::nat]> = Oc # Oc\<^bsup>m\<^esup>"
apply(simp add: tape_of_nl_abv tape_of_nat_list.simps)
done
*)
lemma [simp]: "<[x::nat]> = Oc\<up>(Suc x)"
apply(simp add: tape_of_nat_abv tape_of_nl_abv)
done
lemma [simp]: " <([]::nat list)> = []"
apply(simp add: tape_of_nl_abv)
done
lemma [simp]: "\<lbrakk>inv_locate_b (as, am) (q, aaa, Bk # xs) ires; \<exists>n. xs = Bk\<up>n\<rbrakk>
\<Longrightarrow> inv_locate_a (as, am) (Suc q, Bk # aaa, xs) ires"
apply(simp add: inv_locate_b.simps inv_locate_a.simps)
apply(rule_tac disjI2, rule_tac disjI1)
apply(simp only: in_middle.simps at_begin_fst_bwtn.simps)
apply(erule_tac exE)+
apply(rule_tac x = "lm1 @ [m]" in exI, rule_tac x = tn in exI, simp split: if_splits)
apply(case_tac mr, simp_all)
apply(case_tac "length am", simp_all, case_tac tn, simp_all)
apply(case_tac lm2, simp_all add: tape_of_nl_cons split: if_splits)
apply(case_tac am, simp_all)
apply(case_tac n, simp_all)
apply(case_tac n, simp_all)
apply(case_tac mr, simp_all)
apply(case_tac lm2, simp_all add: tape_of_nl_cons split: if_splits, auto)
apply(case_tac [!] n, simp_all)
done
lemma [simp]: "(Oc # r = Bk \<up> rn) = False"
apply(case_tac rn, simp_all)
done
lemma [simp]: "(\<exists>rna. Bk \<up> rn = Bk # Bk \<up> rna) \<or> rn = 0"
apply(case_tac rn, auto)
done
lemma [simp]: "(\<forall> x. a \<noteq> x) = False"
by auto
lemma exp_ind: "a\<up>(Suc x) = a\<up>x @ [a]"
apply(induct x, auto)
done
lemma [simp]:
"inv_locate_a (as, lm) (q, l, Oc # r) ires
\<Longrightarrow> inv_locate_b (as, lm) (q, Oc # l, r) ires"
apply(simp only: inv_locate_a.simps inv_locate_b.simps in_middle.simps
at_begin_norm.simps at_begin_fst_bwtn.simps
at_begin_fst_awtn.simps)
apply(erule disjE, erule exE, erule exE, erule exE)
apply(rule_tac x = lm1 in exI, rule_tac x = "tl lm2" in exI, simp)
apply(rule_tac x = 0 in exI, rule_tac x = "hd lm2" in exI)
apply(case_tac lm2, auto simp: tape_of_nl_cons )
apply(rule_tac x = 1 in exI, rule_tac x = a in exI, auto)
apply(case_tac list, simp_all)
apply(case_tac rn, simp_all)
apply(rule_tac x = "lm @ replicate tn 0" in exI,
rule_tac x = "[]" in exI,
rule_tac x = "Suc tn" in exI,
rule_tac x = 0 in exI, auto)
apply(simp only: replicate_Suc[THEN sym] exp_ind)
apply(rule_tac x = "Suc 0" in exI, auto)
done
lemma length_equal: "xs = ys \<Longrightarrow> length xs = length ys"
by auto
lemma [simp]: "\<lbrakk>inv_locate_b (as, am) (q, aaa, Bk # xs) ires;
\<not> (\<exists>n. xs = Bk\<up>n)\<rbrakk>
\<Longrightarrow> inv_locate_a (as, am) (Suc q, Bk # aaa, xs) ires"
apply(simp add: inv_locate_b.simps inv_locate_a.simps)
apply(rule_tac disjI1)
apply(simp only: in_middle.simps at_begin_norm.simps)
apply(erule_tac exE)+
apply(rule_tac x = "lm1 @ [m]" in exI, rule_tac x = lm2 in exI, simp)
apply(subgoal_tac "tn = 0", simp , auto split: if_splits)
apply(case_tac [!] mr, simp_all, auto)
apply(simp add: tape_of_nl_cons)
apply(drule_tac length_equal, simp)
apply(case_tac "length am", simp_all, erule_tac x = rn in allE, simp)
apply(drule_tac length_equal, simp)
apply(case_tac "(Suc (length lm1) - length am)", simp_all)
apply(case_tac lm2, simp, simp)
done
lemma locate_b_2_a[intro]:
"inv_locate_b (as, am) (q, aaa, Bk # xs) ires
\<Longrightarrow> inv_locate_a (as, am) (Suc q, Bk # aaa, xs) ires"
apply(case_tac "\<exists> n. xs = Bk\<up>n", simp, simp)
done
lemma [simp]: "inv_locate_b (as, am) (q, l, []) ires
\<Longrightarrow> inv_locate_b (as, am) (q, l, [Bk]) ires"
apply(simp only: inv_locate_b.simps in_middle.simps)
apply(erule exE)+
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI,
rule_tac x = tn in exI, rule_tac x = m in exI,
rule_tac x = ml in exI, rule_tac x = mr in exI)
apply(auto)
done
(*inv: from locate_b to after_write*)
lemma [simp]: "(a mod 2 \<noteq> Suc 0) = (a mod 2 = 0) "
by arith
lemma [simp]: "(a mod 2 \<noteq> 0) = (a mod 2 = Suc 0) "
by arith
lemma mod_ex1: "(a mod 2 = Suc 0) = (\<exists> q. a = Suc (2 * q))"
by arith
lemma mod_ex2: "(a mod (2::nat) = 0) = (\<exists> q. a = 2 * q)"
by arith
lemma [simp]: "(2*q - Suc 0) div 2 = (q - 1)"
by arith
lemma [simp]: "(Suc (2*q)) div 2 = q"
by arith
lemma mod_2: "x mod 2 = 0 \<or> x mod 2 = Suc 0"
by arith
lemma [simp]: "x mod 2 = 0 \<Longrightarrow> Suc x mod 2 = Suc 0"
by arith
lemma [simp]: "x mod 2 = Suc 0 \<Longrightarrow> Suc x mod 2 = 0"
by arith
lemma [simp]: "inv_locate_b (as, am) (q, l, []) ires
\<Longrightarrow> inv_locate_b (as, am) (q, l, [Bk]) ires"
apply(simp only: inv_locate_b.simps in_middle.simps)
apply(erule exE)+
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI,
rule_tac x = tn in exI, rule_tac x = m in exI,
rule_tac x = ml in exI, rule_tac x = mr in exI)
apply(auto)
done
lemma locate_b_2_locate_a[simp]:
"\<lbrakk>q > 0; inv_locate_b (as, am) (q - Suc 0, aaa, Bk # xs) ires\<rbrakk>
\<Longrightarrow> inv_locate_a (as, am) (q, Bk # aaa, xs) ires"
apply(insert locate_b_2_a [of as am "q - 1" aaa xs ires], simp)
done
lemma [simp]: "inv_locate_b (as, am) (q, l, []) ires
\<Longrightarrow> inv_locate_b (as, am) (q, l, [Bk]) ires"
apply(simp only: inv_locate_b.simps in_middle.simps)
apply(erule exE)+
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI,
rule_tac x = tn in exI, rule_tac x = m in exI,
rule_tac x = ml in exI, rule_tac x = mr in exI)
apply(auto)
done
(*inv: from locate_b to after_write*)
lemma [simp]:
"crsp (layout_of ap) (as, lm) (s, l, r) ires
\<Longrightarrow> findnth_inv (layout_of ap) n (as, lm) (Suc 0, l, r) ires"
apply(auto simp: crsp.simps findnth_inv.simps inv_locate_a.simps
at_begin_norm.simps at_begin_fst_awtn.simps at_begin_fst_bwtn.simps)
done
lemma findnth_correct_pre:
assumes layout: "ly = layout_of ap"
and crsp: "crsp ly (as, lm) (s, l, r) ires"
and not0: "n > 0"
and f: "f = (\<lambda> stp. (steps (Suc 0, l, r) (findnth n, 0) stp, n))"
and P: "P = (\<lambda> ((s, l, r), n). s = Suc (2 * n))"
and Q: "Q = (\<lambda> ((s, l, r), n). findnth_inv ly n (as, lm) (s, l, r) ires)"
shows "\<exists> stp. P (f stp) \<and> Q (f stp)"
thm halt_lemma2
proof(rule_tac LE = findnth_LE in halt_lemma2)
show "wf findnth_LE" by(intro wf_findnth_LE)
next
show "Q (f 0)"
using crsp layout
apply(simp add: f P Q steps.simps)
done
next
show "\<not> P (f 0)"
using not0
apply(simp add: f P steps.simps)
done
next
show "\<forall>n. \<not> P (f n) \<and> Q (f n) \<longrightarrow> Q (f (Suc n)) \<and> (f (Suc n), f n)
\<in> findnth_LE"
proof(rule_tac allI, rule_tac impI, simp add: f,
case_tac "steps (Suc 0, l, r) (findnth n, 0) na", simp add: P)
fix na a b c
assume "a \<noteq> Suc (2 * n) \<and> Q ((a, b, c), n)"
thus "Q (step (a, b, c) (findnth n, 0), n) \<and>
((step (a, b, c) (findnth n, 0), n), (a, b, c), n) \<in> findnth_LE"
apply(case_tac c, case_tac [2] aa)
apply(simp_all add: step.simps findnth_LE_def Q findnth_inv.simps mod_2 lex_pair_def split: if_splits)
apply(auto simp: mod_ex1 mod_ex2)
done
qed
qed
lemma [intro]: "inv_locate_a (as, lm) (0, Bk # Bk # ires, <lm> @ Bk \<up> x) ires"
apply(auto simp: crsp.simps inv_locate_a.simps at_begin_norm.simps)
done
lemma [simp]: "crsp ly (as, lm) (s, l, r) ires \<Longrightarrow> inv_locate_a (as, lm) (0, l, r) ires"
apply(auto simp: crsp.simps inv_locate_a.simps at_begin_norm.simps)
done
lemma findnth_correct:
assumes layout: "ly = layout_of ap"
and crsp: "crsp ly (as, lm) (s, l, r) ires"
shows "\<exists> stp l' r'. steps (Suc 0, l, r) (findnth n, 0) stp = (Suc (2 * n), l', r')
\<and> inv_locate_a (as, lm) (n, l', r') ires"
using crsp
apply(case_tac "n = 0")
apply(rule_tac x = 0 in exI, auto simp: steps.simps)
using assms
apply(drule_tac findnth_correct_pre, auto)
apply(rule_tac x = stp in exI, simp add: findnth_inv.simps)
done
fun inc_inv :: "nat \<Rightarrow> inc_inv_t"
where
"inc_inv n (as, lm) (s, l, r) ires =
(let lm' = abc_lm_s lm n (Suc (abc_lm_v lm n)) in
if s = 0 then False
else if s = 1 then
inv_locate_a (as, lm) (n, l, r) ires
else if s = 2 then
inv_locate_b (as, lm) (n, l, r) ires
else if s = 3 then
inv_after_write (as, lm') (s, l, r) ires
else if s = Suc 3 then
inv_after_move (as, lm') (s, l, r) ires
else if s = Suc 4 then
inv_after_clear (as, lm') (s, l, r) ires
else if s = Suc (Suc 4) then
inv_on_right_moving (as, lm') (s, l, r) ires
else if s = Suc (Suc 5) then
inv_on_left_moving (as, lm') (s, l, r) ires
else if s = Suc (Suc (Suc 5)) then
inv_check_left_moving (as, lm') (s, l, r) ires
else if s = Suc (Suc (Suc (Suc 5))) then
inv_after_left_moving (as, lm') (s, l, r) ires
else if s = Suc (Suc (Suc (Suc (Suc 5)))) then
inv_stop (as, lm') (s, l, r) ires
else False)"
fun abc_inc_stage1 :: "config \<Rightarrow> nat"
where
"abc_inc_stage1 (s, l, r) =
(if s = 0 then 0
else if s \<le> 2 then 5
else if s \<le> 6 then 4
else if s \<le> 8 then 3
else if s = 9 then 2
else 1)"
fun abc_inc_stage2 :: "config \<Rightarrow> nat"
where
"abc_inc_stage2 (s, l, r) =
(if s = 1 then 2
else if s = 2 then 1
else if s = 3 then length r
else if s = 4 then length r
else if s = 5 then length r
else if s = 6 then
if r \<noteq> [] then length r
else 1
else if s = 7 then length l
else if s = 8 then length l
else 0)"
fun abc_inc_stage3 :: "config \<Rightarrow> nat"
where
"abc_inc_stage3 (s, l, r) = (
if s = 4 then 4
else if s = 5 then 3
else if s = 6 then
if r \<noteq> [] \<and> hd r = Oc then 2
else 1
else if s = 3 then 0
else if s = 2 then length r
else if s = 1 then
if (r \<noteq> [] \<and> hd r = Oc) then 0
else 1
else 10 - s)"
definition inc_measure :: "config \<Rightarrow> nat \<times> nat \<times> nat"
where
"inc_measure c =
(abc_inc_stage1 c, abc_inc_stage2 c, abc_inc_stage3 c)"
definition lex_triple ::
"((nat \<times> (nat \<times> nat)) \<times> (nat \<times> (nat \<times> nat))) set"
where "lex_triple \<equiv> less_than <*lex*> lex_pair"
definition inc_LE :: "(config \<times> config) set"
where
"inc_LE \<equiv> (inv_image lex_triple inc_measure)"
declare inc_inv.simps[simp del]
lemma wf_inc_le[intro]: "wf inc_LE"
by(auto intro:wf_inv_image simp: inc_LE_def lex_triple_def lex_pair_def)
lemma numeral_5_eq_5: "5 = Suc (Suc (Suc (Suc (Suc 0))))"
by arith
lemma numeral_6_eq_6: "6 = Suc (Suc (Suc (Suc (Suc 1))))"
by arith
lemma numeral_7_eq_7: "7 = Suc (Suc (Suc (Suc (Suc 2))))"
by arith
lemma numeral_8_eq_8: "8 = Suc (Suc (Suc (Suc (Suc 3))))"
by arith
lemma numeral_9_eq_9: "9 = Suc (Suc (Suc (Suc (Suc (Suc 3)))))"
by arith
lemma numeral_10_eq_10: "10 = Suc (Suc (Suc (Suc (Suc (Suc (Suc 3))))))"
by arith
lemma inv_locate_b_2_after_write[simp]:
"inv_locate_b (as, am) (n, aaa, Bk # xs) ires
\<Longrightarrow> inv_after_write (as, abc_lm_s am n (Suc (abc_lm_v am n)))
(s, aaa, Oc # xs) ires"
apply(auto simp: in_middle.simps inv_after_write.simps
abc_lm_v.simps abc_lm_s.simps inv_locate_b.simps)
apply(case_tac [!] mr, auto split: if_splits)
apply(rule_tac x = rn in exI, rule_tac x = "Suc m" in exI,
rule_tac x = "lm1" in exI, simp)
apply(rule_tac x = "lm2" in exI, simp)
apply(simp only: Suc_diff_le exp_ind)
apply(subgoal_tac "lm2 = []", simp)
apply(drule_tac length_equal, simp)
done
lemma [simp]: "inv_locate_b (as, am) (n, aaa, []) ires \<Longrightarrow>
inv_after_write (as, abc_lm_s am n (Suc (abc_lm_v am n)))
(s, aaa, [Oc]) ires"
apply(insert inv_locate_b_2_after_write [of as am n aaa "[]"])
by(simp)
(*inv: from after_write to after_move*)
lemma [simp]: "inv_after_write (as, lm) (x, l, Oc # r) ires
\<Longrightarrow> inv_after_move (as, lm) (y, Oc # l, r) ires"
apply(auto simp:inv_after_move.simps inv_after_write.simps split: if_splits)
done
lemma [simp]: "inv_after_write (as, abc_lm_s am n (Suc (abc_lm_v am n)
)) (x, aaa, Bk # xs) ires = False"
apply(simp add: inv_after_write.simps )
done
lemma [simp]:
"inv_after_write (as, abc_lm_s am n (Suc (abc_lm_v am n)))
(x, aaa, []) ires = False"
apply(simp add: inv_after_write.simps )
done
(*inv: from after_move to after_clear*)
lemma [simp]: "inv_after_move (as, lm) (s, l, Oc # r) ires
\<Longrightarrow> inv_after_clear (as, lm) (s', l, Bk # r) ires"
apply(auto simp: inv_after_move.simps inv_after_clear.simps split: if_splits)
done
(*inv: from after_move to on_leftmoving*)
lemma [intro]: "Bk \<up> rn = Bk # Bk \<up> (rn - Suc 0) \<or> rn = 0"
apply(case_tac rn, auto)
done
lemma inv_after_move_2_inv_on_left_moving[simp]:
"inv_after_move (as, lm) (s, l, Bk # r) ires
\<Longrightarrow> (l = [] \<longrightarrow>
inv_on_left_moving (as, lm) (s', [], Bk # Bk # r) ires) \<and>
(l \<noteq> [] \<longrightarrow>
inv_on_left_moving (as, lm) (s', tl l, hd l # Bk # r) ires)"
apply(simp only: inv_after_move.simps inv_on_left_moving.simps)
apply(subgoal_tac "l \<noteq> []", rule conjI, simp, rule impI,
rule disjI1, simp only: inv_on_left_moving_norm.simps)
apply(erule exE)+
apply(subgoal_tac "lm2 = []")
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI,
rule_tac x = m in exI, rule_tac x = m in exI,
rule_tac x = 1 in exI,
rule_tac x = "rn - 1" in exI, auto)
apply(auto split: if_splits)
apply(case_tac [1-2] rn, simp_all)
apply(case_tac [!] lm2, simp_all add: tape_of_nl_cons split: if_splits)
done
lemma inv_after_move_2_inv_on_left_moving_B[simp]:
"inv_after_move (as, lm) (s, l, []) ires
\<Longrightarrow> (l = [] \<longrightarrow> inv_on_left_moving (as, lm) (s', [], [Bk]) ires) \<and>
(l \<noteq> [] \<longrightarrow> inv_on_left_moving (as, lm) (s', tl l, [hd l]) ires)"
apply(simp only: inv_after_move.simps inv_on_left_moving.simps)
apply(subgoal_tac "l \<noteq> []", rule conjI, simp, rule impI, rule disjI1,
simp only: inv_on_left_moving_norm.simps)
apply(erule exE)+
apply(subgoal_tac "lm2 = []")
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI,
rule_tac x = m in exI, rule_tac x = m in exI,
rule_tac x = 1 in exI, rule_tac x = "rn - 1" in exI, simp, case_tac rn)
apply(auto split: if_splits)
apply(case_tac [!] lm2, auto simp: tape_of_nl_cons split: if_splits)
done
(*inv: from after_clear to on_right_moving*)
lemma [simp]: "Oc # r = replicate rn Bk = False"
apply(case_tac rn, simp, simp)
done
lemma inv_after_clear_2_inv_on_right_moving[simp]:
"inv_after_clear (as, lm) (x, l, Bk # r) ires
\<Longrightarrow> inv_on_right_moving (as, lm) (y, Bk # l, r) ires"
apply(auto simp: inv_after_clear.simps inv_on_right_moving.simps )
apply(subgoal_tac "lm2 \<noteq> []")
apply(rule_tac x = "lm1 @ [m]" in exI, rule_tac x = "tl lm2" in exI,
rule_tac x = "hd lm2" in exI, simp)
apply(rule_tac x = 0 in exI, rule_tac x = "hd lm2" in exI)
apply(simp, rule conjI)
apply(case_tac [!] "lm2::nat list", auto)
apply(case_tac rn, auto split: if_splits simp: tape_of_nl_cons)
apply(case_tac [!] rn, simp_all)
done
lemma [simp]: "inv_after_clear (as, lm) (x, l, []) ires\<Longrightarrow>
inv_after_clear (as, lm) (y, l, [Bk]) ires"
by(auto simp: inv_after_clear.simps)
lemma [simp]: "inv_after_clear (as, lm) (x, l, []) ires
\<Longrightarrow> inv_on_right_moving (as, lm) (y, Bk # l, []) ires"
by(insert
inv_after_clear_2_inv_on_right_moving[of as lm n l "[]"], simp)
(*inv: from on_right_moving to on_right_movign*)
lemma [simp]: "inv_on_right_moving (as, lm) (x, l, Oc # r) ires
\<Longrightarrow> inv_on_right_moving (as, lm) (y, Oc # l, r) ires"
apply(auto simp: inv_on_right_moving.simps)
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI,
rule_tac x = "ml + mr" in exI, simp)
apply(rule_tac x = "Suc ml" in exI,
rule_tac x = "mr - 1" in exI, simp)
apply(case_tac mr, auto)
apply(rule_tac x = lm1 in exI, rule_tac x = "[]" in exI,
rule_tac x = "ml + mr" in exI, simp)
apply(rule_tac x = "Suc ml" in exI,
rule_tac x = "mr - 1" in exI, simp)
apply(case_tac mr, auto split: if_splits)
done
lemma inv_on_right_moving_2_inv_on_right_moving[simp]:
"inv_on_right_moving (as, lm) (x, l, Bk # r) ires
\<Longrightarrow> inv_after_write (as, lm) (y, l, Oc # r) ires"
apply(auto simp: inv_on_right_moving.simps inv_after_write.simps )
apply(case_tac mr, auto simp: split: if_splits)
done
lemma [simp]: "inv_on_right_moving (as, lm) (x, l, []) ires\<Longrightarrow>
inv_on_right_moving (as, lm) (y, l, [Bk]) ires"
apply(auto simp: inv_on_right_moving.simps)
apply(rule_tac x = lm1 in exI, rule_tac x = "[]" in exI, simp)
done
(*inv: from on_right_moving to after_write*)
lemma [simp]: "inv_on_right_moving (as, lm) (x, l, []) ires
\<Longrightarrow> inv_after_write (as, lm) (y, l, [Oc]) ires"
apply(rule_tac inv_on_right_moving_2_inv_on_right_moving, simp)
done
(*inv: from on_left_moving to on_left_moving*)
lemma [simp]: "inv_on_left_moving_in_middle_B (as, lm)
(s, l, Oc # r) ires = False"
apply(auto simp: inv_on_left_moving_in_middle_B.simps )
done
lemma [simp]: "inv_on_left_moving_norm (as, lm) (s, l, Bk # r) ires
= False"
apply(auto simp: inv_on_left_moving_norm.simps)
apply(case_tac [!] mr, auto simp: )
done
lemma [simp]:
"\<lbrakk>inv_on_left_moving_norm (as, lm) (s, l, Oc # r) ires;
hd l = Bk; l \<noteq> []\<rbrakk> \<Longrightarrow>
inv_on_left_moving_in_middle_B (as, lm) (s, tl l, Bk # Oc # r) ires"
apply(case_tac l, simp, simp)
apply(simp only: inv_on_left_moving_norm.simps
inv_on_left_moving_in_middle_B.simps)
apply(erule_tac exE)+
apply(rule_tac x = lm1 in exI, rule_tac x = "m # lm2" in exI, auto)
apply(case_tac [!] ml, auto)
apply(auto simp: tape_of_nl_cons split: if_splits)
apply(rule_tac [!] x = "Suc rn" in exI, simp_all)
done
lemma [simp]: "\<lbrakk>inv_on_left_moving_norm (as, lm) (s, l, Oc # r) ires;
hd l = Oc; l \<noteq> []\<rbrakk>
\<Longrightarrow> inv_on_left_moving_norm (as, lm)
(s, tl l, Oc # Oc # r) ires"
apply(simp only: inv_on_left_moving_norm.simps)
apply(erule exE)+
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI,
rule_tac x = m in exI, rule_tac x = "ml - 1" in exI,
rule_tac x = "Suc mr" in exI, rule_tac x = rn in exI, simp)
apply(case_tac ml, auto simp: split: if_splits)
done
lemma [simp]: "inv_on_left_moving_norm (as, lm) (s, [], Oc # r) ires
\<Longrightarrow> inv_on_left_moving_in_middle_B (as, lm) (s, [], Bk # Oc # r) ires"
apply(auto simp: inv_on_left_moving_norm.simps
inv_on_left_moving_in_middle_B.simps split: if_splits)
done
lemma [simp]:"inv_on_left_moving (as, lm) (s, l, Oc # r) ires
\<Longrightarrow> (l = [] \<longrightarrow> inv_on_left_moving (as, lm) (s, [], Bk # Oc # r) ires)
\<and> (l \<noteq> [] \<longrightarrow> inv_on_left_moving (as, lm) (s, tl l, hd l # Oc # r) ires)"
apply(simp add: inv_on_left_moving.simps)
apply(case_tac "l \<noteq> []", rule conjI, simp, simp)
apply(case_tac "hd l", simp, simp, simp)
done
(*inv: from on_left_moving to check_left_moving*)
lemma [simp]: "inv_on_left_moving_in_middle_B (as, lm)
(s, Bk # list, Bk # r) ires
\<Longrightarrow> inv_check_left_moving_on_leftmost (as, lm)
(s', list, Bk # Bk # r) ires"
apply(auto simp: inv_on_left_moving_in_middle_B.simps
inv_check_left_moving_on_leftmost.simps split: if_splits)
apply(case_tac [!] "rev lm1", simp_all)
apply(case_tac [!] lista, simp_all add: tape_of_nl_abv tape_of_nat_abv tape_of_nat_list.simps)
done
lemma [simp]:
"inv_check_left_moving_in_middle (as, lm) (s, l, Bk # r) ires= False"
by(auto simp: inv_check_left_moving_in_middle.simps )
lemma [simp]:
"inv_on_left_moving_in_middle_B (as, lm) (s, [], Bk # r) ires\<Longrightarrow>
inv_check_left_moving_on_leftmost (as, lm) (s', [], Bk # Bk # r) ires"
apply(auto simp: inv_on_left_moving_in_middle_B.simps
inv_check_left_moving_on_leftmost.simps split: if_splits)
done
lemma [simp]: "inv_check_left_moving_on_leftmost (as, lm)
(s, list, Oc # r) ires= False"
by(auto simp: inv_check_left_moving_on_leftmost.simps split: if_splits)
lemma [simp]: "inv_on_left_moving_in_middle_B (as, lm)
(s, Oc # list, Bk # r) ires
\<Longrightarrow> inv_check_left_moving_in_middle (as, lm) (s', list, Oc # Bk # r) ires"
apply(auto simp: inv_on_left_moving_in_middle_B.simps
inv_check_left_moving_in_middle.simps split: if_splits)
done
lemma inv_on_left_moving_2_check_left_moving[simp]:
"inv_on_left_moving (as, lm) (s, l, Bk # r) ires
\<Longrightarrow> (l = [] \<longrightarrow> inv_check_left_moving (as, lm) (s', [], Bk # Bk # r) ires)
\<and> (l \<noteq> [] \<longrightarrow>
inv_check_left_moving (as, lm) (s', tl l, hd l # Bk # r) ires)"
apply(simp add: inv_on_left_moving.simps inv_check_left_moving.simps)
apply(case_tac l, simp, simp)
apply(case_tac a, simp, simp)
done
lemma [simp]: "inv_on_left_moving_norm (as, lm) (s, l, []) ires = False"
apply(auto simp: inv_on_left_moving_norm.simps)
done
lemma [simp]: "inv_on_left_moving (as, lm) (s, l, []) ires\<Longrightarrow>
inv_on_left_moving (as, lm) (6 + 2 * n, l, [Bk]) ires"
apply(simp add: inv_on_left_moving.simps)
apply(auto simp: inv_on_left_moving_in_middle_B.simps)
done
lemma [simp]: "inv_on_left_moving (as, lm) (s, l, []) ires = False"
apply(simp add: inv_on_left_moving.simps)
apply(simp add: inv_on_left_moving_in_middle_B.simps)
done
lemma [simp]: "inv_on_left_moving (as, lm) (s, l, []) ires
\<Longrightarrow> (l = [] \<longrightarrow> inv_check_left_moving (as, lm) (s', [], [Bk]) ires) \<and>
(l \<noteq> [] \<longrightarrow> inv_check_left_moving (as, lm) (s', tl l, [hd l]) ires)"
by simp
lemma [intro]: "\<exists>rna. Bk # Bk \<up> rn = Bk \<up> rna"
apply(rule_tac x = "Suc rn" in exI, simp)
done
lemma
inv_check_left_moving_in_middle_2_on_left_moving_in_middle_B[simp]:
"inv_check_left_moving_in_middle (as, lm) (s, Bk # list, Oc # r) ires
\<Longrightarrow> inv_on_left_moving_in_middle_B (as, lm) (s', list, Bk # Oc # r) ires"
apply(simp only: inv_check_left_moving_in_middle.simps
inv_on_left_moving_in_middle_B.simps)
apply(erule_tac exE)+
apply(rule_tac x = "rev (tl (rev lm1))" in exI,
rule_tac x = "[hd (rev lm1)] @ lm2" in exI, auto)
apply(case_tac [!] "rev lm1",simp_all add: tape_of_nat_abv tape_of_nl_abv tape_of_nat_list.simps)
apply(case_tac [!] a, simp_all)
apply(case_tac [1] lm2, simp_all add: tape_of_nat_list.simps tape_of_nat_abv, auto)
apply(case_tac [3] lm2, simp_all add: tape_of_nat_list.simps tape_of_nat_abv, auto)
apply(case_tac [!] lista, simp_all add: tape_of_nat_abv tape_of_nat_list.simps)
done
lemma [simp]:
"inv_check_left_moving_in_middle (as, lm) (s, [], Oc # r) ires\<Longrightarrow>
inv_check_left_moving_in_middle (as, lm) (s', [Bk], Oc # r) ires"
apply(auto simp: inv_check_left_moving_in_middle.simps )
done
lemma [simp]:
"inv_check_left_moving_in_middle (as, lm) (s, [], Oc # r) ires
\<Longrightarrow> inv_on_left_moving_in_middle_B (as, lm) (s', [], Bk # Oc # r) ires"
apply(insert
inv_check_left_moving_in_middle_2_on_left_moving_in_middle_B[of
as lm n "[]" r], simp)
done
lemma [simp]: "inv_check_left_moving_in_middle (as, lm)
(s, Oc # list, Oc # r) ires
\<Longrightarrow> inv_on_left_moving_norm (as, lm) (s', list, Oc # Oc # r) ires"
apply(auto simp: inv_check_left_moving_in_middle.simps
inv_on_left_moving_norm.simps)
apply(rule_tac x = "rev (tl (rev lm1))" in exI,
rule_tac x = lm2 in exI, rule_tac x = "hd (rev lm1)" in exI)
apply(rule_tac conjI)
apply(case_tac "rev lm1", simp, simp)
apply(rule_tac x = "hd (rev lm1) - 1" in exI, auto)
apply(rule_tac [!] x = "Suc (Suc 0)" in exI, simp)
apply(case_tac [!] "rev lm1", simp_all)
apply(case_tac [!] a, simp_all add: tape_of_nl_cons split: if_splits)
done
lemma [simp]: "inv_check_left_moving (as, lm) (s, l, Oc # r) ires
\<Longrightarrow> (l = [] \<longrightarrow> inv_on_left_moving (as, lm) (s', [], Bk # Oc # r) ires) \<and>
(l \<noteq> [] \<longrightarrow> inv_on_left_moving (as, lm) (s', tl l, hd l # Oc # r) ires)"
apply(case_tac l,
auto simp: inv_check_left_moving.simps inv_on_left_moving.simps)
apply(case_tac a, simp, simp)
done
(*inv: check_left_moving to after_left_moving*)
lemma [simp]: "inv_check_left_moving (as, lm) (s, l, Bk # r) ires
\<Longrightarrow> inv_after_left_moving (as, lm) (s', Bk # l, r) ires"
apply(auto simp: inv_check_left_moving.simps
inv_check_left_moving_on_leftmost.simps inv_after_left_moving.simps)
done
lemma [simp]:"inv_check_left_moving (as, lm) (s, l, []) ires
\<Longrightarrow> inv_after_left_moving (as, lm) (s', Bk # l, []) ires"
by(simp add: inv_check_left_moving.simps
inv_check_left_moving_in_middle.simps
inv_check_left_moving_on_leftmost.simps)
(*inv: after_left_moving to inv_stop*)
lemma [simp]: "inv_after_left_moving (as, lm) (s, l, Bk # r) ires
\<Longrightarrow> inv_stop (as, lm) (s', Bk # l, r) ires"
apply(auto simp: inv_after_left_moving.simps inv_stop.simps)
done
lemma [simp]: "inv_after_left_moving (as, lm) (s, l, []) ires
\<Longrightarrow> inv_stop (as, lm) (s', Bk # l, []) ires"
by(auto simp: inv_after_left_moving.simps)
(*inv: stop to stop*)
lemma [simp]: "inv_stop (as, lm) (x, l, r) ires \<Longrightarrow>
inv_stop (as, lm) (y, l, r) ires"
apply(simp add: inv_stop.simps)
done
lemma [simp]: "inv_after_clear (as, lm) (s, aaa, Oc # xs) ires= False"
apply(auto simp: inv_after_clear.simps )
done
lemma [simp]:
"inv_after_left_moving (as, lm) (s, aaa, Oc # xs) ires = False"
by(auto simp: inv_after_left_moving.simps )
lemma [simp]: "inv_after_clear (as, abc_lm_s lm n (Suc (abc_lm_v lm n))) (s, b, []) ires = False"
apply(auto simp: inv_after_clear.simps)
done
lemma [simp]: "inv_on_left_moving (as, abc_lm_s lm n (Suc (abc_lm_v lm n)))
(s, b, Oc # list) ires \<Longrightarrow> b \<noteq> []"
apply(auto simp: inv_on_left_moving.simps inv_on_left_moving_norm.simps split: if_splits)
done
lemma [simp]: "inv_check_left_moving (as, abc_lm_s lm n (Suc (abc_lm_v lm n))) (s, b, Oc # list) ires \<Longrightarrow> b \<noteq> []"
apply(auto simp: inv_check_left_moving.simps inv_check_left_moving_in_middle.simps split: if_splits)
done
lemma tinc_correct_pre:
assumes layout: "ly = layout_of ap"
and inv_start: "inv_locate_a (as, lm) (n, l, r) ires"
and lm': "lm' = abc_lm_s lm n (Suc (abc_lm_v lm n))"
and f: "f = steps (Suc 0, l, r) (tinc_b, 0)"
and P: "P = (\<lambda> (s, l, r). s = 10)"
and Q: "Q = (\<lambda> (s, l, r). inc_inv n (as, lm) (s, l, r) ires)"
shows "\<exists> stp. P (f stp) \<and> Q (f stp)"
proof(rule_tac LE = inc_LE in halt_lemma2)
show "wf inc_LE" by(auto)
next
show "Q (f 0)"
using inv_start
apply(simp add: f P Q steps.simps inc_inv.simps)
done
next
show "\<not> P (f 0)"
apply(simp add: f P steps.simps)
done
next
show "\<forall>n. \<not> P (f n) \<and> Q (f n) \<longrightarrow> Q (f (Suc n)) \<and> (f (Suc n), f n)
\<in> inc_LE"
proof(rule_tac allI, rule_tac impI, simp add: f,
case_tac "steps (Suc 0, l, r) (tinc_b, 0) n", simp add: P)
fix n a b c
assume "a \<noteq> 10 \<and> Q (a, b, c)"
thus "Q (step (a, b, c) (tinc_b, 0)) \<and> (step (a, b, c) (tinc_b, 0), a, b, c) \<in> inc_LE"
apply(simp add:Q)
apply(simp add: inc_inv.simps)
apply(case_tac c, case_tac [2] aa)
apply(auto simp: Let_def step.simps tinc_b_def numeral_2_eq_2 numeral_3_eq_3 split: if_splits)
apply(simp_all add: inc_inv.simps inc_LE_def lex_triple_def lex_pair_def inc_measure_def numeral_5_eq_5
numeral_6_eq_6 numeral_7_eq_7 numeral_8_eq_8 numeral_9_eq_9)
done
qed
qed
lemma tinc_correct:
assumes layout: "ly = layout_of ap"
and inv_start: "inv_locate_a (as, lm) (n, l, r) ires"
and lm': "lm' = abc_lm_s lm n (Suc (abc_lm_v lm n))"
shows "\<exists> stp l' r'. steps (Suc 0, l, r) (tinc_b, 0) stp = (10, l', r')
\<and> inv_stop (as, lm') (10, l', r') ires"
using assms
apply(drule_tac tinc_correct_pre, auto)
apply(rule_tac x = stp in exI, simp)
apply(simp add: inc_inv.simps)
done
declare inv_locate_a.simps[simp del] abc_lm_s.simps[simp del]
abc_lm_v.simps[simp del]
lemma [simp]: "(4::nat) * n mod 2 = 0"
apply(arith)
done
lemma crsp_step_inc_pre:
assumes layout: "ly = layout_of ap"
and crsp: "crsp ly (as, lm) (s, l, r) ires"
and aexec: "abc_step_l (as, lm) (Some (Inc n)) = (asa, lma)"
shows "\<exists> stp k. steps (Suc 0, l, r) (findnth n @ shift tinc_b (2 * n), 0) stp
= (2*n + 10, Bk # Bk # ires, <lma> @ Bk\<up>k) \<and> stp > 0"
proof -
thm tm_append_steps
have "\<exists> stp l' r'. steps (Suc 0, l, r) (findnth n, 0) stp = (Suc (2 * n), l', r')
\<and> inv_locate_a (as, lm) (n, l', r') ires"
using assms
apply(rule_tac findnth_correct, simp_all add: crsp layout)
done
from this obtain stp l' r' where a:
"steps (Suc 0, l, r) (findnth n, 0) stp = (Suc (2 * n), l', r')
\<and> inv_locate_a (as, lm) (n, l', r') ires" by blast
moreover have
"\<exists> stp la ra. steps (Suc 0, l', r') (tinc_b, 0) stp = (10, la, ra)
\<and> inv_stop (as, lma) (10, la, ra) ires"
using assms a
proof(rule_tac lm' = lma and n = n and lm = lm and ly = ly and ap = ap in tinc_correct,
simp, simp)
show "lma = abc_lm_s lm n (Suc (abc_lm_v lm n))"
using aexec
apply(simp add: abc_step_l.simps)
done
qed
from this obtain stpa la ra where b:
"steps (Suc 0, l', r') (tinc_b, 0) stpa = (10, la, ra)
\<and> inv_stop (as, lma) (10, la, ra) ires" by blast
from a b show "\<exists>stp k. steps (Suc 0, l, r) (findnth n @ shift tinc_b (2 * n), 0) stp
= (2 * n + 10, Bk # Bk # ires, <lma> @ Bk \<up> k) \<and> stp > 0"
apply(rule_tac x = "stp + stpa" in exI)
using tm_append_steps[of "Suc 0" l r "findnth n" stp l' r' tinc_b stpa 10 la ra "length (findnth n) div 2"]
apply(simp add: length_findnth inv_stop.simps)
apply(case_tac stpa, simp_all add: steps.simps)
done
qed
lemma crsp_step_inc:
assumes layout: "ly = layout_of ap"
and crsp: "crsp ly (as, lm) (s, l, r) ires"
and fetch: "abc_fetch as ap = Some (Inc n)"
shows "\<exists>stp > 0. crsp ly (abc_step_l (as, lm) (Some (Inc n)))
(steps (s, l, r) (ci ly (start_of ly as) (Inc n), start_of ly as - Suc 0) stp) ires"
proof(case_tac "(abc_step_l (as, lm) (Some (Inc n)))")
fix a b
assume aexec: "abc_step_l (as, lm) (Some (Inc n)) = (a, b)"
then have "\<exists> stp k. steps (Suc 0, l, r) (findnth n @ shift tinc_b (2 * n), 0) stp
= (2*n + 10, Bk # Bk # ires, <b> @ Bk\<up>k) \<and> stp > 0"
using assms
apply(rule_tac crsp_step_inc_pre, simp_all)
done
thus "?thesis"
using assms aexec
apply(erule_tac exE)
apply(erule_tac exE)
apply(erule_tac conjE)
apply(rule_tac x = stp in exI, simp add: ci.simps tm_shift_eq_steps)
apply(drule_tac off = "(start_of (layout_of ap) as - Suc 0)" in tm_shift_eq_steps)
apply(auto simp: crsp.simps abc_step_l.simps fetch start_of_Suc1)
done
qed
subsection{* Crsp of Dec n e*}
declare sete.simps[simp del]
type_synonym dec_inv_t = "(nat * nat list) \<Rightarrow> config \<Rightarrow> cell list \<Rightarrow> bool"
fun dec_first_on_right_moving :: "nat \<Rightarrow> dec_inv_t"
where
"dec_first_on_right_moving n (as, lm) (s, l, r) ires =
(\<exists> lm1 lm2 m ml mr rn. lm = lm1 @ [m] @ lm2 \<and>
ml + mr = Suc m \<and> length lm1 = n \<and> ml > 0 \<and> m > 0 \<and>
(if lm1 = [] then l = Oc\<up>ml @ Bk # Bk # ires
else l = Oc\<up>ml @ [Bk] @ <rev lm1> @ Bk # Bk # ires) \<and>
((r = Oc\<up>mr @ [Bk] @ <lm2> @ Bk\<up>rn) \<or> (r = Oc\<up>mr \<and> lm2 = [])))"
fun dec_on_right_moving :: "dec_inv_t"
where
"dec_on_right_moving (as, lm) (s, l, r) ires =
(\<exists> lm1 lm2 m ml mr rn. lm = lm1 @ [m] @ lm2 \<and>
ml + mr = Suc (Suc m) \<and>
(if lm1 = [] then l = Oc\<up>ml@ Bk # Bk # ires
else l = Oc\<up>ml @ [Bk] @ <rev lm1> @ Bk # Bk # ires) \<and>
((r = Oc\<up>mr @ [Bk] @ <lm2> @ Bk\<up>rn) \<or> (r = Oc\<up>mr \<and> lm2 = [])))"
fun dec_after_clear :: "dec_inv_t"
where
"dec_after_clear (as, lm) (s, l, r) ires =
(\<exists> lm1 lm2 m ml mr rn. lm = lm1 @ [m] @ lm2 \<and>
ml + mr = Suc m \<and> ml = Suc m \<and> r \<noteq> [] \<and> r \<noteq> [] \<and>
(if lm1 = [] then l = Oc\<up>ml@ Bk # Bk # ires
else l = Oc\<up>ml @ [Bk] @ <rev lm1> @ Bk # Bk # ires) \<and>
(tl r = Bk # <lm2> @ Bk\<up>rn \<or> tl r = [] \<and> lm2 = []))"
fun dec_after_write :: "dec_inv_t"
where
"dec_after_write (as, lm) (s, l, r) ires =
(\<exists> lm1 lm2 m ml mr rn. lm = lm1 @ [m] @ lm2 \<and>
ml + mr = Suc m \<and> ml = Suc m \<and> lm2 \<noteq> [] \<and>
(if lm1 = [] then l = Bk # Oc\<up>ml @ Bk # Bk # ires
else l = Bk # Oc\<up>ml @ [Bk] @ <rev lm1> @ Bk # Bk # ires) \<and>
tl r = <lm2> @ Bk\<up>rn)"
fun dec_right_move :: "dec_inv_t"
where
"dec_right_move (as, lm) (s, l, r) ires =
(\<exists> lm1 lm2 m ml mr rn. lm = lm1 @ [m] @ lm2
\<and> ml = Suc m \<and> mr = (0::nat) \<and>
(if lm1 = [] then l = Bk # Oc\<up>ml @ Bk # Bk # ires
else l = Bk # Oc\<up>ml @ [Bk] @ <rev lm1> @ Bk # Bk # ires)
\<and> (r = Bk # <lm2> @ Bk\<up>rn \<or> r = [] \<and> lm2 = []))"
fun dec_check_right_move :: "dec_inv_t"
where
"dec_check_right_move (as, lm) (s, l, r) ires =
(\<exists> lm1 lm2 m ml mr rn. lm = lm1 @ [m] @ lm2 \<and>
ml = Suc m \<and> mr = (0::nat) \<and>
(if lm1 = [] then l = Bk # Bk # Oc\<up>ml @ Bk # Bk # ires
else l = Bk # Bk # Oc\<up>ml @ [Bk] @ <rev lm1> @ Bk # Bk # ires) \<and>
r = <lm2> @ Bk\<up>rn)"
fun dec_left_move :: "dec_inv_t"
where
"dec_left_move (as, lm) (s, l, r) ires =
(\<exists> lm1 m rn. (lm::nat list) = lm1 @ [m::nat] \<and>
rn > 0 \<and>
(if lm1 = [] then l = Bk # Oc\<up>Suc m @ Bk # Bk # ires
else l = Bk # Oc\<up>Suc m @ Bk # <rev lm1> @ Bk # Bk # ires) \<and> r = Bk\<up>rn)"
declare
dec_on_right_moving.simps[simp del] dec_after_clear.simps[simp del]
dec_after_write.simps[simp del] dec_left_move.simps[simp del]
dec_check_right_move.simps[simp del] dec_right_move.simps[simp del]
dec_first_on_right_moving.simps[simp del]
fun inv_locate_n_b :: "inc_inv_t"
where
"inv_locate_n_b (as, lm) (s, l, r) ires=
(\<exists> lm1 lm2 tn m ml mr rn. lm @ 0\<up>tn = lm1 @ [m] @ lm2 \<and>
length lm1 = s \<and> m + 1 = ml + mr \<and>
ml = 1 \<and> tn = s + 1 - length lm \<and>
(if lm1 = [] then l = Oc\<up>ml @ Bk # Bk # ires
else l = Oc\<up>ml @ Bk # <rev lm1> @ Bk # Bk # ires) \<and>
(r = Oc\<up>mr @ [Bk] @ <lm2>@ Bk\<up>rn \<or> (lm2 = [] \<and> r = Oc\<up>mr))
)"
(*
fun dec_inv_1 :: "layout \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> dec_inv_t"
where
"dec_inv_1 ly n e (as, am) (s, l, r) ires =
(let ss = start_of ly as in
let am' = abc_lm_s am n (abc_lm_v am n - Suc 0) in
let am'' = abc_lm_s am n (abc_lm_v am n) in
if s = start_of ly e then inv_stop (as, am'') (s, l, r) ires
else if s = ss then False
else if s = ss + 2 * n then
inv_locate_a (as, am) (n, l, r) ires
\<or> inv_locate_a (as, am'') (n, l, r) ires
else if s = ss + 2 * n + 1 then
inv_locate_b (as, am) (n, l, r) ires
else if s = ss + 2 * n + 13 then
inv_on_left_moving (as, am'') (s, l, r) ires
else if s = ss + 2 * n + 14 then
inv_check_left_moving (as, am'') (s, l, r) ires
else if s = ss + 2 * n + 15 then
inv_after_left_moving (as, am'') (s, l, r) ires
else False)"
*)
fun dec_inv_1 :: "layout \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> dec_inv_t"
where
"dec_inv_1 ly n e (as, am) (s, l, r) ires =
(let ss = start_of ly as in
let am' = abc_lm_s am n (abc_lm_v am n - Suc 0) in
let am'' = abc_lm_s am n (abc_lm_v am n) in
if s = start_of ly e then inv_stop (as, am'') (s, l, r) ires
else if s = ss then False
else if s = ss + 2 * n + 1 then
inv_locate_b (as, am) (n, l, r) ires
else if s = ss + 2 * n + 13 then
inv_on_left_moving (as, am'') (s, l, r) ires
else if s = ss + 2 * n + 14 then
inv_check_left_moving (as, am'') (s, l, r) ires
else if s = ss + 2 * n + 15 then
inv_after_left_moving (as, am'') (s, l, r) ires
else False)"
declare fetch.simps[simp del]
lemma [simp]:
"fetch (ci ly (start_of ly as) (Dec n e)) (Suc (2 * n)) Bk = (W1, start_of ly as + 2 *n)"
apply(auto simp: fetch.simps length_ci_dec)
apply(auto simp: ci.simps nth_append length_findnth sete.simps shift.simps tdec_b_def)
using startof_not0[of ly as] by simp
lemma [simp]:
"fetch (ci ly (start_of ly as) (Dec n e)) (Suc (2 * n)) Oc = (R, Suc (start_of ly as) + 2 *n)"
apply(auto simp: fetch.simps length_ci_dec)
apply(auto simp: ci.simps nth_append length_findnth sete.simps shift.simps tdec_b_def)
done
lemma [simp]:
"\<lbrakk>r = [] \<or> hd r = Bk; inv_locate_a (as, lm) (n, l, r) ires\<rbrakk>
\<Longrightarrow> \<exists>stp la ra.
steps (start_of ly as + 2 * n, l, r) (ci ly (start_of ly as) (Dec n e),
start_of ly as - Suc 0) stp = (Suc (start_of ly as + 2 * n), la, ra) \<and>
inv_locate_b (as, lm) (n, la, ra) ires"
apply(rule_tac x = "Suc (Suc 0)" in exI)
apply(auto simp: steps.simps step.simps length_ci_dec)
apply(case_tac r, simp_all)
done
lemma [simp]:
"\<lbrakk>inv_locate_a (as, lm) (n, l, r) ires; r \<noteq> [] \<and> hd r \<noteq> Bk\<rbrakk>
\<Longrightarrow> \<exists>stp la ra.
steps (start_of ly as + 2 * n, l, r) (ci ly (start_of ly as) (Dec n e),
start_of ly as - Suc 0) stp = (Suc (start_of ly as + 2 * n), la, ra) \<and>
inv_locate_b (as, lm) (n, la, ra) ires"
apply(rule_tac x = "(Suc 0)" in exI, case_tac "hd r", simp_all)
apply(auto simp: steps.simps step.simps length_ci_dec)
apply(case_tac r, simp_all)
done
fun abc_dec_1_stage1:: "config \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
where
"abc_dec_1_stage1 (s, l, r) ss n =
(if s > ss \<and> s \<le> ss + 2*n + 1 then 4
else if s = ss + 2 * n + 13 \<or> s = ss + 2*n + 14 then 3
else if s = ss + 2*n + 15 then 2
else 0)"
fun abc_dec_1_stage2:: "config \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
where
"abc_dec_1_stage2 (s, l, r) ss n =
(if s \<le> ss + 2 * n + 1 then (ss + 2 * n + 16 - s)
else if s = ss + 2*n + 13 then length l
else if s = ss + 2*n + 14 then length l
else 0)"
fun abc_dec_1_stage3 :: "config \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
where
"abc_dec_1_stage3 (s, l, r) ss n =
(if s \<le> ss + 2*n + 1 then
if (s - ss) mod 2 = 0 then
if r \<noteq> [] \<and> hd r = Oc then 0 else 1
else length r
else if s = ss + 2 * n + 13 then
if r \<noteq> [] \<and> hd r = Oc then 2
else 1
else if s = ss + 2 * n + 14 then
if r \<noteq> [] \<and> hd r = Oc then 3 else 0
else 0)"
fun abc_dec_1_measure :: "(config \<times> nat \<times> nat) \<Rightarrow> (nat \<times> nat \<times> nat)"
where
"abc_dec_1_measure (c, ss, n) = (abc_dec_1_stage1 c ss n,
abc_dec_1_stage2 c ss n, abc_dec_1_stage3 c ss n)"
definition abc_dec_1_LE ::
"((config \<times> nat \<times>
nat) \<times> (config \<times> nat \<times> nat)) set"
where "abc_dec_1_LE \<equiv> (inv_image lex_triple abc_dec_1_measure)"
lemma wf_dec_le: "wf abc_dec_1_LE"
by(auto intro:wf_inv_image simp:abc_dec_1_LE_def lex_triple_def lex_pair_def)
lemma startof_Suc2:
"abc_fetch as ap = Some (Dec n e) \<Longrightarrow>
start_of (layout_of ap) (Suc as) =
start_of (layout_of ap) as + 2 * n + 16"
apply(auto simp: start_of.simps layout_of.simps
length_of.simps abc_fetch.simps
take_Suc_conv_app_nth split: if_splits)
done
lemma start_of_less_2:
"start_of ly e \<le> start_of ly (Suc e)"
thm take_Suc
apply(case_tac "e < length ly")
apply(auto simp: start_of.simps take_Suc take_Suc_conv_app_nth)
done
lemma start_of_less_1: "start_of ly e \<le> start_of ly (e + d)"
proof(induct d)
case 0 thus "?case" by simp
next
case (Suc d)
have "start_of ly e \<le> start_of ly (e + d)" by fact
moreover have "start_of ly (e + d) \<le> start_of ly (Suc (e + d))"
by(rule_tac start_of_less_2)
ultimately show"?case"
by(simp)
qed
lemma start_of_less:
assumes "e < as"
shows "start_of ly e \<le> start_of ly as"
proof -
obtain d where " as = e + d"
using assms by (metis less_imp_add_positive)
thus "?thesis"
by(simp add: start_of_less_1)
qed
lemma start_of_ge:
assumes fetch: "abc_fetch as ap = Some (Dec n e)"
and layout: "ly = layout_of ap"
and great: "e > as"
shows "start_of ly e \<ge> start_of ly as + 2*n + 16"
proof(cases "e = Suc as")
case True
have "e = Suc as" by fact
moreover hence "start_of ly (Suc as) = start_of ly as + 2*n + 16"
using layout fetch
by(simp add: startof_Suc2)
ultimately show "?thesis" by (simp)
next
case False
have "e \<noteq> Suc as" by fact
then have "e > Suc as" using great by arith
then have "start_of ly (Suc as) \<le> start_of ly e"
by(simp add: start_of_less)
moreover have "start_of ly (Suc as) = start_of ly as + 2*n + 16"
using layout fetch
by(simp add: startof_Suc2)
ultimately show "?thesis"
by arith
qed
lemma [elim]: "\<lbrakk>abc_fetch as ap = Some (Dec n e); as < e;
Suc (start_of (layout_of ap) as + 2 * n) = start_of (layout_of ap) e\<rbrakk> \<Longrightarrow> RR"
apply(drule_tac start_of_ge, simp_all)
apply(auto)
done
lemma [elim]: "\<lbrakk>abc_fetch as ap = Some (Dec n e); as > e;
Suc (start_of (layout_of ap) as + 2 * n) = start_of (layout_of ap) e\<rbrakk> \<Longrightarrow> RR"
apply(drule_tac ly = "layout_of ap" in start_of_less[of])
apply(arith)
done
lemma [elim]: "\<lbrakk>abc_fetch as ap = Some (Dec n e);
Suc (start_of (layout_of ap) as + 2 * n) = start_of (layout_of ap) e\<rbrakk> \<Longrightarrow> RR"
apply(subgoal_tac "as = e \<or> as < e \<or> as > e", auto)
done
lemma [simp]:"fetch (ci (ly) (start_of ly as) (Dec n e)) (Suc (2 * n)) Oc
= (R, start_of ly as + 2*n + 1)"
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps shift.simps nth_append tdec_b_def length_findnth sete.simps)
done
lemma [simp]: "(start_of ly as = 0) = False"
apply(simp add: start_of.simps)
done
lemma [simp]: "fetch (ci (ly)
(start_of ly as) (Dec n e)) (Suc (2 * n)) Bk
= (W1, start_of ly as + 2*n)"
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps shift.simps nth_append tdec_b_def length_findnth sete.simps)
done
lemma [simp]:
"fetch (ci (ly)
(start_of ly as) (Dec n e)) (Suc (Suc (2 * n))) Oc
= (R, start_of ly as + 2*n + 2)"
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps shift.simps nth_append tdec_b_def length_findnth sete.simps)
done
lemma [simp]: "fetch (ci (ly)
(start_of ly as) (Dec n e)) (Suc (Suc (2 * n))) Bk
= (L, start_of ly as + 2*n + 13)"
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps shift.simps nth_append tdec_b_def length_findnth sete.simps)
done
lemma [simp]: "fetch (ci (ly)
(start_of ly as) (Dec n e)) (Suc (Suc (Suc (2 * n)))) Oc
= (R, start_of ly as + 2*n + 2)"
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps shift.simps nth_append tdec_b_def length_findnth sete.simps)
done
lemma [simp]: "fetch (ci (ly) (start_of ly as) (Dec n e))
(Suc (Suc (Suc (2 * n)))) Bk
= (L, start_of ly as + 2*n + 3)"
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps shift.simps nth_append tdec_b_def length_findnth sete.simps)
done
lemma [simp]:
"fetch (ci (ly)
(start_of ly as) (Dec n e)) (2 * n + 4) Oc
= (W0, start_of ly as + 2*n + 3)"
apply(subgoal_tac "2*n + 4 = Suc (2*n + 3)", simp only: fetch.simps)
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps shift.simps nth_append tdec_b_def length_findnth sete.simps)
done
lemma [simp]: "fetch (ci (ly)
(start_of ly as) (Dec n e)) (2 * n + 4) Bk
= (R, start_of ly as + 2*n + 4)"
apply(subgoal_tac "2*n + 4 = Suc (2*n + 3)", simp only: fetch.simps)
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps shift.simps nth_append tdec_b_def length_findnth sete.simps)
done
lemma [simp]:"fetch (ci (ly)
(start_of ly as) (Dec n e)) (2 * n + 5) Bk
= (R, start_of ly as + 2*n + 5)"
apply(subgoal_tac "2*n + 5 = Suc (2*n + 4)", simp only: fetch.simps)
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps shift.simps nth_append tdec_b_def length_findnth sete.simps)
done
lemma [simp]:
"fetch (ci (ly)
(start_of ly as) (Dec n e)) (2 * n + 6) Bk
= (L, start_of ly as + 2*n + 6)"
apply(subgoal_tac "2*n + 6 = Suc (2*n + 5)", simp only: fetch.simps)
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps shift.simps nth_append tdec_b_def length_findnth sete.simps)
done
lemma [simp]:
"fetch (ci (ly) (start_of ly as)
(Dec n e)) (2 * n + 6) Oc
= (L, start_of ly as + 2*n + 7)"
apply(subgoal_tac "2*n + 6 = Suc (2*n + 5)", simp only: fetch.simps)
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps shift.simps nth_append tdec_b_def length_findnth sete.simps)
done
lemma [simp]:"fetch (ci (ly)
(start_of ly as) (Dec n e)) (2 * n + 7) Bk
= (L, start_of ly as + 2*n + 10)"
apply(subgoal_tac "2*n + 7 = Suc (2*n + 6)", simp only: fetch.simps)
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps shift.simps nth_append tdec_b_def length_findnth sete.simps)
done
lemma [simp]:
"fetch (ci (ly)
(start_of ly as) (Dec n e)) (2 * n + 8) Bk
= (W1, start_of ly as + 2*n + 7)"
apply(subgoal_tac "2*n + 8 = Suc (2*n + 7)", simp only: fetch.simps)
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps shift.simps nth_append tdec_b_def length_findnth sete.simps)
done
lemma [simp]:
"fetch (ci (ly)
(start_of ly as) (Dec n e)) (2 * n + 8) Oc
= (R, start_of ly as + 2*n + 8)"
apply(subgoal_tac "2*n + 8 = Suc (2*n + 7)", simp only: fetch.simps)
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps shift.simps nth_append tdec_b_def length_findnth sete.simps)
done
lemma [simp]:
"fetch (ci (ly)
(start_of ly as) (Dec n e)) (2 * n + 9) Bk
= (L, start_of ly as + 2*n + 9)"
apply(subgoal_tac "2*n + 9 = Suc (2*n + 8)", simp only: fetch.simps)
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps shift.simps nth_append tdec_b_def length_findnth sete.simps)
done
lemma [simp]:
"fetch (ci (ly)
(start_of ly as) (Dec n e)) (2 * n + 9) Oc
= (R, start_of ly as + 2*n + 8)"
apply(subgoal_tac "2*n + 9 = Suc (2*n + 8)", simp only: fetch.simps)
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps shift.simps nth_append tdec_b_def length_findnth sete.simps)
done
lemma [simp]:
"fetch (ci (ly)
(start_of ly as) (Dec n e)) (2 * n + 10) Bk
= (R, start_of ly as + 2*n + 4)"
apply(subgoal_tac "2*n + 10 = Suc (2*n + 9)", simp only: fetch.simps)
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps shift.simps nth_append tdec_b_def length_findnth sete.simps)
done
lemma [simp]: "fetch (ci (ly)
(start_of ly as) (Dec n e)) (2 * n + 10) Oc
= (W0, start_of ly as + 2*n + 9)"
apply(subgoal_tac "2*n + 10 = Suc (2*n + 9)", simp only: fetch.simps)
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps shift.simps nth_append tdec_b_def length_findnth sete.simps)
done
lemma [simp]:
"fetch (ci (ly)
(start_of ly as) (Dec n e)) (2 * n + 11) Oc
= (L, start_of ly as + 2*n + 10)"
apply(subgoal_tac "2*n + 11 = Suc (2*n + 10)", simp only: fetch.simps)
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps shift.simps nth_append tdec_b_def length_findnth sete.simps)
done
lemma [simp]:
"fetch (ci (ly)
(start_of ly as) (Dec n e)) (2 * n + 11) Bk
= (L, start_of ly as + 2*n + 11)"
apply(subgoal_tac "2*n + 11 = Suc (2*n + 10)", simp only: fetch.simps)
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps shift.simps nth_append tdec_b_def length_findnth sete.simps)
done
lemma [simp]:
"fetch (ci (ly)
(start_of ly as) (Dec n e)) (2 * n + 12) Oc
= (L, start_of ly as + 2*n + 10)"
apply(subgoal_tac "2*n + 12 = Suc (2*n + 11)", simp only: fetch.simps)
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps shift.simps nth_append tdec_b_def length_findnth sete.simps)
done
lemma [simp]:
"fetch (ci (ly)
(start_of ly as) (Dec n e)) (2 * n + 12) Bk
= (R, start_of ly as + 2*n + 12)"
apply(subgoal_tac "2*n + 12 = Suc (2*n + 11)", simp only: fetch.simps)
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps shift.simps nth_append tdec_b_def length_findnth sete.simps)
done
lemma [simp]:
"fetch (ci (ly)
(start_of ly as) (Dec n e)) (2 * n + 13) Bk
= (R, start_of ly as + 2*n + 16)"
apply(subgoal_tac "2*n + 13 = Suc (2*n + 12)", simp only: fetch.simps)
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps shift.simps nth_append tdec_b_def length_findnth sete.simps)
done
lemma [simp]:
"fetch (ci (ly)
(start_of ly as) (Dec n e)) (14 + 2 * n) Oc
= (L, start_of ly as + 2*n + 13)"
apply(subgoal_tac "14 + 2*n = Suc (2*n + 13)", simp only: fetch.simps)
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps shift.simps nth_append tdec_b_def length_findnth sete.simps)
done
lemma [simp]:
"fetch (ci (ly)
(start_of ly as) (Dec n e)) (14 + 2 * n) Bk
= (L, start_of ly as + 2*n + 14)"
apply(subgoal_tac "14 + 2*n = Suc (2*n + 13)", simp only: fetch.simps)
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps shift.simps nth_append tdec_b_def length_findnth sete.simps)
done
lemma [simp]:
"fetch (ci (ly)
(start_of ly as) (Dec n e)) (15 + 2 * n) Oc
= (L, start_of ly as + 2*n + 13)"
apply(subgoal_tac "15 + 2*n = Suc (2*n + 14)", simp only: fetch.simps)
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps shift.simps nth_append tdec_b_def length_findnth sete.simps)
done
lemma [simp]:
"fetch (ci (ly)
(start_of ly as) (Dec n e)) (15 + 2 * n) Bk
= (R, start_of ly as + 2*n + 15)"
apply(subgoal_tac "15 + 2*n = Suc (2*n + 14)", simp only: fetch.simps)
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps shift.simps nth_append tdec_b_def length_findnth sete.simps)
done
lemma [simp]:
"abc_fetch as aprog = Some (Dec n e) \<Longrightarrow>
fetch (ci (ly) (start_of (ly) as)
(Dec n e)) (16 + 2 * n) Bk
= (R, start_of (ly) e)"
apply(subgoal_tac "16 + 2*n = Suc (2*n + 15)", simp only: fetch.simps)
apply(auto simp: ci.simps findnth.simps fetch.simps
nth_of.simps shift.simps nth_append tdec_b_def length_findnth sete.simps)
done
declare dec_inv_1.simps[simp del]
lemma [simp]:
"\<lbrakk>abc_fetch as aprog = Some (Dec n e); ly = layout_of aprog\<rbrakk>
\<Longrightarrow> (start_of ly e \<noteq> Suc (start_of ly as + 2 * n) \<and>
start_of ly e \<noteq> Suc (Suc (start_of ly as + 2 * n)) \<and>
start_of ly e \<noteq> start_of ly as + 2 * n + 3 \<and>
start_of ly e \<noteq> start_of ly as + 2 * n + 4 \<and>
start_of ly e \<noteq> start_of ly as + 2 * n + 5 \<and>
start_of ly e \<noteq> start_of ly as + 2 * n + 6 \<and>
start_of ly e \<noteq> start_of ly as + 2 * n + 7 \<and>
start_of ly e \<noteq> start_of ly as + 2 * n + 8 \<and>
start_of ly e \<noteq> start_of ly as + 2 * n + 9 \<and>
start_of ly e \<noteq> start_of ly as + 2 * n + 10 \<and>
start_of ly e \<noteq> start_of ly as + 2 * n + 11 \<and>
start_of ly e \<noteq> start_of ly as + 2 * n + 12 \<and>
start_of ly e \<noteq> start_of ly as + 2 * n + 13 \<and>
start_of ly e \<noteq> start_of ly as + 2 * n + 14 \<and>
start_of ly e \<noteq> start_of ly as + 2 * n + 15)"
using start_of_ge[of as aprog n e ly] start_of_less[of e as ly]
apply(case_tac "e < as", simp)
apply(case_tac "e = as", simp, simp)
done
lemma [simp]: "\<lbrakk>abc_fetch as aprog = Some (Dec n e); ly = layout_of aprog\<rbrakk>
\<Longrightarrow> (Suc (start_of ly as + 2 * n) \<noteq> start_of ly e \<and>
Suc (Suc (start_of ly as + 2 * n)) \<noteq> start_of ly e \<and>
start_of ly as + 2 * n + 3 \<noteq> start_of ly e \<and>
start_of ly as + 2 * n + 4 \<noteq> start_of ly e \<and>
start_of ly as + 2 * n + 5 \<noteq>start_of ly e \<and>
start_of ly as + 2 * n + 6 \<noteq> start_of ly e \<and>
start_of ly as + 2 * n + 7 \<noteq> start_of ly e \<and>
start_of ly as + 2 * n + 8 \<noteq> start_of ly e \<and>
start_of ly as + 2 * n + 9 \<noteq> start_of ly e \<and>
start_of ly as + 2 * n + 10 \<noteq> start_of ly e \<and>
start_of ly as + 2 * n + 11 \<noteq> start_of ly e \<and>
start_of ly as + 2 * n + 12 \<noteq> start_of ly e \<and>
start_of ly as + 2 * n + 13 \<noteq> start_of ly e \<and>
start_of ly as + 2 * n + 14 \<noteq> start_of ly e \<and>
start_of ly as + 2 * n + 15 \<noteq> start_of ly e)"
using start_of_ge[of as aprog n e ly] start_of_less[of e as ly]
apply(case_tac "e < as", simp, simp)
apply(case_tac "e = as", simp, simp)
done
lemma [simp]: "inv_locate_b (as, lm) (n, [], []) ires = False"
apply(auto simp: inv_locate_b.simps in_middle.simps split: if_splits)
done
lemma [simp]: "inv_locate_b (as, lm) (n, [], Bk # list) ires = False"
apply(auto simp: inv_locate_b.simps in_middle.simps split: if_splits)
done
(*
lemma inv_locate_b_2_on_left_moving_b[simp]:
"inv_locate_b (as, am) (n, l, []) ires
\<Longrightarrow> inv_on_left_moving (as,
abc_lm_s am n (abc_lm_v am n)) (s, [], [Bk]) ires"
apply(auto simp: inv_locate_b.simps inv_on_left_moving.simps inv_on_left_moving_in_middle_B.simps
in_middle.simps split: if_splits)
apply(drule_tac length_equal, simp)
apply(insert inv_locate_b_2_on_left_moving[of as am n l "[]" ires s])
apply(simp only: inv_on_left_moving.simps, simp)
apply(subgoal_tac "\<not> inv_on_left_moving_in_middle_B
(as, abc_lm_s am n (abc_lm_v am n)) (s, tl l, [hd l]) ires", simp)
*)
(*
lemma [simp]:
"inv_locate_b (as, am) (n, l, []) ires; l \<noteq> []\<rbrakk>
\<Longrightarrow> inv_on_left_moving (as, abc_lm_s am n
(abc_lm_v am n)) (s, tl l, [hd l]) ires"
apply(auto simp: inv_locate_b.simps inv_on_left_moving.simps inv_on_left_moving_in_middle_B.simps
in_middle.simps split: if_splits)
apply(drule_tac length_equal, simp)
apply(insert inv_locate_b_2_on_left_moving[of as am n l "[]" ires s])
apply(simp only: inv_on_left_moving.simps, simp)
apply(subgoal_tac "\<not> inv_on_left_moving_in_middle_B
(as, abc_lm_s am n (abc_lm_v am n)) (s, tl l, [hd l]) ires", simp)
apply(insert inv_locate_b_2_on_left_moving[of as am n l "[]" ires s])
apply(simp only: inv_on_left_moving.simps, simp)
apply(subgoal_tac "\<not> inv_on_left_moving_in_middle_B
(as, abc_lm_s am n (abc_lm_v am n)) (s, tl l, [hd l]) ires", simp)
apply(simp only: inv_on_left_moving_norm.simps)
apply(erule_tac exE)+
apply(erule_tac conjE)+
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI,
rule_tac x = m in exI, rule_tac x = ml in exI,
rule_tac x = mr in exI, simp)
apply(case_tac mr, simp, simp, case_tac nat, auto intro: nil_2_nil)
done
*)
lemma [simp]:
"\<lbrakk>dec_first_on_right_moving n (as, am) (s, aaa, Oc # xs) ires\<rbrakk>
\<Longrightarrow> dec_first_on_right_moving n (as, am) (s', Oc # aaa, xs) ires"
apply(simp only: dec_first_on_right_moving.simps)
apply(erule exE)+
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI,
rule_tac x = m in exI, simp)
apply(rule_tac x = "Suc ml" in exI,
rule_tac x = "mr - 1" in exI, auto)
apply(case_tac [!] mr, auto)
done
lemma [simp]:
"dec_first_on_right_moving n (as, am) (s, l, Bk # xs) ires \<Longrightarrow> l \<noteq> []"
apply(auto simp: dec_first_on_right_moving.simps split: if_splits)
done
lemma [elim]:
"\<lbrakk>\<not> length lm1 < length am;
am @ replicate (length lm1 - length am) 0 @ [0::nat] =
lm1 @ m # lm2;
0 < m\<rbrakk>
\<Longrightarrow> RR"
apply(subgoal_tac "lm2 = []", simp)
apply(drule_tac length_equal, simp)
done
lemma [simp]:
"\<lbrakk>dec_first_on_right_moving n (as,
abc_lm_s am n (abc_lm_v am n)) (s, l, Bk # xs) ires\<rbrakk>
\<Longrightarrow> dec_after_clear (as, abc_lm_s am n
(abc_lm_v am n - Suc 0)) (s', tl l, hd l # Bk # xs) ires"
apply(simp only: dec_first_on_right_moving.simps
dec_after_clear.simps abc_lm_s.simps abc_lm_v.simps)
apply(erule_tac exE)+
apply(case_tac "n < length am")
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI,
rule_tac x = "m - 1" in exI, auto simp: )
apply(case_tac [!] mr, auto)
done
lemma [simp]:
"\<lbrakk>dec_first_on_right_moving n (as,
abc_lm_s am n (abc_lm_v am n)) (s, l, []) ires\<rbrakk>
\<Longrightarrow> (l = [] \<longrightarrow> dec_after_clear (as,
abc_lm_s am n (abc_lm_v am n - Suc 0)) (s', [], [Bk]) ires) \<and>
(l \<noteq> [] \<longrightarrow> dec_after_clear (as, abc_lm_s am n
(abc_lm_v am n - Suc 0)) (s', tl l, [hd l]) ires)"
apply(subgoal_tac "l \<noteq> []",
simp only: dec_first_on_right_moving.simps
dec_after_clear.simps abc_lm_s.simps abc_lm_v.simps)
apply(erule_tac exE)+
apply(case_tac "n < length am", simp)
apply(rule_tac x = lm1 in exI, rule_tac x = "m - 1" in exI, auto)
apply(case_tac [1-2] m, auto)
apply(auto simp: dec_first_on_right_moving.simps split: if_splits)
done
lemma [simp]: "\<lbrakk>dec_after_clear (as, am) (s, l, Oc # r) ires\<rbrakk>
\<Longrightarrow> dec_after_clear (as, am) (s', l, Bk # r) ires"
apply(auto simp: dec_after_clear.simps)
done
lemma [simp]: "\<lbrakk>dec_after_clear (as, am) (s, l, Bk # r) ires\<rbrakk>
\<Longrightarrow> dec_right_move (as, am) (s', Bk # l, r) ires"
apply(auto simp: dec_after_clear.simps dec_right_move.simps split: if_splits)
done
lemma [simp]: "\<lbrakk>dec_after_clear (as, am) (s, l, []) ires\<rbrakk>
\<Longrightarrow> dec_right_move (as, am) (s', Bk # l, []) ires"
apply(auto simp: dec_after_clear.simps dec_right_move.simps )
done
lemma [simp]: "\<lbrakk>dec_after_clear (as, am) (s, l, []) ires\<rbrakk>
\<Longrightarrow> dec_right_move (as, am) (s', Bk # l, [Bk]) ires"
apply(auto simp: dec_after_clear.simps dec_right_move.simps split: if_splits)
done
lemma [simp]:"dec_right_move (as, am) (s, l, Oc # r) ires = False"
apply(auto simp: dec_right_move.simps)
done
lemma dec_right_move_2_check_right_move[simp]:
"\<lbrakk>dec_right_move (as, am) (s, l, Bk # r) ires\<rbrakk>
\<Longrightarrow> dec_check_right_move (as, am) (s', Bk # l, r) ires"
apply(auto simp: dec_right_move.simps dec_check_right_move.simps split: if_splits)
done
lemma [simp]: "(<lm::nat list> = []) = (lm = [])"
apply(case_tac lm, simp_all add: tape_of_nl_cons)
done
lemma [simp]:
"dec_right_move (as, am) (s, l, []) ires=
dec_right_move (as, am) (s, l, [Bk]) ires"
apply(simp add: dec_right_move.simps)
done
lemma [simp]: "\<lbrakk>dec_right_move (as, am) (s, l, []) ires\<rbrakk>
\<Longrightarrow> dec_check_right_move (as, am) (s, Bk # l, []) ires"
apply(insert dec_right_move_2_check_right_move[of as am s l "[]" s'],
simp)
done
lemma [simp]: "dec_check_right_move (as, am) (s, l, r) ires\<Longrightarrow> l \<noteq> []"
apply(auto simp: dec_check_right_move.simps split: if_splits)
done
lemma [simp]: "\<lbrakk>dec_check_right_move (as, am) (s, l, Oc # r) ires\<rbrakk>
\<Longrightarrow> dec_after_write (as, am) (s', tl l, hd l # Oc # r) ires"
apply(auto simp: dec_check_right_move.simps dec_after_write.simps)
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI,
rule_tac x = m in exI, auto)
done
lemma [simp]: "\<lbrakk>dec_check_right_move (as, am) (s, l, Bk # r) ires\<rbrakk>
\<Longrightarrow> dec_left_move (as, am) (s', tl l, hd l # Bk # r) ires"
apply(auto simp: dec_check_right_move.simps
dec_left_move.simps inv_after_move.simps)
apply(rule_tac x = lm1 in exI, rule_tac x = m in exI, auto split: if_splits)
apply(case_tac [!] lm2, simp_all add: tape_of_nl_cons split: if_splits)
apply(rule_tac [!] x = "(Suc rn)" in exI, simp_all)
done
lemma [simp]: "\<lbrakk>dec_check_right_move (as, am) (s, l, []) ires\<rbrakk>
\<Longrightarrow> dec_left_move (as, am) (s', tl l, [hd l]) ires"
apply(auto simp: dec_check_right_move.simps
dec_left_move.simps inv_after_move.simps)
apply(rule_tac x = lm1 in exI, rule_tac x = m in exI, auto)
done
lemma [simp]: "dec_left_move (as, am) (s, aaa, Oc # xs) ires = False"
apply(auto simp: dec_left_move.simps inv_after_move.simps)
done
lemma [simp]: "dec_left_move (as, am) (s, l, r) ires
\<Longrightarrow> l \<noteq> []"
apply(auto simp: dec_left_move.simps split: if_splits)
done
lemma [simp]: "inv_on_left_moving_in_middle_B (as, [m])
(s', Oc # Oc\<up>m @ Bk # Bk # ires, Bk # Bk\<up>rn) ires"
apply(simp add: inv_on_left_moving_in_middle_B.simps)
apply(rule_tac x = "[m]" in exI, auto)
done
lemma [simp]: "inv_on_left_moving_in_middle_B (as, [m])
(s', Oc # Oc\<up>m @ Bk # Bk # ires, [Bk]) ires"
apply(simp add: inv_on_left_moving_in_middle_B.simps)
done
lemma [simp]: "lm1 \<noteq> [] \<Longrightarrow>
inv_on_left_moving_in_middle_B (as, lm1 @ [m]) (s',
Oc # Oc\<up>m @ Bk # <rev lm1> @ Bk # Bk # ires, Bk # Bk\<up>rn) ires"
apply(simp only: inv_on_left_moving_in_middle_B.simps)
apply(rule_tac x = "lm1 @ [m ]" in exI, rule_tac x = "[]" in exI, simp)
apply(simp add: tape_of_nl_cons split: if_splits)
done
lemma [simp]: "lm1 \<noteq> [] \<Longrightarrow>
inv_on_left_moving_in_middle_B (as, lm1 @ [m]) (s',
Oc # Oc\<up> m @ Bk # <rev lm1> @ Bk # Bk # ires, [Bk]) ires"
apply(simp only: inv_on_left_moving_in_middle_B.simps)
apply(rule_tac x = "lm1 @ [m ]" in exI, rule_tac x = "[]" in exI, simp)
apply(simp add: tape_of_nl_cons split: if_splits)
done
lemma [simp]: "dec_left_move (as, am) (s, l, Bk # r) ires
\<Longrightarrow> inv_on_left_moving (as, am) (s', tl l, hd l # Bk # r) ires"
apply(auto simp: dec_left_move.simps inv_on_left_moving.simps split: if_splits)
done
(*
lemma [simp]: "inv_on_left_moving_in_middle_B (as, lm1 @ [m])
(s', Oc # Oc\<^bsup>m\<^esup> @ Bk # <rev lm1> @ Bk\<^bsup>ln\<^esup>, [Bk]) ires"
apply(auto simp: inv_on_left_moving_in_middle_B.simps)
apply(rule_tac x = "lm1 @ [m]" in exI, rule_tac x = "[]" in exI, auto)
done
*)
lemma [simp]: "dec_left_move (as, am) (s, l, []) ires
\<Longrightarrow> inv_on_left_moving (as, am) (s', tl l, [hd l]) ires"
apply(auto simp: dec_left_move.simps inv_on_left_moving.simps split: if_splits)
done
lemma [simp]: "dec_after_write (as, am) (s, l, Oc # r) ires
\<Longrightarrow> dec_on_right_moving (as, am) (s', Oc # l, r) ires"
apply(auto simp: dec_after_write.simps dec_on_right_moving.simps)
apply(rule_tac x = "lm1 @ [m]" in exI, rule_tac x = "tl lm2" in exI,
rule_tac x = "hd lm2" in exI, simp)
apply(rule_tac x = "Suc 0" in exI,rule_tac x = "Suc (hd lm2)" in exI)
apply(case_tac lm2, auto split: if_splits simp: tape_of_nl_cons)
done
lemma [simp]: "dec_after_write (as, am) (s, l, Bk # r) ires
\<Longrightarrow> dec_after_write (as, am) (s', l, Oc # r) ires"
apply(auto simp: dec_after_write.simps)
done
lemma [simp]: "dec_after_write (as, am) (s, aaa, []) ires
\<Longrightarrow> dec_after_write (as, am) (s', aaa, [Oc]) ires"
apply(auto simp: dec_after_write.simps)
done
lemma [simp]: "dec_on_right_moving (as, am) (s, l, Oc # r) ires
\<Longrightarrow> dec_on_right_moving (as, am) (s', Oc # l, r) ires"
apply(simp only: dec_on_right_moving.simps)
apply(erule_tac exE)+
apply(erule conjE)+
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI,
rule_tac x = "m" in exI, rule_tac x = "Suc ml" in exI,
rule_tac x = "mr - 1" in exI, simp)
apply(case_tac mr, auto)
done
lemma [simp]: "dec_on_right_moving (as, am) (s, l, r) ires\<Longrightarrow> l \<noteq> []"
apply(auto simp: dec_on_right_moving.simps split: if_splits)
done
lemma [simp]: "dec_on_right_moving (as, am) (s, l, Bk # r) ires
\<Longrightarrow> dec_after_clear (as, am) (s', tl l, hd l # Bk # r) ires"
apply(auto simp: dec_on_right_moving.simps dec_after_clear.simps)
apply(case_tac [!] mr, auto split: if_splits)
done
lemma [simp]: "dec_on_right_moving (as, am) (s, l, []) ires
\<Longrightarrow> dec_after_clear (as, am) (s', tl l, [hd l]) ires"
apply(auto simp: dec_on_right_moving.simps dec_after_clear.simps)
apply(simp_all split: if_splits)
apply(rule_tac x = lm1 in exI, simp)
done
lemma [simp]:
"inv_stop (as, abc_lm_s am n (abc_lm_v am n)) (s, l, r) ires \<Longrightarrow> l \<noteq> []"
apply(auto simp: inv_stop.simps)
done
lemma dec_false_1[simp]:
"\<lbrakk>abc_lm_v am n = 0; inv_locate_b (as, am) (n, aaa, Oc # xs) ires\<rbrakk>
\<Longrightarrow> False"
apply(auto simp: inv_locate_b.simps in_middle.simps)
apply(case_tac "length lm1 \<ge> length am", auto)
apply(subgoal_tac "lm2 = []", simp, subgoal_tac "m = 0", simp)
apply(case_tac mr, auto simp: )
apply(subgoal_tac "Suc (length lm1) - length am =
Suc (length lm1 - length am)",
simp add: exp_ind del: replicate.simps, simp)
apply(drule_tac xs = "am @ replicate (Suc (length lm1) - length am) 0"
and ys = "lm1 @ m # lm2" in length_equal, simp)
apply(case_tac mr, auto simp: abc_lm_v.simps)
apply(case_tac "mr = 0", simp_all split: if_splits)
apply(subgoal_tac "Suc (length lm1) - length am =
Suc (length lm1 - length am)",
simp add: exp_ind del: replicate.simps, simp)
done
lemma [simp]:
"\<lbrakk>inv_locate_b (as, am) (n, aaa, Bk # xs) ires;
abc_lm_v am n = 0\<rbrakk>
\<Longrightarrow> inv_on_left_moving (as, abc_lm_s am n 0)
(s, tl aaa, hd aaa # Bk # xs) ires"
apply(simp add: inv_on_left_moving.simps)
apply(simp only: inv_locate_b.simps in_middle.simps)
apply(erule_tac exE)+
apply(simp add: inv_on_left_moving.simps)
apply(subgoal_tac "\<not> inv_on_left_moving_in_middle_B
(as, abc_lm_s am n 0) (s, tl aaa, hd aaa # Bk # xs) ires", simp)
apply(simp only: inv_on_left_moving_norm.simps)
apply(erule_tac conjE)+
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI,
rule_tac x = m in exI, rule_tac x = m in exI,
rule_tac x = "Suc 0" in exI, simp add: abc_lm_s.simps)
apply(case_tac mr, simp_all, auto simp: abc_lm_v.simps)
apply(simp only: exp_ind[THEN sym] replicate_Suc Nat.Suc_diff_le)
apply(auto simp: inv_on_left_moving_in_middle_B.simps split: if_splits)
done
lemma [simp]:
"\<lbrakk>abc_lm_v am n = 0; inv_locate_b (as, am) (n, aaa, []) ires\<rbrakk>
\<Longrightarrow> inv_on_left_moving (as, abc_lm_s am n 0) (s, tl aaa, [hd aaa]) ires"
apply(simp add: inv_on_left_moving.simps)
apply(simp only: inv_locate_b.simps in_middle.simps)
apply(erule_tac exE)+
apply(simp add: inv_on_left_moving.simps)
apply(subgoal_tac "\<not> inv_on_left_moving_in_middle_B
(as, abc_lm_s am n 0) (s, tl aaa, [hd aaa]) ires", simp)
apply(simp only: inv_on_left_moving_norm.simps)
apply(erule_tac conjE)+
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI,
rule_tac x = m in exI, rule_tac x = m in exI,
rule_tac x = "Suc 0" in exI, simp add: abc_lm_s.simps)
apply(case_tac mr, simp_all, auto simp: abc_lm_v.simps)
apply(simp_all only: exp_ind Nat.Suc_diff_le del: replicate_Suc, simp_all)
apply(auto simp: inv_on_left_moving_in_middle_B.simps split: if_splits)
apply(case_tac [!] m, simp_all)
done
lemma [simp]: "\<lbrakk>am ! n = (0::nat); n < length am\<rbrakk> \<Longrightarrow> am[n := 0] = am"
apply(simp add: list_update_same_conv)
done
lemma [intro]: "\<lbrakk>abc_lm_v (a # list) 0 = 0\<rbrakk> \<Longrightarrow> a = 0"
apply(simp add: abc_lm_v.simps split: if_splits)
done
lemma [simp]:
"inv_stop (as, abc_lm_s am n 0)
(start_of (layout_of aprog) e, aaa, Oc # xs) ires
\<Longrightarrow> inv_locate_a (as, abc_lm_s am n 0) (0, aaa, Oc # xs) ires"
apply(simp add: inv_locate_a.simps)
apply(rule disjI1)
apply(auto simp: inv_stop.simps at_begin_norm.simps)
done
lemma [simp]:
"\<lbrakk>inv_stop (as, abc_lm_s am n 0)
(start_of (layout_of aprog) e, aaa, Oc # xs) ires\<rbrakk>
\<Longrightarrow> inv_locate_b (as, am) (0, Oc # aaa, xs) ires \<or>
inv_locate_b (as, abc_lm_s am n 0) (0, Oc # aaa, xs) ires"
apply(simp)
done
lemma dec_false2:
"inv_stop (as, abc_lm_s am n 0)
(start_of (layout_of aprog) e, aaa, Bk # xs) ires = False"
apply(auto simp: inv_stop.simps abc_lm_s.simps)
apply(case_tac [!] am, auto)
apply(case_tac [!] n, auto simp: tape_of_nl_cons split: if_splits)
done
lemma dec_false3:
"inv_stop (as, abc_lm_s am n 0)
(start_of (layout_of aprog) e, aaa, []) ires = False"
apply(auto simp: inv_stop.simps abc_lm_s.simps)
done
lemma [simp]:
"fetch (ci (layout_of aprog)
(start_of (layout_of aprog) as) (Dec n e)) 0 b = (Nop, 0)"
by(simp add: fetch.simps)
declare dec_inv_1.simps[simp del]
declare inv_locate_n_b.simps [simp del]
lemma [simp]:
"\<lbrakk>0 < abc_lm_v am n; 0 < n;
at_begin_fst_bwtn (as, am) (n, aaa, Oc # xs) ires\<rbrakk>
\<Longrightarrow> inv_locate_n_b (as, am) (n, Oc # aaa, xs) ires"
apply(simp add: at_begin_fst_bwtn.simps inv_locate_n_b.simps )
done
lemma Suc_minus:"length am + tn = n
\<Longrightarrow> Suc tn = Suc n - length am "
apply(arith)
done
lemma [simp]:
"\<lbrakk>0 < abc_lm_v am n; 0 < n;
at_begin_fst_awtn (as, am) (n, aaa, Oc # xs) ires\<rbrakk>
\<Longrightarrow> inv_locate_n_b (as, am) (n, Oc # aaa, xs) ires"
apply(simp only: at_begin_fst_awtn.simps inv_locate_n_b.simps )
apply(erule exE)+
apply(erule conjE)+
apply(rule_tac x = lm1 in exI, rule_tac x = "[]" in exI,
rule_tac x = "Suc tn" in exI, rule_tac x = 0 in exI)
apply(simp add: exp_ind del: replicate.simps)
apply(rule conjI)+
apply(auto)
done
lemma [simp]:
"\<lbrakk>inv_locate_n_b (as, am) (n, aaa, Oc # xs) ires\<rbrakk>
\<Longrightarrow> dec_first_on_right_moving n (as, abc_lm_s am n (abc_lm_v am n))
(s, Oc # aaa, xs) ires"
apply(auto simp: inv_locate_n_b.simps dec_first_on_right_moving.simps
abc_lm_s.simps abc_lm_v.simps)
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI,
rule_tac x = m in exI, simp)
apply(rule_tac x = "Suc (Suc 0)" in exI,
rule_tac x = "m - 1" in exI, simp)
apply(case_tac m, auto)
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI,
rule_tac x = m in exI,
simp add: Suc_diff_le exp_ind del: replicate.simps)
apply(rule_tac x = "Suc (Suc 0)" in exI,
rule_tac x = "m - 1" in exI, simp)
apply(case_tac m, auto)
apply(rule_tac x = lm1 in exI, rule_tac x = "[]" in exI,
rule_tac x = m in exI, simp)
apply(rule_tac x = "Suc (Suc 0)" in exI,
rule_tac x = "m - 1" in exI, simp)
apply(case_tac m, auto)
apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI,
rule_tac x = m in exI,
simp add: Suc_diff_le exp_ind del: replicate.simps, simp)
done
lemma [simp]: "inv_on_left_moving (as, am) (s, [], r) ires
= False"
apply(simp add: inv_on_left_moving.simps inv_on_left_moving_norm.simps
inv_on_left_moving_in_middle_B.simps)
done
lemma [simp]:
"inv_check_left_moving (as, abc_lm_s am n 0)
(start_of (layout_of aprog) as + 2 * n + 14, [], Oc # xs) ires
= False"
apply(simp add: inv_check_left_moving.simps inv_check_left_moving_in_middle.simps)
done
lemma [simp]: "inv_check_left_moving (as, abc_lm_s lm n (abc_lm_v lm n)) (s, [], Oc # list) ires = False"
apply(simp add: inv_check_left_moving.simps inv_check_left_moving_in_middle.simps)
done
lemma [elim]: "\<lbrakk>abc_fetch as ap = Some (Dec n e);
start_of (layout_of ap) as < start_of (layout_of ap) e;
start_of (layout_of ap) e \<le> Suc (start_of (layout_of ap) as + 2 * n)\<rbrakk>
\<Longrightarrow> RR"
using start_of_less[of e as "layout_of ap"] start_of_ge[of as ap n e "layout_of ap"]
apply(case_tac "as < e", simp)
apply(case_tac "as = e", simp, simp)
done
lemma crsp_step_dec_b_e_pre':
assumes layout: "ly = layout_of ap"
and inv_start: "inv_locate_b (as, lm) (n, la, ra) ires"
and fetch: "abc_fetch as ap = Some (Dec n e)"
and dec_0: "abc_lm_v lm n = 0"
and f: "f = (\<lambda> stp. (steps (Suc (start_of ly as) + 2 * n, la, ra) (ci ly (start_of ly as) (Dec n e),
start_of ly as - Suc 0) stp, start_of ly as, n))"
and P: "P = (\<lambda> ((s, l, r), ss, x). s = start_of ly e)"
and Q: "Q = (\<lambda> ((s, l, r), ss, x). dec_inv_1 ly x e (as, lm) (s, l, r) ires)"
shows "\<exists> stp. P (f stp) \<and> Q (f stp)"
proof(rule_tac LE = abc_dec_1_LE in halt_lemma2)
show "wf abc_dec_1_LE" by(intro wf_dec_le)
next
show "Q (f 0)"
using layout fetch
apply(simp add: f steps.simps Q dec_inv_1.simps)
apply(subgoal_tac "e > as \<or> e = as \<or> e < as")
apply(auto simp: Let_def start_of_ge start_of_less inv_start)
done
next
show "\<not> P (f 0)"
using layout fetch
apply(simp add: f steps.simps P)
done
next
show "\<forall>n. \<not> P (f n) \<and> Q (f n) \<longrightarrow> Q (f (Suc n)) \<and> (f (Suc n), f n) \<in> abc_dec_1_LE"
using fetch
proof(rule_tac allI, rule_tac impI)
fix na
assume "\<not> P (f na) \<and> Q (f na)"
thus "Q (f (Suc na)) \<and> (f (Suc na), f na) \<in> abc_dec_1_LE"
apply(simp add: f)
apply(case_tac "steps (Suc (start_of ly as + 2 * n), la, ra)
(ci ly (start_of ly as) (Dec n e), start_of ly as - Suc 0) na", simp)
proof -
fix a b c
assume "\<not> P ((a, b, c), start_of ly as, n) \<and> Q ((a, b, c), start_of ly as, n)"
thus "Q (step (a, b, c) (ci ly (start_of ly as) (Dec n e), start_of ly as - Suc 0), start_of ly as, n) \<and>
((step (a, b, c) (ci ly (start_of ly as) (Dec n e), start_of ly as - Suc 0), start_of ly as, n),
(a, b, c), start_of ly as, n) \<in> abc_dec_1_LE"
apply(simp add: Q)
apply(case_tac c, case_tac [2] aa)
apply(simp_all add: dec_inv_1.simps Let_def split: if_splits)
using fetch layout dec_0
apply(auto simp: step.simps P dec_inv_1.simps Let_def abc_dec_1_LE_def lex_triple_def lex_pair_def)
using dec_0
apply(drule_tac dec_false_1, simp_all)
done
qed
qed
qed
lemma crsp_step_dec_b_e_pre:
assumes "ly = layout_of ap"
and inv_start: "inv_locate_b (as, lm) (n, la, ra) ires"
and dec_0: "abc_lm_v lm n = 0"
and fetch: "abc_fetch as ap = Some (Dec n e)"
shows "\<exists>stp lb rb.
steps (Suc (start_of ly as) + 2 * n, la, ra) (ci ly (start_of ly as) (Dec n e),
start_of ly as - Suc 0) stp = (start_of ly e, lb, rb) \<and>
dec_inv_1 ly n e (as, lm) (start_of ly e, lb, rb) ires"
using assms
apply(drule_tac crsp_step_dec_b_e_pre', auto)
apply(rule_tac x = stp in exI, simp)
done
lemma [simp]:
"\<lbrakk>abc_lm_v lm n = 0;
inv_stop (as, abc_lm_s lm n (abc_lm_v lm n)) (start_of ly e, lb, rb) ires\<rbrakk>
\<Longrightarrow> crsp ly (abc_step_l (as, lm) (Some (Dec n e))) (start_of ly e, lb, rb) ires"
apply(auto simp: crsp.simps abc_step_l.simps inv_stop.simps)
done
lemma crsp_step_dec_b_e:
assumes layout: "ly = layout_of ap"
and inv_start: "inv_locate_a (as, lm) (n, l, r) ires"
and dec_0: "abc_lm_v lm n = 0"
and fetch: "abc_fetch as ap = Some (Dec n e)"
shows "\<exists>stp > 0. crsp ly (abc_step_l (as, lm) (Some (Dec n e)))
(steps (start_of ly as + 2 * n, l, r) (ci ly (start_of ly as) (Dec n e), start_of ly as - Suc 0) stp) ires"
proof -
let ?P = "ci ly (start_of ly as) (Dec n e)"
let ?off = "start_of ly as - Suc 0"
have "\<exists> stp la ra. steps (start_of ly as + 2 * n, l, r) (?P, ?off) stp = (Suc (start_of ly as) + 2*n, la, ra)
\<and> inv_locate_b (as, lm) (n, la, ra) ires"
using inv_start
apply(case_tac "r = [] \<or> hd r = Bk", simp_all)
done
from this obtain stpa la ra where a:
"steps (start_of ly as + 2 * n, l, r) (?P, ?off) stpa = (Suc (start_of ly as) + 2*n, la, ra)
\<and> inv_locate_b (as, lm) (n, la, ra) ires" by blast
term dec_inv_1
have "\<exists> stp lb rb. steps (Suc (start_of ly as) + 2 * n, la, ra) (?P, ?off) stp = (start_of ly e, lb, rb)
\<and> dec_inv_1 ly n e (as, lm) (start_of ly e, lb, rb) ires"
using assms a
apply(rule_tac crsp_step_dec_b_e_pre, auto)
done
from this obtain stpb lb rb where b:
"steps (Suc (start_of ly as) + 2 * n, la, ra) (?P, ?off) stpb = (start_of ly e, lb, rb)
\<and> dec_inv_1 ly n e (as, lm) (start_of ly e, lb, rb) ires" by blast
from a b show "\<exists>stp > 0. crsp ly (abc_step_l (as, lm) (Some (Dec n e)))
(steps (start_of ly as + 2 * n, l, r) (?P, ?off) stp) ires"
apply(rule_tac x = "stpa + stpb" in exI)
apply(simp add: steps_add)
using dec_0
apply(simp add: dec_inv_1.simps)
apply(case_tac stpa, simp_all add: steps.simps)
done
qed
fun dec_inv_2 :: "layout \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> dec_inv_t"
where
"dec_inv_2 ly n e (as, am) (s, l, r) ires =
(let ss = start_of ly as in
let am' = abc_lm_s am n (abc_lm_v am n - Suc 0) in
let am'' = abc_lm_s am n (abc_lm_v am n) in
if s = 0 then False
else if s = ss + 2 * n then
inv_locate_a (as, am) (n, l, r) ires
else if s = ss + 2 * n + 1 then
inv_locate_n_b (as, am) (n, l, r) ires
else if s = ss + 2 * n + 2 then
dec_first_on_right_moving n (as, am'') (s, l, r) ires
else if s = ss + 2 * n + 3 then
dec_after_clear (as, am') (s, l, r) ires
else if s = ss + 2 * n + 4 then
dec_right_move (as, am') (s, l, r) ires
else if s = ss + 2 * n + 5 then
dec_check_right_move (as, am') (s, l, r) ires
else if s = ss + 2 * n + 6 then
dec_left_move (as, am') (s, l, r) ires
else if s = ss + 2 * n + 7 then
dec_after_write (as, am') (s, l, r) ires
else if s = ss + 2 * n + 8 then
dec_on_right_moving (as, am') (s, l, r) ires
else if s = ss + 2 * n + 9 then
dec_after_clear (as, am') (s, l, r) ires
else if s = ss + 2 * n + 10 then
inv_on_left_moving (as, am') (s, l, r) ires
else if s = ss + 2 * n + 11 then
inv_check_left_moving (as, am') (s, l, r) ires
else if s = ss + 2 * n + 12 then
inv_after_left_moving (as, am') (s, l, r) ires
else if s = ss + 2 * n + 16 then
inv_stop (as, am') (s, l, r) ires
else False)"
declare dec_inv_2.simps[simp del]
fun abc_dec_2_stage1 :: "config \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
where
"abc_dec_2_stage1 (s, l, r) ss n =
(if s \<le> ss + 2*n + 1 then 7
else if s = ss + 2*n + 2 then 6
else if s = ss + 2*n + 3 then 5
else if s \<ge> ss + 2*n + 4 \<and> s \<le> ss + 2*n + 9 then 4
else if s = ss + 2*n + 6 then 3
else if s = ss + 2*n + 10 \<or> s = ss + 2*n + 11 then 2
else if s = ss + 2*n + 12 then 1
else 0)"
fun abc_dec_2_stage2 :: "config \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
where
"abc_dec_2_stage2 (s, l, r) ss n =
(if s \<le> ss + 2 * n + 1 then (ss + 2 * n + 16 - s)
else if s = ss + 2*n + 10 then length l
else if s = ss + 2*n + 11 then length l
else if s = ss + 2*n + 4 then length r - 1
else if s = ss + 2*n + 5 then length r
else if s = ss + 2*n + 7 then length r - 1
else if s = ss + 2*n + 8 then
length r + length (takeWhile (\<lambda> a. a = Oc) l) - 1
else if s = ss + 2*n + 9 then
length r + length (takeWhile (\<lambda> a. a = Oc) l) - 1
else 0)"
fun abc_dec_2_stage3 :: "config \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
where
"abc_dec_2_stage3 (s, l, r) ss n =
(if s \<le> ss + 2*n + 1 then
if (s - ss) mod 2 = 0 then if r \<noteq> [] \<and>
hd r = Oc then 0 else 1
else length r
else if s = ss + 2 * n + 10 then
if r \<noteq> [] \<and> hd r = Oc then 2
else 1
else if s = ss + 2 * n + 11 then
if r \<noteq> [] \<and> hd r = Oc then 3
else 0
else (ss + 2 * n + 16 - s))"
fun abc_dec_2_stage4 :: "config \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
where
"abc_dec_2_stage4 (s, l, r) ss n =
(if s = ss + 2*n + 2 then length r
else if s = ss + 2*n + 8 then length r
else if s = ss + 2*n + 3 then
if r \<noteq> [] \<and> hd r = Oc then 1
else 0
else if s = ss + 2*n + 7 then
if r \<noteq> [] \<and> hd r = Oc then 0
else 1
else if s = ss + 2*n + 9 then
if r \<noteq> [] \<and> hd r = Oc then 1
else 0
else 0)"
fun abc_dec_2_measure :: "(config \<times> nat \<times> nat) \<Rightarrow> (nat \<times> nat \<times> nat \<times> nat)"
where
"abc_dec_2_measure (c, ss, n) =
(abc_dec_2_stage1 c ss n,
abc_dec_2_stage2 c ss n, abc_dec_2_stage3 c ss n, abc_dec_2_stage4 c ss n)"
definition lex_square::
"((nat \<times> nat \<times> nat \<times> nat) \<times> (nat \<times> nat \<times> nat \<times> nat)) set"
where "lex_square \<equiv> less_than <*lex*> lex_triple"
definition abc_dec_2_LE ::
"((config \<times> nat \<times>
nat) \<times> (config \<times> nat \<times> nat)) set"
where "abc_dec_2_LE \<equiv> (inv_image lex_square abc_dec_2_measure)"
lemma wf_dec2_le: "wf abc_dec_2_LE"
by(auto intro:wf_inv_image simp:abc_dec_2_LE_def lex_square_def lex_triple_def lex_pair_def)
lemma fix_add: "fetch ap ((x::nat) + 2*n) b = fetch ap (2*n + x) b"
by (metis Suc_1 mult_2 nat_add_commute)
lemma [elim]:
"\<lbrakk>0 < abc_lm_v am n; inv_locate_n_b (as, am) (n, aaa, Bk # xs) ires\<rbrakk>
\<Longrightarrow> RR"
apply(auto simp: inv_locate_n_b.simps abc_lm_v.simps split: if_splits)
apply(case_tac [!] m, auto)
done
lemma [elim]:
"\<lbrakk>0 < abc_lm_v am n; inv_locate_n_b (as, am)
(n, aaa, []) ires\<rbrakk> \<Longrightarrow> RR"
apply(auto simp: inv_locate_n_b.simps abc_lm_v.simps split: if_splits)
done
lemma [simp]: "dec_after_write (as, am) (s, aa, r) ires
\<Longrightarrow> takeWhile (\<lambda>a. a = Oc) aa = []"
apply(simp only : dec_after_write.simps)
apply(erule exE)+
apply(erule_tac conjE)+
apply(case_tac aa, simp)
apply(case_tac a, simp only: takeWhile.simps , simp_all split: if_splits)
done
lemma [simp]:
"\<lbrakk>dec_on_right_moving (as, lm) (s, aa, []) ires;
length (takeWhile (\<lambda>a. a = Oc) (tl aa))
\<noteq> length (takeWhile (\<lambda>a. a = Oc) aa) - Suc 0\<rbrakk>
\<Longrightarrow> length (takeWhile (\<lambda>a. a = Oc) (tl aa)) <
length (takeWhile (\<lambda>a. a = Oc) aa) - Suc 0"
apply(simp only: dec_on_right_moving.simps)
apply(erule_tac exE)+
apply(erule_tac conjE)+
apply(case_tac mr, auto split: if_splits)
done
lemma [simp]:
"dec_after_clear (as, abc_lm_s am n (abc_lm_v am n - Suc 0))
(start_of (layout_of aprog) as + 2 * n + 9, aa, Bk # xs) ires
\<Longrightarrow> length xs - Suc 0 < length xs +
length (takeWhile (\<lambda>a. a = Oc) aa)"
apply(simp only: dec_after_clear.simps)
apply(erule_tac exE)+
apply(erule conjE)+
apply(simp split: if_splits )
done
lemma [simp]:
"\<lbrakk>dec_after_clear (as, abc_lm_s am n (abc_lm_v am n - Suc 0))
(start_of (layout_of aprog) as + 2 * n + 9, aa, []) ires\<rbrakk>
\<Longrightarrow> Suc 0 < length (takeWhile (\<lambda>a. a = Oc) aa)"
apply(simp add: dec_after_clear.simps split: if_splits)
done
lemma [elim]:
"inv_check_left_moving (as, lm)
(s, [], Oc # xs) ires
\<Longrightarrow> RR"
apply(simp add: inv_check_left_moving.simps inv_check_left_moving_in_middle.simps)
done
lemma [simp]:
"\<lbrakk>0 < abc_lm_v am n;
at_begin_norm (as, am) (n, aaa, Oc # xs) ires\<rbrakk>
\<Longrightarrow> inv_locate_n_b (as, am) (n, Oc # aaa, xs) ires"
apply(simp only: at_begin_norm.simps inv_locate_n_b.simps)
apply(erule_tac exE)+
apply(rule_tac x = lm1 in exI, simp)
apply(case_tac "length lm2", simp)
apply(case_tac "lm2", simp, simp)
apply(case_tac "lm2", auto simp: tape_of_nl_cons split: if_splits)
done
lemma [simp]:
"\<lbrakk>0 < abc_lm_v am n;
at_begin_fst_awtn (as, am) (n, aaa, Oc # xs) ires\<rbrakk>
\<Longrightarrow> inv_locate_n_b (as, am) (n, Oc # aaa, xs) ires"
apply(simp only: at_begin_fst_awtn.simps inv_locate_n_b.simps )
apply(erule exE)+
apply(erule conjE)+
apply(rule_tac x = lm1 in exI, rule_tac x = "[]" in exI,
rule_tac x = "Suc tn" in exI, rule_tac x = 0 in exI)
apply(simp add: exp_ind del: replicate.simps)
apply(rule conjI)+
apply(auto)
done
lemma [simp]:
"\<lbrakk>0 < abc_lm_v am n; inv_locate_a (as, am) (n, aaa, Oc # xs) ires\<rbrakk>
\<Longrightarrow> inv_locate_n_b (as, am) (n, Oc#aaa, xs) ires"
apply(auto simp: inv_locate_a.simps at_begin_fst_bwtn.simps)
done
lemma [simp]:
"\<lbrakk>dec_on_right_moving (as, am) (s, aa, Bk # xs) ires;
Suc (length (takeWhile (\<lambda>a. a = Oc) (tl aa)))
\<noteq> length (takeWhile (\<lambda>a. a = Oc) aa)\<rbrakk>
\<Longrightarrow> Suc (length (takeWhile (\<lambda>a. a = Oc) (tl aa)))
< length (takeWhile (\<lambda>a. a = Oc) aa)"
apply(simp only: dec_on_right_moving.simps)
apply(erule exE)+
apply(erule conjE)+
apply(case_tac ml, auto split: if_splits )
done
lemma crsp_step_dec_b_suc_pre:
assumes layout: "ly = layout_of ap"
and crsp: "crsp ly (as, lm) (s, l, r) ires"
and inv_start: "inv_locate_a (as, lm) (n, la, ra) ires"
and fetch: "abc_fetch as ap = Some (Dec n e)"
and dec_suc: "0 < abc_lm_v lm n"
and f: "f = (\<lambda> stp. (steps (start_of ly as + 2 * n, la, ra) (ci ly (start_of ly as) (Dec n e),
start_of ly as - Suc 0) stp, start_of ly as, n))"
and P: "P = (\<lambda> ((s, l, r), ss, x). s = start_of ly as + 2*n + 16)"
and Q: "Q = (\<lambda> ((s, l, r), ss, x). dec_inv_2 ly x e (as, lm) (s, l, r) ires)"
shows "\<exists> stp. P (f stp) \<and> Q(f stp)"
proof(rule_tac LE = abc_dec_2_LE in halt_lemma2)
show "wf abc_dec_2_LE" by(intro wf_dec2_le)
next
show "Q (f 0)"
using layout fetch inv_start
apply(simp add: f steps.simps Q)
apply(simp only: dec_inv_2.simps)
apply(auto simp: Let_def start_of_ge start_of_less inv_start dec_inv_2.simps)
done
next
show "\<not> P (f 0)"
using layout fetch
apply(simp add: f steps.simps P)
done
next
show "\<forall>n. \<not> P (f n) \<and> Q (f n) \<longrightarrow> Q (f (Suc n)) \<and> (f (Suc n), f n) \<in> abc_dec_2_LE"
using fetch
proof(rule_tac allI, rule_tac impI)
fix na
assume "\<not> P (f na) \<and> Q (f na)"
thus "Q (f (Suc na)) \<and> (f (Suc na), f na) \<in> abc_dec_2_LE"
apply(simp add: f)
apply(case_tac "steps ((start_of ly as + 2 * n), la, ra)
(ci ly (start_of ly as) (Dec n e), start_of ly as - Suc 0) na", simp)
proof -
fix a b c
assume "\<not> P ((a, b, c), start_of ly as, n) \<and> Q ((a, b, c), start_of ly as, n)"
thus "Q (step (a, b, c) (ci ly (start_of ly as) (Dec n e), start_of ly as - Suc 0), start_of ly as, n) \<and>
((step (a, b, c) (ci ly (start_of ly as) (Dec n e), start_of ly as - Suc 0), start_of ly as, n),
(a, b, c), start_of ly as, n) \<in> abc_dec_2_LE"
apply(simp add: Q)
apply(erule_tac conjE)
apply(case_tac c, case_tac [2] aa)
apply(simp_all add: dec_inv_2.simps Let_def)
apply(simp_all split: if_splits)
using fetch layout dec_suc
apply(auto simp: step.simps P dec_inv_2.simps Let_def abc_dec_2_LE_def lex_triple_def lex_pair_def lex_square_def
fix_add numeral_3_eq_3)
done
qed
qed
qed
lemma [simp]:
"\<lbrakk>inv_stop (as, abc_lm_s lm n (abc_lm_v lm n - Suc 0))
(start_of (layout_of ap) as + 2 * n + 16, a, b) ires;
abc_lm_v lm n > 0;
abc_fetch as ap = Some (Dec n e)\<rbrakk>
\<Longrightarrow> crsp (layout_of ap) (abc_step_l (as, lm) (Some (Dec n e)))
(start_of (layout_of ap) as + 2 * n + 16, a, b) ires"
apply(auto simp: inv_stop.simps crsp.simps abc_step_l.simps startof_Suc2)
apply(drule_tac startof_Suc2, simp)
done
lemma crsp_step_dec_b_suc:
assumes layout: "ly = layout_of ap"
and crsp: "crsp ly (as, lm) (s, l, r) ires"
and inv_start: "inv_locate_a (as, lm) (n, la, ra) ires"
and fetch: "abc_fetch as ap = Some (Dec n e)"
and dec_suc: "0 < abc_lm_v lm n"
shows "\<exists>stp > 0. crsp ly (abc_step_l (as, lm) (Some (Dec n e)))
(steps (start_of ly as + 2 * n, la, ra) (ci (layout_of ap)
(start_of ly as) (Dec n e), start_of ly as - Suc 0) stp) ires"
using assms
apply(drule_tac crsp_step_dec_b_suc_pre, auto)
apply(rule_tac x = stp in exI, simp)
apply(simp add: dec_inv_2.simps)
apply(case_tac stp, simp_all add: steps.simps)
done
lemma crsp_step_dec_b:
assumes layout: "ly = layout_of ap"
and crsp: "crsp ly (as, lm) (s, l, r) ires"
and inv_start: "inv_locate_a (as, lm) (n, la, ra) ires"
and fetch: "abc_fetch as ap = Some (Dec n e)"
shows "\<exists>stp > 0. crsp ly (abc_step_l (as, lm) (Some (Dec n e)))
(steps (start_of ly as + 2 * n, la, ra) (ci ly (start_of ly as) (Dec n e), start_of ly as - Suc 0) stp) ires"
using assms
apply(case_tac "abc_lm_v lm n = 0")
apply(rule_tac crsp_step_dec_b_e, simp_all)
apply(rule_tac crsp_step_dec_b_suc, simp_all)
done
lemma crsp_step_dec:
assumes layout: "ly = layout_of ap"
and crsp: "crsp ly (as, lm) (s, l, r) ires"
and fetch: "abc_fetch as ap = Some (Dec n e)"
shows "\<exists>stp > 0. crsp ly (abc_step_l (as, lm) (Some (Dec n e)))
(steps (s, l, r) (ci ly (start_of ly as) (Dec n e), start_of ly as - Suc 0) stp) ires"
proof(simp add: ci.simps)
let ?off = "start_of ly as - Suc 0"
let ?A = "findnth n"
let ?B = "sete (shift (shift tdec_b (2 * n)) ?off) (start_of ly e)"
have "\<exists> stp la ra. steps (s, l, r) (shift ?A ?off @ ?B, ?off) stp = (start_of ly as + 2*n, la, ra)
\<and> inv_locate_a (as, lm) (n, la, ra) ires"
proof -
have "\<exists>stp l' r'. steps (Suc 0, l, r) (?A, 0) stp = (Suc (2 * n), l', r') \<and>
inv_locate_a (as, lm) (n, l', r') ires"
using assms
apply(rule_tac findnth_correct, simp_all)
done
then obtain stp l' r' where a:
"steps (Suc 0, l, r) (?A, 0) stp = (Suc (2 * n), l', r') \<and>
inv_locate_a (as, lm) (n, l', r') ires" by blast
then have "steps (Suc 0 + ?off, l, r) (shift ?A ?off, ?off) stp = (Suc (2 * n) + ?off, l', r')"
apply(rule_tac tm_shift_eq_steps, simp_all)
done
moreover have "s = start_of ly as"
using crsp
apply(auto simp: crsp.simps)
done
ultimately show "\<exists> stp la ra. steps (s, l, r) (shift ?A ?off @ ?B, ?off) stp = (start_of ly as + 2*n, la, ra)
\<and> inv_locate_a (as, lm) (n, la, ra) ires"
using a
apply(drule_tac B = ?B in tm_append_first_steps_eq, auto)
apply(rule_tac x = stp in exI, simp)
done
qed
from this obtain stpa la ra where a:
"steps (s, l, r) (shift ?A ?off @ ?B, ?off) stpa = (start_of ly as + 2*n, la, ra)
\<and> inv_locate_a (as, lm) (n, la, ra) ires" by blast
have "\<exists>stp. crsp ly (abc_step_l (as, lm) (Some (Dec n e)))
(steps (start_of ly as + 2*n, la, ra) (shift ?A ?off @ ?B, ?off) stp) ires \<and> stp > 0"
using assms a
apply(drule_tac crsp_step_dec_b, auto)
apply(rule_tac x = stp in exI, simp add: ci.simps)
done
then obtain stpb where b:
"crsp ly (abc_step_l (as, lm) (Some (Dec n e)))
(steps (start_of ly as + 2*n, la, ra) (shift ?A ?off @ ?B, ?off) stpb) ires \<and> stpb > 0" ..
from a b show "\<exists> stp>0. crsp ly (abc_step_l (as, lm) (Some (Dec n e)))
(steps (s, l, r) (shift ?A ?off @ ?B, ?off) stp) ires"
apply(rule_tac x = "stpa + stpb" in exI)
apply(simp add: steps_add)
done
qed
subsection{*Crsp of Goto*}
lemma crsp_step_goto:
assumes layout: "ly = layout_of ap"
and crsp: "crsp ly (as, lm) (s, l, r) ires"
shows "\<exists>stp>0. crsp ly (abc_step_l (as, lm) (Some (Goto n)))
(steps (s, l, r) (ci ly (start_of ly as) (Goto n),
start_of ly as - Suc 0) stp) ires"
using crsp
apply(rule_tac x = "Suc 0" in exI)
apply(case_tac r, case_tac [2] a)
apply(simp_all add: ci.simps steps.simps step.simps crsp.simps fetch.simps
crsp.simps abc_step_l.simps)
done
lemma crsp_step_in:
assumes layout: "ly = layout_of ap"
and compile: "tp = tm_of ap"
and crsp: "crsp ly (as, lm) (s, l, r) ires"
and fetch: "abc_fetch as ap = Some ins"
shows "\<exists> stp>0. crsp ly (abc_step_l (as, lm) (Some ins))
(steps (s, l, r) (ci ly (start_of ly as) ins, start_of ly as - 1) stp) ires"
using assms
apply(case_tac ins, simp_all)
apply(rule crsp_step_inc, simp_all)
apply(rule crsp_step_dec, simp_all)
apply(rule_tac crsp_step_goto, simp_all)
done
lemma crsp_step:
assumes layout: "ly = layout_of ap"
and compile: "tp = tm_of ap"
and crsp: "crsp ly (as, lm) (s, l, r) ires"
and fetch: "abc_fetch as ap = Some ins"
shows "\<exists> stp>0. crsp ly (abc_step_l (as, lm) (Some ins))
(steps (s, l, r) (tp, 0) stp) ires"
proof -
have "\<exists> stp>0. crsp ly (abc_step_l (as, lm) (Some ins))
(steps (s, l, r) (ci ly (start_of ly as) ins, start_of ly as - 1) stp) ires"
using assms
apply(rule_tac crsp_step_in, simp_all)
done
from this obtain stp where d: "stp > 0 \<and> crsp ly (abc_step_l (as, lm) (Some ins))
(steps (s, l, r) (ci ly (start_of ly as) ins, start_of ly as - 1) stp) ires" ..
obtain s' l' r' where e:
"(steps (s, l, r) (ci ly (start_of ly as) ins, start_of ly as - 1) stp) = (s', l', r')"
apply(case_tac "(steps (s, l, r) (ci ly (start_of ly as) ins, start_of ly as - 1) stp)")
by blast
then have "steps (s, l, r) (tp, 0) stp = (s', l', r')"
using assms d
apply(rule_tac steps_eq_in)
apply(simp_all)
apply(case_tac "(abc_step_l (as, lm) (Some ins))", simp add: crsp.simps)
done
thus " \<exists>stp>0. crsp ly (abc_step_l (as, lm) (Some ins)) (steps (s, l, r) (tp, 0) stp) ires"
using d e
apply(rule_tac x = stp in exI, simp)
done
qed
lemma crsp_steps:
assumes layout: "ly = layout_of ap"
and compile: "tp = tm_of ap"
and crsp: "crsp ly (as, lm) (s, l, r) ires"
shows "\<exists> stp. crsp ly (abc_steps_l (as, lm) ap n)
(steps (s, l, r) (tp, 0) stp) ires"
(*
proof(induct n)
case 0
have "crsp ly (abc_steps_l (as, lm) ap 0) (steps (s, l, r) (tp, 0) 0) ires"
using crsp by(simp add: steps.simps abc_steps_l.simps)
thus "?case"
by(rule_tac x = 0 in exI, simp)
next
case (Suc n)
obtain as' lm' where a: "abc_steps_l (as, lm) ap n = (as', lm')"
by(case_tac "abc_steps_l (as, lm) ap n", auto)
have "\<exists>stp\<ge>n. crsp ly (abc_steps_l (as, lm) ap n) (steps (s, l, r) (tp, 0) stp) ires"
by fact
from this a obtain stpa where b:
"stpa\<ge>n \<and> crsp ly (as', lm') (steps (s, l, r) (tp, 0) stpa) ires" by auto
obtain s' l' r' where "steps (s, l, r) (tp, 0) stpa = (s', l', r')"
by(case_tac "steps (s, l, r) (tp, 0) stpa")
then have "stpa\<ge>n \<and> crsp ly (as', lm') (s', l', r') ires" using b by simp
from a and this show "?case"
proof(cases "abc_fetch as' ap")
case None
have "crsp ly (abc_steps_l (as, lm) ap 0) (steps (s, l, r) (tp, 0) stp) ires"
apply(simp add: steps.simps abc_steps_l.simps)
*)
using crsp
apply(induct n)
apply(rule_tac x = 0 in exI)
apply(simp add: steps.simps abc_steps_l.simps, simp)
apply(case_tac "(abc_steps_l (as, lm) ap n)", auto)
apply(frule_tac abc_step_red, simp)
apply(case_tac "abc_fetch a ap", simp add: abc_step_l.simps, auto)
apply(case_tac "steps (s, l, r) (tp, 0) stp", simp)
using assms
apply(drule_tac s = ab and l = ba and r = c in crsp_step, auto)
apply(rule_tac x = "stp + stpa" in exI, simp add: steps_add)
done
lemma tp_correct':
assumes layout: "ly = layout_of ap"
and compile: "tp = tm_of ap"
and crsp: "crsp ly (0, lm) (Suc 0, l, r) ires"
and abc_halt: "abc_steps_l (0, lm) ap stp = (length ap, am)"
shows "\<exists> stp k. steps (Suc 0, l, r) (tp, 0) stp = (start_of ly (length ap), Bk # Bk # ires, <am> @ Bk\<up>k)"
using assms
apply(drule_tac n = stp in crsp_steps, auto)
apply(rule_tac x = stpa in exI)
apply(case_tac "steps (Suc 0, l, r) (tm_of ap, 0) stpa", simp add: crsp.simps)
done
text{*The tp @ [(Nop, 0), (Nop, 0)] is nomoral turing machines, so we can use Hoare_plus when composing with Mop machine*}
thm layout_of.simps
lemma layout_id_cons: "layout_of (ap @ [p]) = layout_of ap @ [length_of p]"
apply(simp add: layout_of.simps)
done
lemma [simp]: "length (layout_of xs) = length xs"
by(simp add: layout_of.simps)
thm tms_of.simps
term ci
thm tms_of.simps
thm tpairs_of.simps
lemma [simp]:
"map (start_of (layout_of xs @ [length_of x])) [0..<length xs] = (map (start_of (layout_of xs)) [0..<length xs])"
apply(auto)
apply(simp add: layout_of.simps start_of.simps)
done
lemma tpairs_id_cons:
"tpairs_of (xs @ [x]) = tpairs_of xs @ [(start_of (layout_of (xs @ [x])) (length xs), x)]"
apply(auto simp: tpairs_of.simps layout_id_cons )
done
lemma map_length_ci:
"(map (length \<circ> (\<lambda>(xa, y). ci (layout_of xs @ [length_of x]) xa y)) (tpairs_of xs)) =
(map (length \<circ> (\<lambda>(x, y). ci (layout_of xs) x y)) (tpairs_of xs)) "
apply(auto)
apply(case_tac b, auto simp: ci.simps sete.simps)
done
lemma length_tp'[simp]:
"\<lbrakk>ly = layout_of ap; tp = tm_of ap\<rbrakk> \<Longrightarrow>
length tp = 2 * listsum (take (length ap) (layout_of ap))"
proof(induct ap arbitrary: ly tp rule: rev_induct)
case Nil
thus "?case"
by(simp add: tms_of.simps tm_of.simps tpairs_of.simps)
next
fix x xs ly tp
assume ind: "\<And>ly tp. \<lbrakk>ly = layout_of xs; tp = tm_of xs\<rbrakk> \<Longrightarrow>
length tp = 2 * listsum (take (length xs) (layout_of xs))"
and layout: "ly = layout_of (xs @ [x])"
and tp: "tp = tm_of (xs @ [x])"
obtain ly' where a: "ly' = layout_of xs"
by metis
obtain tp' where b: "tp' = tm_of xs"
by metis
have c: "length tp' = 2 * listsum (take (length xs) (layout_of xs))"
using a b
by(erule_tac ind, simp)
thus "length tp = 2 *
listsum (take (length (xs @ [x])) (layout_of (xs @ [x])))"
using tp b
apply(auto simp: layout_id_cons tm_of.simps tms_of.simps length_concat tpairs_id_cons map_length_ci)
apply(case_tac x)
apply(auto simp: ci.simps tinc_b_def tdec_b_def length_findnth sete.simps length_of.simps
split: abc_inst.splits)
done
qed
lemma [simp]:
"\<lbrakk>ly = layout_of ap; tp = tm_of ap\<rbrakk> \<Longrightarrow>
fetch (tp @ [(Nop, 0), (Nop, 0)]) (start_of ly (length ap)) b =
(Nop, 0)"
apply(case_tac b)
apply(simp_all add: start_of.simps fetch.simps nth_append)
done
(*
lemma tp_correct:
assumes layout: "ly = layout_of ap"
and compile: "tp = tm_of ap"
and crsp: "crsp ly (0, lm) (Suc 0, l, r) ires"
and abc_halt: "abc_steps_l (0, lm) ap stp = (length ap, am)"
shows "\<exists> stp k. steps (Suc 0, l, r) (tp @ [(Nop, 0), (Nop, 0)], 0) stp = (0, Bk # Bk # ires, <am> @ Bk\<up>k)"
using assms
proof -
have "\<exists> stp k. steps (Suc 0, l, r) (tp @ [(Nop, 0), (Nop, 0)], 0) stp =
(start_of ly (length ap), Bk # Bk # ires, <am> @ Bk\<up>k)"
proof -
have "\<exists> stp k. steps (Suc 0, l, r) (tp, 0) stp =
(start_of ly (length ap), Bk # Bk # ires, <am> @ Bk\<up>k)"
using assms
apply(rule_tac tp_correct', simp_all)
done
from this obtain stp k where "steps (Suc 0, l, r) (tp, 0) stp =
(start_of ly (length ap), Bk # Bk # ires, <am> @ Bk\<up>k)" by blast
thus "?thesis"
apply(rule_tac x = stp in exI, rule_tac x = k in exI)
apply(drule_tac tm_append_first_steps_eq, simp_all)
done
qed
from this obtain stp k where
"steps (Suc 0, l, r) (tp @ [(Nop, 0), (Nop, 0)], 0) stp =
(start_of ly (length ap), Bk # Bk # ires, <am> @ Bk\<up>k)"
by blast
thus "\<exists>stp k. steps (Suc 0, l, r) (tp @ [(Nop, 0), (Nop, 0)], 0) stp
= (0, Bk # Bk # ires, <am> @ Bk \<up> k)"
using assms
apply(rule_tac x = "stp + Suc 0" in exI)
apply(simp add: steps_add)
apply(auto simp: step.simps)
done
qed
*)
(********for mopup***********)
fun mopup_a :: "nat \<Rightarrow> instr list"
where
"mopup_a 0 = []" |
"mopup_a (Suc n) = mopup_a n @
[(R, 2*n + 3), (W0, 2*n + 2), (R, 2*n + 1), (W1, 2*n + 2)]"
definition mopup_b :: "instr list"
where
"mopup_b \<equiv> [(R, 2), (R, 1), (L, 5), (W0, 3), (R, 4), (W0, 3),
(R, 2), (W0, 3), (L, 5), (L, 6), (R, 0), (L, 6)]"
fun mopup :: "nat \<Rightarrow> instr list"
where
"mopup n = mopup_a n @ shift mopup_b (2*n)"
(****)
type_synonym mopup_type = "config \<Rightarrow> nat list \<Rightarrow> nat \<Rightarrow> cell list \<Rightarrow> bool"
fun mopup_stop :: "mopup_type"
where
"mopup_stop (s, l, r) lm n ires=
(\<exists> ln rn. l = Bk\<up>ln @ Bk # Bk # ires \<and> r = <abc_lm_v lm n> @ Bk\<up>rn)"
fun mopup_bef_erase_a :: "mopup_type"
where
"mopup_bef_erase_a (s, l, r) lm n ires=
(\<exists> ln m rn. l = Bk\<up>ln @ Bk # Bk # ires \<and>
r = Oc\<up>m@ Bk # <(drop ((s + 1) div 2) lm)> @ Bk\<up>rn)"
fun mopup_bef_erase_b :: "mopup_type"
where
"mopup_bef_erase_b (s, l, r) lm n ires =
(\<exists> ln m rn. l = Bk\<up>ln @ Bk # Bk # ires \<and> r = Bk # Oc\<up>m @ Bk #
<(drop (s div 2) lm)> @ Bk\<up>rn)"
fun mopup_jump_over1 :: "mopup_type"
where
"mopup_jump_over1 (s, l, r) lm n ires =
(\<exists> ln m1 m2 rn. m1 + m2 = Suc (abc_lm_v lm n) \<and>
l = Oc\<up>m1 @ Bk\<up>ln @ Bk # Bk # ires \<and>
(r = Oc\<up>m2 @ Bk # <(drop (Suc n) lm)> @ Bk\<up>rn \<or>
(r = Oc\<up>m2 \<and> (drop (Suc n) lm) = [])))"
fun mopup_aft_erase_a :: "mopup_type"
where
"mopup_aft_erase_a (s, l, r) lm n ires =
(\<exists> lnl lnr rn (ml::nat list) m.
m = Suc (abc_lm_v lm n) \<and> l = Bk\<up>lnr @ Oc\<up>m @ Bk\<up>lnl @ Bk # Bk # ires \<and>
(r = <ml> @ Bk\<up>rn))"
fun mopup_aft_erase_b :: "mopup_type"
where
"mopup_aft_erase_b (s, l, r) lm n ires=
(\<exists> lnl lnr rn (ml::nat list) m.
m = Suc (abc_lm_v lm n) \<and>
l = Bk\<up>lnr @ Oc\<up>m @ Bk\<up>lnl @ Bk # Bk # ires \<and>
(r = Bk # <ml> @ Bk\<up>rn \<or>
r = Bk # Bk # <ml> @ Bk\<up>rn))"
fun mopup_aft_erase_c :: "mopup_type"
where
"mopup_aft_erase_c (s, l, r) lm n ires =
(\<exists> lnl lnr rn (ml::nat list) m.
m = Suc (abc_lm_v lm n) \<and>
l = Bk\<up>lnr @ Oc\<up>m @ Bk\<up>lnl @ Bk # Bk # ires \<and>
(r = <ml> @ Bk\<up>rn \<or> r = Bk # <ml> @ Bk\<up>rn))"
fun mopup_left_moving :: "mopup_type"
where
"mopup_left_moving (s, l, r) lm n ires =
(\<exists> lnl lnr rn m.
m = Suc (abc_lm_v lm n) \<and>
((l = Bk\<up>lnr @ Oc\<up>m @ Bk\<up>lnl @ Bk # Bk # ires \<and> r = Bk\<up>rn) \<or>
(l = Oc\<up>(m - 1) @ Bk\<up>lnl @ Bk # Bk # ires \<and> r = Oc # Bk\<up>rn)))"
fun mopup_jump_over2 :: "mopup_type"
where
"mopup_jump_over2 (s, l, r) lm n ires =
(\<exists> ln rn m1 m2.
m1 + m2 = Suc (abc_lm_v lm n)
\<and> r \<noteq> []
\<and> (hd r = Oc \<longrightarrow> (l = Oc\<up>m1 @ Bk\<up>ln @ Bk # Bk # ires \<and> r = Oc\<up>m2 @ Bk\<up>rn))
\<and> (hd r = Bk \<longrightarrow> (l = Bk\<up>ln @ Bk # ires \<and> r = Bk # Oc\<up>(m1+m2)@ Bk\<up>rn)))"
fun mopup_inv :: "mopup_type"
where
"mopup_inv (s, l, r) lm n ires =
(if s = 0 then mopup_stop (s, l, r) lm n ires
else if s \<le> 2*n then
if s mod 2 = 1 then mopup_bef_erase_a (s, l, r) lm n ires
else mopup_bef_erase_b (s, l, r) lm n ires
else if s = 2*n + 1 then
mopup_jump_over1 (s, l, r) lm n ires
else if s = 2*n + 2 then mopup_aft_erase_a (s, l, r) lm n ires
else if s = 2*n + 3 then mopup_aft_erase_b (s, l, r) lm n ires
else if s = 2*n + 4 then mopup_aft_erase_c (s, l, r) lm n ires
else if s = 2*n + 5 then mopup_left_moving (s, l, r) lm n ires
else if s = 2*n + 6 then mopup_jump_over2 (s, l, r) lm n ires
else False)"
lemma mopup_fetch_0[simp]:
"(fetch (mopup_a n @ shift mopup_b (2 * n)) 0 b) = (Nop, 0)"
by(simp add: fetch.simps)
lemma mop_bef_length[simp]: "length (mopup_a n) = 4 * n"
apply(induct n, simp_all add: mopup_a.simps)
done
lemma mopup_a_nth:
"\<lbrakk>q < n; x < 4\<rbrakk> \<Longrightarrow> mopup_a n ! (4 * q + x) =
mopup_a (Suc q) ! ((4 * q) + x)"
apply(induct n, simp)
apply(case_tac "q < n", simp add: mopup_a.simps, auto)
apply(simp add: nth_append)
apply(subgoal_tac "q = n", simp)
apply(arith)
done
lemma fetch_bef_erase_a_o[simp]:
"\<lbrakk>0 < s; s \<le> 2 * n; s mod 2 = Suc 0\<rbrakk>
\<Longrightarrow> (fetch (mopup_a n @ shift mopup_b (2 * n)) s Oc) = (W0, s + 1)"
apply(subgoal_tac "\<exists> q. s = 2*q + 1", auto)
apply(subgoal_tac "length (mopup_a n) = 4*n")
apply(auto simp: fetch.simps nth_of.simps nth_append)
apply(subgoal_tac "mopup_a n ! (4 * q + 1) =
mopup_a (Suc q) ! ((4 * q) + 1)",
simp add: mopup_a.simps nth_append)
apply(rule mopup_a_nth, auto)
apply arith
done
lemma fetch_bef_erase_a_b[simp]:
"\<lbrakk>0 < s; s \<le> 2 * n; s mod 2 = Suc 0\<rbrakk>
\<Longrightarrow> (fetch (mopup_a n @ shift mopup_b (2 * n)) s Bk) = (R, s + 2)"
apply(subgoal_tac "\<exists> q. s = 2*q + 1", auto)
apply(subgoal_tac "length (mopup_a n) = 4*n")
apply(auto simp: fetch.simps nth_of.simps nth_append)
apply(subgoal_tac "mopup_a n ! (4 * q + 0) =
mopup_a (Suc q) ! ((4 * q + 0))",
simp add: mopup_a.simps nth_append)
apply(rule mopup_a_nth, auto)
apply arith
done
lemma fetch_bef_erase_b_b:
"\<lbrakk>n < length lm; 0 < s; s \<le> 2 * n; s mod 2 = 0\<rbrakk> \<Longrightarrow>
(fetch (mopup_a n @ shift mopup_b (2 * n)) s Bk) = (R, s - 1)"
apply(subgoal_tac "\<exists> q. s = 2 * q", auto)
apply(case_tac qa, simp, simp)
apply(auto simp: fetch.simps nth_of.simps nth_append)
apply(subgoal_tac "mopup_a n ! (4 * nat + 2) =
mopup_a (Suc nat) ! ((4 * nat) + 2)",
simp add: mopup_a.simps nth_append)
apply(rule mopup_a_nth, auto)
done
lemma fetch_jump_over1_o:
"fetch (mopup_a n @ shift mopup_b (2 * n)) (Suc (2 * n)) Oc
= (R, Suc (2 * n))"
apply(subgoal_tac "length (mopup_a n) = 4 * n")
apply(auto simp: fetch.simps nth_of.simps mopup_b_def nth_append
shift.simps)
done
lemma fetch_jump_over1_b:
"fetch (mopup_a n @ shift mopup_b (2 * n)) (Suc (2 * n)) Bk
= (R, Suc (Suc (2 * n)))"
apply(subgoal_tac "length (mopup_a n) = 4 * n")
apply(auto simp: fetch.simps nth_of.simps mopup_b_def
nth_append shift.simps)
done
lemma fetch_aft_erase_a_o:
"fetch (mopup_a n @ shift mopup_b (2 * n)) (Suc (Suc (2 * n))) Oc
= (W0, Suc (2 * n + 2))"
apply(subgoal_tac "length (mopup_a n) = 4 * n")
apply(auto simp: fetch.simps nth_of.simps mopup_b_def
nth_append shift.simps)
done
lemma fetch_aft_erase_a_b:
"fetch (mopup_a n @ shift mopup_b (2 * n)) (Suc (Suc (2 * n))) Bk
= (L, Suc (2 * n + 4))"
apply(subgoal_tac "length (mopup_a n) = 4 * n")
apply(auto simp: fetch.simps nth_of.simps mopup_b_def
nth_append shift.simps)
done
lemma fetch_aft_erase_b_b:
"fetch (mopup_a n @ shift mopup_b (2 * n)) (2*n + 3) Bk
= (R, Suc (2 * n + 3))"
apply(subgoal_tac "length (mopup_a n) = 4 * n")
apply(subgoal_tac "2*n + 3 = Suc (2*n + 2)", simp only: fetch.simps)
apply(auto simp: nth_of.simps mopup_b_def nth_append shift.simps)
done
lemma fetch_aft_erase_c_o:
"fetch (mopup_a n @ shift mopup_b (2 * n)) (2 * n + 4) Oc
= (W0, Suc (2 * n + 2))"
apply(subgoal_tac "length (mopup_a n) = 4 * n")
apply(subgoal_tac "2*n + 4 = Suc (2*n + 3)", simp only: fetch.simps)
apply(auto simp: nth_of.simps mopup_b_def nth_append shift.simps)
done
lemma fetch_aft_erase_c_b:
"fetch (mopup_a n @ shift mopup_b (2 * n)) (2 * n + 4) Bk
= (R, Suc (2 * n + 1))"
apply(subgoal_tac "length (mopup_a n) = 4 * n")
apply(subgoal_tac "2*n + 4 = Suc (2*n + 3)", simp only: fetch.simps)
apply(auto simp: nth_of.simps mopup_b_def nth_append shift.simps)
done
lemma fetch_left_moving_o:
"(fetch (mopup_a n @ shift mopup_b (2 * n)) (2 * n + 5) Oc)
= (L, 2*n + 6)"
apply(subgoal_tac "length (mopup_a n) = 4 * n")
apply(subgoal_tac "2*n + 5 = Suc (2*n + 4)", simp only: fetch.simps)
apply(auto simp: nth_of.simps mopup_b_def nth_append shift.simps)
done
lemma fetch_left_moving_b:
"(fetch (mopup_a n @ shift mopup_b (2 * n)) (2 * n + 5) Bk)
= (L, 2*n + 5)"
apply(subgoal_tac "length (mopup_a n) = 4 * n")
apply(subgoal_tac "2*n + 5 = Suc (2*n + 4)", simp only: fetch.simps)
apply(auto simp: nth_of.simps mopup_b_def nth_append shift.simps)
done
lemma fetch_jump_over2_b:
"(fetch (mopup_a n @ shift mopup_b (2 * n)) (2 * n + 6) Bk)
= (R, 0)"
apply(subgoal_tac "length (mopup_a n) = 4 * n")
apply(subgoal_tac "2*n + 6 = Suc (2*n + 5)", simp only: fetch.simps)
apply(auto simp: nth_of.simps mopup_b_def nth_append shift.simps)
done
lemma fetch_jump_over2_o:
"(fetch (mopup_a n @ shift mopup_b (2 * n)) (2 * n + 6) Oc)
= (L, 2*n + 6)"
apply(subgoal_tac "length (mopup_a n) = 4 * n")
apply(subgoal_tac "2*n + 6 = Suc (2*n + 5)", simp only: fetch.simps)
apply(auto simp: nth_of.simps mopup_b_def nth_append shift.simps)
done
lemmas mopupfetchs =
fetch_bef_erase_a_o fetch_bef_erase_a_b fetch_bef_erase_b_b
fetch_jump_over1_o fetch_jump_over1_b fetch_aft_erase_a_o
fetch_aft_erase_a_b fetch_aft_erase_b_b fetch_aft_erase_c_o
fetch_aft_erase_c_b fetch_left_moving_o fetch_left_moving_b
fetch_jump_over2_b fetch_jump_over2_o
declare
mopup_jump_over2.simps[simp del] mopup_left_moving.simps[simp del]
mopup_aft_erase_c.simps[simp del] mopup_aft_erase_b.simps[simp del]
mopup_aft_erase_a.simps[simp del] mopup_jump_over1.simps[simp del]
mopup_bef_erase_a.simps[simp del] mopup_bef_erase_b.simps[simp del]
mopup_stop.simps[simp del]
lemma [simp]:
"\<lbrakk>mopup_bef_erase_a (s, l, Oc # xs) lm n ires\<rbrakk> \<Longrightarrow>
mopup_bef_erase_b (Suc s, l, Bk # xs) lm n ires"
apply(auto simp: mopup_bef_erase_a.simps mopup_bef_erase_b.simps )
apply(rule_tac x = "m - 1" in exI, rule_tac x = rn in exI)
apply(case_tac m, simp, simp)
done
lemma mopup_false1:
"\<lbrakk>0 < s; s \<le> 2 * n; s mod 2 = Suc 0; \<not> Suc s \<le> 2 * n\<rbrakk>
\<Longrightarrow> RR"
apply(arith)
done
lemma [simp]:
"\<lbrakk>n < length lm; 0 < s; s \<le> 2 * n; s mod 2 = Suc 0;
mopup_bef_erase_a (s, l, Oc # xs) lm n ires; r = Oc # xs\<rbrakk>
\<Longrightarrow> (Suc s \<le> 2 * n \<longrightarrow> mopup_bef_erase_b (Suc s, l, Bk # xs) lm n ires) \<and>
(\<not> Suc s \<le> 2 * n \<longrightarrow> mopup_jump_over1 (Suc s, l, Bk # xs) lm n ires) "
apply(auto elim: mopup_false1)
done
lemma drop_tape_of_cons:
"\<lbrakk>Suc q < length lm; x = lm ! q\<rbrakk> \<Longrightarrow> <drop q lm> = Oc # Oc \<up> x @ Bk # <drop (Suc q) lm>"
by (metis Suc_lessD append_Cons list.simps(2) nth_drop' replicate_Suc tape_of_nl_cons)
lemma erase2jumpover1:
"\<lbrakk>q < length list;
\<forall>rn. <drop q list> \<noteq> Oc # Oc \<up> abc_lm_v (a # list) (Suc q) @ Bk # <drop (Suc q) list> @ Bk \<up> rn\<rbrakk>
\<Longrightarrow> <drop q list> = Oc # Oc \<up> abc_lm_v (a # list) (Suc q)"
apply(erule_tac x = 0 in allE, simp)
apply(case_tac "Suc q < length list")
apply(erule_tac notE)
apply(rule_tac drop_tape_of_cons, simp_all add: abc_lm_v.simps)
apply(subgoal_tac "length list = Suc q", auto)
apply(subgoal_tac "drop q list = [list ! q]")
apply(simp add: tape_of_nl_abv tape_of_nat_abv)
by (metis append_Nil2 append_eq_conv_conj drop_Suc_conv_tl lessI)
lemma erase2jumpover2:
"\<lbrakk>q < length list; \<forall>rn. <drop q list> @ Bk # Bk \<up> n \<noteq>
Oc # Oc \<up> abc_lm_v (a # list) (Suc q) @ Bk # <drop (Suc q) list> @ Bk \<up> rn\<rbrakk>
\<Longrightarrow> RR"
apply(case_tac "Suc q < length list")
apply(erule_tac x = "Suc n" in allE, simp)
apply(erule_tac notE)
apply(rule_tac drop_tape_of_cons, simp_all add: abc_lm_v.simps)
apply(subgoal_tac "length list = Suc q", auto)
apply(erule_tac x = "n" in allE, simp add: tape_of_nl_abv)
by (metis append_Nil2 append_eq_conv_conj drop_Suc_conv_tl lessI replicate_Suc tape_of_nl_abv tape_of_nl_cons)
lemma mopup_bef_erase_a_2_jump_over[simp]:
"\<lbrakk>n < length lm; 0 < s; s mod 2 = Suc 0; s \<le> 2 * n;
mopup_bef_erase_a (s, l, Bk # xs) lm n ires; \<not> (Suc (Suc s) \<le> 2 * n)\<rbrakk>
\<Longrightarrow> mopup_jump_over1 (s', Bk # l, xs) lm n ires"
apply(auto simp: mopup_bef_erase_a.simps mopup_jump_over1.simps)
apply(case_tac m, auto simp: mod_ex1)
apply(subgoal_tac "n = Suc q", auto)
apply(rule_tac x = "Suc ln" in exI, rule_tac x = 0 in exI, auto)
apply(case_tac [!] lm, simp_all)
apply(case_tac [!] rn, auto elim: erase2jumpover1 erase2jumpover2)
apply(erule_tac x = 0 in allE, simp)
apply(rule_tac classical, simp)
apply(erule_tac notE)
apply(rule_tac drop_tape_of_cons, simp_all add: abc_lm_v.simps)
done
lemma Suc_Suc_div: "\<lbrakk>0 < s; s mod 2 = Suc 0; Suc (Suc s) \<le> 2 * n\<rbrakk>
\<Longrightarrow> (Suc (Suc (s div 2))) \<le> n"
apply(arith)
done
lemma mopup_bef_erase_a_2_a[simp]:
"\<lbrakk>n < length lm; 0 < s; s mod 2 = Suc 0;
mopup_bef_erase_a (s, l, Bk # xs) lm n ires;
Suc (Suc s) \<le> 2 * n\<rbrakk> \<Longrightarrow>
mopup_bef_erase_a (Suc (Suc s), Bk # l, xs) lm n ires"
apply(auto simp: mopup_bef_erase_a.simps)
apply(subgoal_tac "drop (Suc (Suc (s div 2))) lm \<noteq> []")
apply(case_tac m, simp_all)
apply(rule_tac x = "Suc (abc_lm_v lm (Suc (s div 2)))" in exI,
rule_tac x = rn in exI, auto simp: mod_ex1)
apply(rule_tac drop_tape_of_cons)
apply arith
apply(simp add: abc_lm_v.simps)
done
lemma mopup_false2:
"\<lbrakk>0 < s; s \<le> 2 * n;
s mod 2 = Suc 0; Suc s \<noteq> 2 * n;
\<not> Suc (Suc s) \<le> 2 * n\<rbrakk> \<Longrightarrow> RR"
apply(arith)
done
lemma [simp]: "mopup_bef_erase_a (s, l, []) lm n ires \<Longrightarrow>
mopup_bef_erase_a (s, l, [Bk]) lm n ires"
apply(auto simp: mopup_bef_erase_a.simps)
done
lemma [simp]:
"\<lbrakk>n < length lm; 0 < s; s \<le> 2 * n; s mod 2 = Suc 0; \<not> Suc (Suc s) \<le> 2 *n;
mopup_bef_erase_a (s, l, []) lm n ires\<rbrakk>
\<Longrightarrow> mopup_jump_over1 (s', Bk # l, []) lm n ires"
by auto
lemma "mopup_bef_erase_b (s, l, Oc # xs) lm n ires \<Longrightarrow> l \<noteq> []"
apply(auto simp: mopup_bef_erase_b.simps)
done
lemma [simp]: "mopup_bef_erase_b (s, l, Oc # xs) lm n ires = False"
apply(auto simp: mopup_bef_erase_b.simps )
done
lemma [simp]: "\<lbrakk>0 < s; s \<le> 2 *n; s mod 2 \<noteq> Suc 0\<rbrakk> \<Longrightarrow>
(s - Suc 0) mod 2 = Suc 0"
apply(arith)
done
lemma [simp]: "\<lbrakk>0 < s; s \<le> 2 *n; s mod 2 \<noteq> Suc 0\<rbrakk> \<Longrightarrow>
s - Suc 0 \<le> 2 * n"
apply(simp)
done
lemma [simp]: "\<lbrakk>0 < s; s \<le> 2 *n; s mod 2 \<noteq> Suc 0\<rbrakk> \<Longrightarrow> \<not> s \<le> Suc 0"
apply(arith)
done
lemma [simp]: "\<lbrakk>n < length lm; 0 < s; s \<le> 2 * n;
s mod 2 \<noteq> Suc 0;
mopup_bef_erase_b (s, l, Bk # xs) lm n ires; r = Bk # xs\<rbrakk>
\<Longrightarrow> mopup_bef_erase_a (s - Suc 0, Bk # l, xs) lm n ires"
apply(auto simp: mopup_bef_erase_b.simps mopup_bef_erase_a.simps)
done
lemma [simp]: "\<lbrakk>mopup_bef_erase_b (s, l, []) lm n ires\<rbrakk> \<Longrightarrow>
mopup_bef_erase_a (s - Suc 0, Bk # l, []) lm n ires"
apply(auto simp: mopup_bef_erase_b.simps mopup_bef_erase_a.simps)
done
lemma [simp]:
"\<lbrakk>n < length lm;
mopup_jump_over1 (Suc (2 * n), l, Oc # xs) lm n ires;
r = Oc # xs\<rbrakk>
\<Longrightarrow> mopup_jump_over1 (Suc (2 * n), Oc # l, xs) lm n ires"
apply(auto simp: mopup_jump_over1.simps)
apply(rule_tac x = ln in exI, rule_tac x = "Suc m1" in exI,
rule_tac x = "m2 - 1" in exI, simp)
apply(case_tac "m2", simp, simp)
apply(rule_tac x = ln in exI, rule_tac x = "Suc m1" in exI,
rule_tac x = "m2 - 1" in exI)
apply(case_tac m2, simp, simp)
done
lemma mopup_jump_over1_2_aft_erase_a[simp]:
"\<lbrakk>n < length lm; mopup_jump_over1 (Suc (2 * n), l, Bk # xs) lm n ires\<rbrakk>
\<Longrightarrow> mopup_aft_erase_a (Suc (Suc (2 * n)), Bk # l, xs) lm n ires"
apply(simp only: mopup_jump_over1.simps mopup_aft_erase_a.simps)
apply(erule_tac exE)+
apply(rule_tac x = ln in exI, rule_tac x = "Suc 0" in exI)
apply(case_tac m2, simp)
apply(rule_tac x = rn in exI, rule_tac x = "drop (Suc n) lm" in exI,
simp)
apply(simp)
done
lemma [simp]:
"\<lbrakk>n < length lm; mopup_jump_over1 (Suc (2 * n), l, []) lm n ires\<rbrakk> \<Longrightarrow>
mopup_aft_erase_a (Suc (Suc (2 * n)), Bk # l, []) lm n ires"
apply(rule mopup_jump_over1_2_aft_erase_a, simp)
apply(auto simp: mopup_jump_over1.simps)
apply(rule_tac x = ln in exI, rule_tac x = "Suc (abc_lm_v lm n)" in exI,
rule_tac x = 0 in exI, simp add: )
done
lemma [simp]:
"\<lbrakk>n < length lm;
mopup_aft_erase_a (Suc (Suc (2 * n)), l, Oc # xs) lm n ires\<rbrakk>
\<Longrightarrow> mopup_aft_erase_b (Suc (Suc (Suc (2 * n))), l, Bk # xs) lm n ires"
apply(auto simp: mopup_aft_erase_a.simps mopup_aft_erase_b.simps )
apply(case_tac ml)
apply(simp_all add: tape_of_nl_cons split: if_splits)
apply(case_tac a, simp_all)
apply(rule_tac x = rn in exI, rule_tac x = "[]" in exI, simp)
apply(rule_tac x = rn in exI, rule_tac x = "[nat]" in exI, simp)
apply(case_tac a, simp_all)
apply(rule_tac x = rn in exI, rule_tac x = "list" in exI, simp)
apply(rule_tac x = rn in exI)
apply(rule_tac x = "nat # list" in exI, simp add: tape_of_nl_cons)
done
lemma [simp]:
"mopup_aft_erase_a (Suc (Suc (2 * n)), l, Bk # xs) lm n ires \<Longrightarrow> l \<noteq> []"
apply(auto simp: mopup_aft_erase_a.simps)
done
lemma [simp]:
"\<lbrakk>n < length lm;
mopup_aft_erase_a (Suc (Suc (2 * n)), l, Bk # xs) lm n ires\<rbrakk>
\<Longrightarrow> mopup_left_moving (5 + 2 * n, tl l, hd l # Bk # xs) lm n ires"
apply(simp only: mopup_aft_erase_a.simps mopup_left_moving.simps)
apply(erule exE)+
apply(case_tac lnr, simp)
apply(case_tac ml, simp, simp add: tape_of_nl_cons split: if_splits)
apply(auto)
apply(case_tac ml, simp_all add: tape_of_nl_cons split: if_splits)
apply(rule_tac x = "Suc rn" in exI, simp)
done
lemma [simp]:
"mopup_aft_erase_a (Suc (Suc (2 * n)), l, []) lm n ires \<Longrightarrow> l \<noteq> []"
apply(simp only: mopup_aft_erase_a.simps)
apply(erule exE)+
apply(auto)
done
lemma [simp]:
"\<lbrakk>n < length lm; mopup_aft_erase_a (Suc (Suc (2 * n)), l, []) lm n ires\<rbrakk>
\<Longrightarrow> mopup_left_moving (5 + 2 * n, tl l, [hd l]) lm n ires"
apply(simp only: mopup_aft_erase_a.simps mopup_left_moving.simps)
apply(erule exE)+
apply(subgoal_tac "ml = [] \<and> rn = 0", erule conjE, erule conjE, simp)
apply(case_tac lnr, simp)
apply(rule_tac x = lnl in exI, simp)
apply(rule_tac x = 1 in exI, simp)
apply(case_tac ml, simp, simp)
done
lemma [simp]: "mopup_aft_erase_b (2 * n + 3, l, Oc # xs) lm n ires = False"
apply(auto simp: mopup_aft_erase_b.simps )
done
lemma tape_of_ex1[intro]:
"\<exists>rna ml. Oc \<up> a @ Bk \<up> rn = <ml::nat list> @ Bk \<up> rna \<or> Oc \<up> a @ Bk \<up> rn = Bk # <ml> @ Bk \<up> rna"
apply(case_tac a, simp_all)
apply(rule_tac x = rn in exI, rule_tac x = "[]" in exI, simp)
apply(rule_tac x = rn in exI, rule_tac x = "[nat]" in exI, simp)
done
lemma [intro]: "\<exists>rna ml. Oc \<up> a @ Bk # <list::nat list> @ Bk \<up> rn =
<ml> @ Bk \<up> rna \<or> Oc \<up> a @ Bk # <list> @ Bk \<up> rn = Bk # <ml::nat list> @ Bk \<up> rna"
apply(case_tac "list = []", simp add: replicate_Suc[THEN sym] del: replicate_Suc)
apply(rule_tac rn = "Suc rn" in tape_of_ex1)
apply(case_tac a, simp)
apply(rule_tac x = rn in exI, rule_tac x = list in exI, simp)
apply(rule_tac x = rn in exI, rule_tac x = "nat # list" in exI)
apply(simp add: tape_of_nl_cons)
done
lemma [simp]:
"\<lbrakk>n < length lm;
mopup_aft_erase_c (2 * n + 4, l, Oc # xs) lm n ires\<rbrakk>
\<Longrightarrow> mopup_aft_erase_b (Suc (Suc (Suc (2 * n))), l, Bk # xs) lm n ires"
apply(auto simp: mopup_aft_erase_c.simps mopup_aft_erase_b.simps )
apply(case_tac ml, simp_all add: tape_of_nl_cons split: if_splits, auto)
done
lemma mopup_aft_erase_c_aft_erase_a[simp]:
"\<lbrakk>n < length lm; mopup_aft_erase_c (2 * n + 4, l, Bk # xs) lm n ires\<rbrakk>
\<Longrightarrow> mopup_aft_erase_a (Suc (Suc (2 * n)), Bk # l, xs) lm n ires"
apply(simp only: mopup_aft_erase_c.simps mopup_aft_erase_a.simps )
apply(erule_tac exE)+
apply(erule conjE, erule conjE, erule disjE)
apply(subgoal_tac "ml = []", simp, case_tac rn,
simp, simp, rule conjI)
apply(rule_tac x = lnl in exI, rule_tac x = "Suc lnr" in exI, simp)
apply(rule_tac x = nat in exI, rule_tac x = "[]" in exI, simp)
apply(case_tac ml, simp, simp add: tape_of_nl_cons split: if_splits)
apply(rule_tac x = lnl in exI, rule_tac x = "Suc lnr" in exI, simp)
apply(rule_tac x = rn in exI, rule_tac x = "ml" in exI, simp)
done
lemma [simp]:
"\<lbrakk>n < length lm; mopup_aft_erase_c (2 * n + 4, l, []) lm n ires\<rbrakk>
\<Longrightarrow> mopup_aft_erase_a (Suc (Suc (2 * n)), Bk # l, []) lm n ires"
apply(rule mopup_aft_erase_c_aft_erase_a, simp)
apply(simp only: mopup_aft_erase_c.simps)
apply(erule exE)+
apply(rule_tac x = lnl in exI, rule_tac x = lnr in exI, simp add: )
apply(rule_tac x = 0 in exI, rule_tac x = "[]" in exI, simp)
done
lemma mopup_aft_erase_b_2_aft_erase_c[simp]:
"\<lbrakk>n < length lm; mopup_aft_erase_b (2 * n + 3, l, Bk # xs) lm n ires\<rbrakk>
\<Longrightarrow> mopup_aft_erase_c (4 + 2 * n, Bk # l, xs) lm n ires"
apply(auto simp: mopup_aft_erase_b.simps mopup_aft_erase_c.simps)
apply(rule_tac x = "lnl" in exI, rule_tac x = "Suc lnr" in exI, simp)
apply(rule_tac x = "lnl" in exI, rule_tac x = "Suc lnr" in exI, simp)
done
lemma [simp]:
"\<lbrakk>n < length lm; mopup_aft_erase_b (2 * n + 3, l, []) lm n ires\<rbrakk>
\<Longrightarrow> mopup_aft_erase_c (4 + 2 * n, Bk # l, []) lm n ires"
apply(rule_tac mopup_aft_erase_b_2_aft_erase_c, simp)
apply(simp add: mopup_aft_erase_b.simps)
done
lemma [simp]:
"mopup_left_moving (2 * n + 5, l, Oc # xs) lm n ires \<Longrightarrow> l \<noteq> []"
apply(auto simp: mopup_left_moving.simps)
done
lemma [simp]:
"\<lbrakk>n < length lm; mopup_left_moving (2 * n + 5, l, Oc # xs) lm n ires\<rbrakk>
\<Longrightarrow> mopup_jump_over2 (2 * n + 6, tl l, hd l # Oc # xs) lm n ires"
apply(simp only: mopup_left_moving.simps mopup_jump_over2.simps)
apply(erule_tac exE)+
apply(erule conjE, erule disjE, erule conjE)
apply(case_tac rn, simp, simp add: )
apply(case_tac "hd l", simp add: )
apply(case_tac "abc_lm_v lm n", simp)
apply(rule_tac x = "lnl" in exI, rule_tac x = rn in exI,
rule_tac x = "Suc 0" in exI, rule_tac x = 0 in exI)
apply(case_tac lnl, simp, simp, simp add: exp_ind[THEN sym], simp)
apply(case_tac "abc_lm_v lm n", simp)
apply(case_tac lnl, simp, simp)
apply(rule_tac x = lnl in exI, rule_tac x = rn in exI)
apply(rule_tac x = nat in exI, rule_tac x = "Suc (Suc 0)" in exI, simp)
done
lemma [simp]: "mopup_left_moving (2 * n + 5, l, xs) lm n ires \<Longrightarrow> l \<noteq> []"
apply(auto simp: mopup_left_moving.simps)
done
lemma [simp]:
"\<lbrakk>n < length lm; mopup_left_moving (2 * n + 5, l, Bk # xs) lm n ires\<rbrakk>
\<Longrightarrow> mopup_left_moving (2 * n + 5, tl l, hd l # Bk # xs) lm n ires"
apply(simp only: mopup_left_moving.simps)
apply(erule exE)+
apply(case_tac lnr, simp)
apply(rule_tac x = lnl in exI, rule_tac x = nat in exI, simp)
apply(rule_tac x = "Suc rn" in exI, simp)
done
lemma [simp]:
"\<lbrakk>n < length lm; mopup_left_moving (2 * n + 5, l, []) lm n ires\<rbrakk>
\<Longrightarrow> mopup_left_moving (2 * n + 5, tl l, [hd l]) lm n ires"
apply(simp only: mopup_left_moving.simps)
apply(erule exE)+
apply(case_tac lnr, auto)
done
lemma [simp]:
"mopup_jump_over2 (2 * n + 6, l, Oc # xs) lm n ires \<Longrightarrow> l \<noteq> []"
apply(auto simp: mopup_jump_over2.simps )
done
lemma [simp]:
"\<lbrakk>n < length lm; mopup_jump_over2 (2 * n + 6, l, Oc # xs) lm n ires\<rbrakk>
\<Longrightarrow> mopup_jump_over2 (2 * n + 6, tl l, hd l # Oc # xs) lm n ires"
apply(simp only: mopup_jump_over2.simps)
apply(erule_tac exE)+
apply(simp add: , erule conjE, erule_tac conjE)
apply(case_tac m1, simp)
apply(rule_tac x = ln in exI, rule_tac x = rn in exI,
rule_tac x = 0 in exI, simp)
apply(case_tac ln, simp, simp, simp only: exp_ind[THEN sym], simp)
apply(rule_tac x = ln in exI, rule_tac x = rn in exI,
rule_tac x = nat in exI, rule_tac x = "Suc m2" in exI, simp)
done
lemma [simp]:
"\<lbrakk>n < length lm; mopup_jump_over2 (2 * n + 6, l, Bk # xs) lm n ires\<rbrakk>
\<Longrightarrow> mopup_stop (0, Bk # l, xs) lm n ires"
apply(auto simp: mopup_jump_over2.simps mopup_stop.simps)
apply(simp_all add: tape_of_nat_abv exp_ind[THEN sym])
done
lemma [simp]: "mopup_jump_over2 (2 * n + 6, l, []) lm n ires = False"
apply(simp only: mopup_jump_over2.simps, simp)
done
lemma mopup_inv_step:
"\<lbrakk>n < length lm; mopup_inv (s, l, r) lm n ires\<rbrakk>
\<Longrightarrow> mopup_inv (step (s, l, r) (mopup_a n @ shift mopup_b (2 * n), 0)) lm n ires"
apply(case_tac r, case_tac [2] a)
apply(auto split:if_splits simp add:step.simps)
apply(simp_all add: mopupfetchs)
done
declare mopup_inv.simps[simp del]
lemma mopup_inv_steps:
"\<lbrakk>n < length lm; mopup_inv (s, l, r) lm n ires\<rbrakk> \<Longrightarrow>
mopup_inv (steps (s, l, r) (mopup_a n @ shift mopup_b (2 * n), 0) stp) lm n ires"
apply(induct_tac stp, simp add: steps.simps)
apply(simp add: step_red)
apply(case_tac "steps (s, l, r)
(mopup_a n @ shift mopup_b (2 * n), 0) na", simp)
apply(rule_tac mopup_inv_step, simp, simp)
done
fun abc_mopup_stage1 :: "config \<Rightarrow> nat \<Rightarrow> nat"
where
"abc_mopup_stage1 (s, l, r) n =
(if s > 0 \<and> s \<le> 2*n then 6
else if s = 2*n + 1 then 4
else if s \<ge> 2*n + 2 \<and> s \<le> 2*n + 4 then 3
else if s = 2*n + 5 then 2
else if s = 2*n + 6 then 1
else 0)"
fun abc_mopup_stage2 :: "config \<Rightarrow> nat \<Rightarrow> nat"
where
"abc_mopup_stage2 (s, l, r) n =
(if s > 0 \<and> s \<le> 2*n then length r
else if s = 2*n + 1 then length r
else if s = 2*n + 5 then length l
else if s = 2*n + 6 then length l
else if s \<ge> 2*n + 2 \<and> s \<le> 2*n + 4 then length r
else 0)"
fun abc_mopup_stage3 :: "config \<Rightarrow> nat \<Rightarrow> nat"
where
"abc_mopup_stage3 (s, l, r) n =
(if s > 0 \<and> s \<le> 2*n then
if hd r = Bk then 0
else 1
else if s = 2*n + 2 then 1
else if s = 2*n + 3 then 0
else if s = 2*n + 4 then 2
else 0)"
fun abc_mopup_measure :: "(config \<times> nat) \<Rightarrow> (nat \<times> nat \<times> nat)"
where
"abc_mopup_measure (c, n) =
(abc_mopup_stage1 c n, abc_mopup_stage2 c n,
abc_mopup_stage3 c n)"
definition abc_mopup_LE ::
"(((nat \<times> cell list \<times> cell list) \<times> nat) \<times>
((nat \<times> cell list \<times> cell list) \<times> nat)) set"
where
"abc_mopup_LE \<equiv> (inv_image lex_triple abc_mopup_measure)"
lemma wf_abc_mopup_le[intro]: "wf abc_mopup_LE"
by(auto intro:wf_inv_image simp:abc_mopup_LE_def lex_triple_def lex_pair_def)
lemma [simp]: "mopup_bef_erase_a (a, aa, []) lm n ires = False"
apply(auto simp: mopup_bef_erase_a.simps)
done
lemma [simp]: "mopup_bef_erase_b (a, aa, []) lm n ires = False"
apply(auto simp: mopup_bef_erase_b.simps)
done
lemma [simp]: "mopup_aft_erase_b (2 * n + 3, aa, []) lm n ires = False"
apply(auto simp: mopup_aft_erase_b.simps)
done
declare mopup_inv.simps[simp del]
term mopup_inv
lemma [simp]:
"\<lbrakk>0 < q; q \<le> n\<rbrakk> \<Longrightarrow>
(fetch (mopup_a n @ shift mopup_b (2 * n)) (2*q) Bk) = (R, 2*q - 1)"
apply(case_tac q, simp, simp)
apply(auto simp: fetch.simps nth_of.simps nth_append)
apply(subgoal_tac "mopup_a n ! (4 * nat + 2) =
mopup_a (Suc nat) ! ((4 * nat) + 2)",
simp add: mopup_a.simps nth_append)
apply(rule mopup_a_nth, auto)
done
(* FIXME: is also in uncomputable *)
lemma halt_lemma:
"\<lbrakk>wf LE; \<forall>n. (\<not> P (f n) \<longrightarrow> (f (Suc n), (f n)) \<in> LE)\<rbrakk> \<Longrightarrow> \<exists>n. P (f n)"
by (metis wf_iff_no_infinite_down_chain)
lemma mopup_halt:
assumes
less: "n < length lm"
and inv: "mopup_inv (Suc 0, l, r) lm n ires"
and f: "f = (\<lambda> stp. (steps (Suc 0, l, r) (mopup_a n @ shift mopup_b (2 * n), 0) stp, n))"
and P: "P = (\<lambda> (c, n). is_final c)"
shows "\<exists> stp. P (f stp)"
proof(rule_tac LE = abc_mopup_LE in halt_lemma)
show "wf abc_mopup_LE" by(auto)
next
show "\<forall>n. \<not> P (f n) \<longrightarrow> (f (Suc n), f n) \<in> abc_mopup_LE"
proof(rule_tac allI, rule_tac impI)
fix na
assume h: "\<not> P (f na)"
show "(f (Suc na), f na) \<in> abc_mopup_LE"
proof(simp add: f)
obtain a b c where g:"steps (Suc 0, l, r) (mopup_a n @ shift mopup_b (2 * n), 0) na = (a, b, c)"
apply(case_tac "steps (Suc 0, l, r) (mopup_a n @ shift mopup_b (2 * n), 0) na", auto)
done
then have "mopup_inv (a, b, c) lm n ires"
thm mopup_inv_steps
using inv less mopup_inv_steps[of n lm "Suc 0" l r ires na]
apply(simp)
done
moreover have "a > 0"
using h g
apply(simp add: f P)
done
ultimately have "((step (a, b, c) (mopup_a n @ shift mopup_b (2 * n), 0), n), (a, b, c), n) \<in> abc_mopup_LE"
apply(case_tac c, case_tac [2] aa)
apply(auto split:if_splits simp add:step.simps mopup_inv.simps)
apply(simp_all add: mopupfetchs abc_mopup_LE_def lex_triple_def lex_pair_def )
done
thus "((step (steps (Suc 0, l, r) (mopup_a n @ shift mopup_b (2 * n), 0) na)
(mopup_a n @ shift mopup_b (2 * n), 0), n),
steps (Suc 0, l, r) (mopup_a n @ shift mopup_b (2 * n), 0) na, n)
\<in> abc_mopup_LE"
using g by simp
qed
qed
qed
lemma mopup_inv_start:
"n < length am \<Longrightarrow> mopup_inv (Suc 0, Bk # Bk # ires, <am> @ Bk \<up> k) am n ires"
apply(auto simp: mopup_inv.simps mopup_bef_erase_a.simps mopup_jump_over1.simps)
apply(case_tac [!] am, auto split: if_splits simp: tape_of_nl_cons)
apply(rule_tac x = "Suc a" in exI, rule_tac x = k in exI, simp)
apply(case_tac [!] n, simp_all add: abc_lm_v.simps)
apply(case_tac k, simp, simp_all)
done
lemma mopup_correct:
assumes less: "n < length (am::nat list)"
and rs: "abc_lm_v am n = rs"
shows "\<exists> stp i j. (steps (Suc 0, Bk # Bk # ires, <am> @ Bk \<up> k) (mopup_a n @ shift mopup_b (2 * n), 0) stp)
= (0, Bk\<up>i @ Bk # Bk # ires, Oc # Oc\<up> rs @ Bk\<up>j)"
using less
proof -
have a: "mopup_inv (Suc 0, Bk # Bk # ires, <am> @ Bk \<up> k) am n ires"
using less
apply(simp add: mopup_inv_start)
done
then have "\<exists> stp. is_final (steps (Suc 0, Bk # Bk # ires, <am> @ Bk \<up> k) (mopup_a n @ shift mopup_b (2 * n), 0) stp)"
using less mopup_halt[of n am "Bk # Bk # ires" "<am> @ Bk \<up> k" ires
"(\<lambda>stp. (steps (Suc 0, Bk # Bk # ires, <am> @ Bk \<up> k) (mopup_a n @ shift mopup_b (2 * n), 0) stp, n))"
"(\<lambda>(c, n). is_final c)"]
apply(simp)
done
from this obtain stp where b:
"is_final (steps (Suc 0, Bk # Bk # ires, <am> @ Bk \<up> k) (mopup_a n @ shift mopup_b (2 * n), 0) stp)" ..
from a b have
"mopup_inv (steps (Suc 0, Bk # Bk # ires, <am> @ Bk \<up> k) (mopup_a n @ shift mopup_b (2 * n), 0) stp)
am n ires"
apply(rule_tac mopup_inv_steps, simp_all add: less)
done
from b and this show "?thesis"
apply(rule_tac x = stp in exI, simp)
apply(case_tac "steps (Suc 0, Bk # Bk # ires, <am> @ Bk \<up> k)
(mopup_a n @ shift mopup_b (2 * n), 0) stp")
apply(simp add: mopup_inv.simps mopup_stop.simps rs)
using rs
apply(simp add: tape_of_nat_abv)
done
qed
(*we can use Hoare_plus here*)
lemma wf_mopup[intro]: "tm_wf (mopup n, 0)"
apply(induct n, simp add: mopup.simps shift.simps mopup_b_def tm_wf.simps)
apply(auto simp: mopup.simps shift.simps mopup_b_def tm_wf.simps)
done
lemma length_tp:
"\<lbrakk>ly = layout_of ap; tp = tm_of ap\<rbrakk> \<Longrightarrow>
start_of ly (length ap) = Suc (length tp div 2)"
apply(frule_tac length_tp', simp_all)
apply(simp add: start_of.simps)
done
lemma compile_correct_halt:
assumes layout: "ly = layout_of ap"
and compile: "tp = tm_of ap"
and crsp: "crsp ly (0, lm) (Suc 0, l, r) ires"
and abc_halt: "abc_steps_l (0, lm) ap stp = (length ap, am)"
and rs_loc: "n < length am"
and rs: "abc_lm_v am n = rs"
and off: "off = length tp div 2"
shows "\<exists> stp i j. steps (Suc 0, l, r) (tp @ shift (mopup n) off, 0) stp = (0, Bk\<up>i @ Bk # Bk # ires, Oc\<up>Suc rs @ Bk\<up>j)"
proof -
have "\<exists> stp k. steps (Suc 0, l, r) (tp, 0) stp = (Suc off, Bk # Bk # ires, <am> @ Bk\<up>k)"
using assms tp_correct'[of ly ap tp lm l r ires stp am]
by(simp add: length_tp)
then obtain stp k where "steps (Suc 0, l, r) (tp, 0) stp = (Suc off, Bk # Bk # ires, <am> @ Bk\<up>k)"
by blast
then have a: "steps (Suc 0, l, r) (tp@shift (mopup n) off , 0) stp = (Suc off, Bk # Bk # ires, <am> @ Bk\<up>k)"
using assms
by(auto intro: tm_append_first_steps_eq)
have "\<exists> stp i j. (steps (Suc 0, Bk # Bk # ires, <am> @ Bk \<up> k) (mopup_a n @ shift mopup_b (2 * n), 0) stp)
= (0, Bk\<up>i @ Bk # Bk # ires, Oc # Oc\<up> rs @ Bk\<up>j)"
using assms
by(auto intro: mopup_correct)
then obtain stpb i j where
"steps (Suc 0, Bk # Bk # ires, <am> @ Bk \<up> k) (mopup_a n @ shift mopup_b (2 * n), 0) stpb
= (0, Bk\<up>i @ Bk # Bk # ires, Oc # Oc\<up> rs @ Bk\<up>j)" by blast
then have b: "steps (Suc 0 + off, Bk # Bk # ires, <am> @ Bk \<up> k) (tp @ shift (mopup n) off, 0) stpb
= (0, Bk\<up>i @ Bk # Bk # ires, Oc # Oc\<up> rs @ Bk\<up>j)"
using assms wf_mopup
thm tm_append_second_halt_eq
apply(drule_tac tm_append_second_halt_eq, auto)
done
from a b show "?thesis"
by(rule_tac x = "stp + stpb" in exI, simp add: steps_add)
qed
declare mopup.simps[simp del]
lemma abc_step_red2:
"abc_steps_l (s, lm) p (Suc n) = (let (as', am') = abc_steps_l (s, lm) p n in
abc_step_l (as', am') (abc_fetch as' p))"
apply(case_tac "abc_steps_l (s, lm) p n", simp)
apply(drule_tac abc_step_red, simp)
done
lemma crsp_steps2:
assumes
layout: "ly = layout_of ap"
and compile: "tp = tm_of ap"
and crsp: "crsp ly (0, lm) (Suc 0, l, r) ires"
and nothalt: "as < length ap"
and aexec: "abc_steps_l (0, lm) ap stp = (as, am)"
shows "\<exists>stpa\<ge>stp. crsp ly (as, am) (steps (Suc 0, l, r) (tp, 0) stpa) ires"
using nothalt aexec
proof(induct stp arbitrary: as am)
case 0
thus "?case"
using crsp
by(rule_tac x = 0 in exI, auto simp: abc_steps_l.simps steps.simps crsp)
next
case (Suc stp as am)
have ind:
"\<And> as am. \<lbrakk>as < length ap; abc_steps_l (0, lm) ap stp = (as, am)\<rbrakk>
\<Longrightarrow> \<exists>stpa\<ge>stp. crsp ly (as, am) (steps (Suc 0, l, r) (tp, 0) stpa) ires" by fact
have a: "as < length ap" by fact
have b: "abc_steps_l (0, lm) ap (Suc stp) = (as, am)" by fact
obtain as' am' where c: "abc_steps_l (0, lm) ap stp = (as', am')"
by(case_tac "abc_steps_l (0, lm) ap stp", auto)
then have d: "as' < length ap"
using a b
by(simp add: abc_step_red2, case_tac "as' < length ap", simp,
simp add: abc_fetch.simps abc_steps_l.simps abc_step_l.simps)
have "\<exists>stpa\<ge>stp. crsp ly (as', am') (steps (Suc 0, l, r) (tp, 0) stpa) ires"
using d c ind by simp
from this obtain stpa where e:
"stpa \<ge> stp \<and> crsp ly (as', am') (steps (Suc 0, l, r) (tp, 0) stpa) ires"
by blast
obtain s' l' r' where f: "steps (Suc 0, l, r) (tp, 0) stpa = (s', l', r')"
by(case_tac "steps (Suc 0, l, r) (tp, 0) stpa", auto)
obtain ins where g: "abc_fetch as' ap = Some ins" using d
by(case_tac "abc_fetch as' ap",auto simp: abc_fetch.simps)
then have "\<exists>stp> (0::nat). crsp ly (abc_step_l (as', am') (Some ins))
(steps (s', l', r') (tp, 0) stp) ires "
using layout compile e f
by(rule_tac crsp_step, simp_all)
then obtain stpb where "stpb > 0 \<and> crsp ly (abc_step_l (as', am') (Some ins))
(steps (s', l', r') (tp, 0) stpb) ires" ..
from this show "?case" using b e g f c
by(rule_tac x = "stpa + stpb" in exI, simp add: steps_add abc_step_red2)
qed
lemma compile_correct_unhalt:
assumes layout: "ly = layout_of ap"
and compile: "tp = tm_of ap"
and crsp: "crsp ly (0, lm) (Suc 0, l, r) ires"
and off: "off = length tp div 2"
and abc_unhalt: "\<forall> stp. (\<lambda> (as, am). as < length ap) (abc_steps_l (0, lm) ap stp)"
shows "\<forall> stp.\<not> is_final (steps (Suc 0, l, r) (tp @ shift (mopup n) off, 0) stp)"
using assms
proof(rule_tac allI, rule_tac notI)
fix stp
assume h: "is_final (steps (Suc 0, l, r) (tp @ shift (mopup n) off, 0) stp)"
obtain as am where a: "abc_steps_l (0, lm) ap stp = (as, am)"
by(case_tac "abc_steps_l (0, lm) ap stp", auto)
then have b: "as < length ap"
using abc_unhalt
by(erule_tac x = stp in allE, simp)
have "\<exists> stpa\<ge>stp. crsp ly (as, am) (steps (Suc 0, l, r) (tp, 0) stpa) ires "
using assms b a
apply(rule_tac crsp_steps2, simp_all)
done
then obtain stpa where
"stpa\<ge>stp \<and> crsp ly (as, am) (steps (Suc 0, l, r) (tp, 0) stpa) ires" ..
then obtain s' l' r' where b: "(steps (Suc 0, l, r) (tp, 0) stpa) = (s', l', r') \<and>
stpa\<ge>stp \<and> crsp ly (as, am) (s', l', r') ires"
by(case_tac "steps (Suc 0, l, r) (tp, 0) stpa", auto)
hence c:
"(steps (Suc 0, l, r) (tp @ shift (mopup n) off, 0) stpa) = (s', l', r')"
by(rule_tac tm_append_first_steps_eq, simp_all add: crsp.simps)
from b have d: "s' > 0 \<and> stpa \<ge> stp"
by(simp add: crsp.simps)
then obtain diff where e: "stpa = stp + diff" by (metis le_iff_add)
obtain s'' l'' r'' where f:
"steps (Suc 0, l, r) (tp @ shift (mopup n) off, 0) stp = (s'', l'', r'') \<and> is_final (s'', l'', r'')"
using h
by(case_tac "steps (Suc 0, l, r) (tp @ shift (mopup n) off, 0) stp", auto)
then have "is_final (steps (s'', l'', r'') (tp @ shift (mopup n) off, 0) diff)"
by(auto intro: after_is_final)
then have "is_final (steps (Suc 0, l, r) (tp @ shift (mopup n) off, 0) stpa)"
using e
by(simp add: steps_add f)
from this and c d show "False" by simp
qed
end