Paper/document/root.tex
author Christian Urban <christian dot urban at kcl dot ac dot uk>
Tue, 03 Sep 2013 15:02:52 +0100
changeset 284 a21fb87bb0bd
parent 237 06a6db387cd2
permissions -rw-r--r--
soem changes

\documentclass[runningheads]{llncs}
%\documentclass[10pt, conference, compsocconf]{IEEEtran}
\usepackage{isabelle}
\usepackage{isabellesym}
\usepackage{times}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{stmaryrd}
\usepackage{mathpartir}
\usepackage{pdfsetup}
\usepackage{tikz}
\usepackage{pgf}
\usepackage{color}

%% for testing
%\usepackage{endnotes}
%\let\footnote=\endnote

% urls in roman style, theory text in math-similar italics
\urlstyle{rm}
\isabellestyle{it}

% gray boxes
\definecolor{mygrey}{rgb}{.80,.80,.80}

% mathpatir
\mprset{sep=0.9em}
\mprset{center=false}
\mprset{flushleft=true}

% for uniform font size
%\renewcommand{\isastyle}{\isastyleminor}

\def\dn{\,\stackrel{\mbox{\scriptsize def}}{=}\,}
\renewcommand{\isasymequiv}{$\dn$}
\renewcommand{\isasymemptyset}{$\varnothing$}
\renewcommand{\isacharunderscore}{\mbox{$\_$}}
\renewcommand{\isasymiota}{}
\newcommand{\isasymulcorner}{$\ulcorner$}
\newcommand{\isasymurcorner}{$\urcorner$}
\begin{document}


\title{Mechanising Turing Machines and Computability Theory in Isabelle/HOL}
\author{Jian Xu\inst{1} \and Xingyuan Zhang\inst{1} \and Christian Urban\inst{2}}
\institute{PLA University of Science and Technology, China \and King's College London, UK}

\maketitle


\begin{abstract}
We formalise results from computability theory in the theorem prover
Isabelle/HOL. 
%This theorem prover is based on classical logic which
%precludes \emph{direct} reasoning about computability: every boolean
%predicate is either true or false because of the law of excluded
%middle. The only way to reason about computability in a classical
%theorem prover is to formalise a concrete model of computation.  
Following the textbook by Boolos et al, we formalise Turing machines
and relate them to abacus machines and recursive functions. We ``tie
the knot'' between these three computational models by formalising a
universal function and obtaining from it a universal Turing machine by
our verified translation from recursive functions to abacus programs
and from abacus programs to Turing machine programs.  Hoare-style reasoning techniques allow us
to reason about concrete Turing machine and abacus programs. 
%Our theory can be
%used to formalise other computability results.
%We give one example about the computational equivalence of 
%single-sided Turing machines. 
%{\it we give one example about the undecidability of Wang's tiling problem, whose proof uses
%the notion of a universal Turing machine.}
\end{abstract}

% generated text of all theories
\input{session}

% optional bibliography
\bibliographystyle{abbrv}
\bibliography{root}

\end{document}

%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End: