package object recs {
//Recursive Functions
abstract class Rec {
def eval(ns: List[Int]) : Int
def eval(ns: Int*) : Int = eval(ns.toList)
//syntactic convenience for composition
def o(r: Rec) = Cn(r.arity, this, List(r))
def o(r: Rec, f: Rec) = Cn(r.arity, this, List(r, f))
def o(r: Rec, f: Rec, g: Rec) = Cn(r.arity, this, List(r, f, g))
def arity : Int
}
case object Z extends Rec {
override def eval(ns: List[Int]) = ns match {
case n::Nil => 0
case _ => throw new IllegalArgumentException("Z args: " + ns)
}
override def arity = 1
}
case object S extends Rec {
override def eval(ns: List[Int]) = ns match {
case n::Nil => n + 1
case _ => throw new IllegalArgumentException("S args: " + ns)
}
override def arity = 1
}
case class Id(n: Int, m: Int) extends Rec {
override def eval(ns: List[Int]) =
if (ns.length == n && m < n) ns(m)
else throw new IllegalArgumentException("Id args: " + ns + "," + n + "," + m)
override def arity = n
}
case class Cn(n: Int, f: Rec, gs: List[Rec]) extends Rec {
override def eval(ns: List[Int]) =
if (ns.length == n && gs.forall(_.arity == n) && f.arity == gs.length) f.eval(gs.map(_.eval(ns)))
else {
val msg = List("Cn f: " + f,
"n: " + n,
"f arity: " + f.arity,
"ns-args: " + ns,
"gs arities: " + gs.map(_.arity).mkString("\n"),
"gs: " + gs.mkString(", ")
)
throw new IllegalArgumentException(msg.mkString("\n"))
}
override def arity = n
override def toString = f.toString + gs.map(_.toString).mkString ("(",", ", ")")
}
// syntactic convenience
object Cn {
def apply(n: Int, f: Rec, g: Rec) : Rec = new Cn(n, f, List(g))
}
case class Pr(n: Int, f: Rec, g: Rec) extends Rec {
override def eval(ns: List[Int]) =
if (ns.length == n + 1) {
if (ns.last == 0) f.eval(ns.init)
else {
val r = Pr(n, f, g).eval(ns.init ::: List(ns.last - 1))
g.eval(ns.init ::: List(ns.last - 1, r))
}
}
else {
val msg = List("Pr f: " + f,
"g: " + g,
"n: " + n,
"f arity: " + f.arity,
"g arity: " + g.arity,
"ns-args: " + ns)
throw new IllegalArgumentException(msg.mkString("\n"))
}
override def arity = n + 1
override def toString = "Pr(" + f.toString + ", " + g.toString + ")"
}
// syntactic convenience
object Pr {
def apply(r: Rec, f: Rec) : Rec = Pr(r.arity, r, f)
}
case class Mn(n: Int, f: Rec) extends Rec {
def evaln(ns: List[Int], n: Int) : Int =
if (f.eval(ns ::: List(n)) == 0) n else evaln(ns, n + 1)
override def eval(ns: List[Int]) =
if (ns.length == n) evaln(ns, 0)
else throw new IllegalArgumentException("Mn: args")
override def arity = n
}
// Recursive Function examples
def Const(n: Int) : Rec = n match {
case 0 => Z
case n => S o Const(n - 1)
}
val Add = Pr(Id(1, 0), S o Id(3, 2))
val Mult = Pr(Z, Add o (Id(3, 0), Id(3, 2)))
val Twice = Mult o (Id(1, 0), Const(2))
val Fourtimes = Mult o (Id(1, 0), Const(4))
val Pred = Pr(Z, Id(3, 1)) o (Id(1, 0), Id(1, 0))
val Minus = Pr(Id(1, 0), Pred o Id(3, 2))
val Power = Pr(Const(1), Mult o (Id(3, 0), Id(3, 2)))
val Fact = Pr(Const(1), Mult o (Id(3, 2), S o Id(3, 1))) o (Id(1, 0), Id(1, 0))
val Sign = Minus o (Const(1), Minus o (Const(1), Id(1, 0)))
val Less = Sign o (Minus o (Id(2, 1), Id(2, 0)))
val Not = Minus o (Const(1), Id(1, 0))
val Eq = Minus o (Const(1) o Id(2, 0),
Add o (Minus o (Id(2, 0), Id(2, 1)),
Minus o (Id(2, 1), Id(2, 0))))
val Noteq = Not o (Eq o (Id(2, 0), Id(2, 1)))
val Conj = Sign o (Mult o (Id(2, 0), Id(2, 1)))
val Disj = Sign o (Add o (Id(2, 0), Id(2, 1)))
val Le = Disj o (Less, Eq)
def Nargs(n: Int, m: Int) : List[Rec] = m match {
case 0 => Nil
case m => Nargs(n, m - 1) ::: List(Id(n, m - 1))
}
def Sigma(f: Rec) = {
val ar = f.arity
println("sigma f-ar: " + ar)
Pr(Cn(ar - 1, f, Nargs(ar - 1, ar - 1) ::: List(Const(0) o Id(ar - 1, 0))),
Add o (Id(ar + 1, ar),
Cn(ar + 1, f, Nargs(ar + 1, ar - 1) ::: List(S o (Id(ar + 1, ar - 1))))))
}
def Accum(f: Rec) = {
val ar = f.arity
Pr(Cn(ar - 1, f, Nargs(ar - 1, ar - 1) ::: List(Const(0) o Id(ar - 1, 0))),
Mult o (Id(ar + 1, ar),
Cn(ar + 1, f, Nargs(ar + 1, ar - 1) ::: List(S o Id(ar + 1, ar - 1)))))
}
def All(t: Rec, f: Rec) = {
val ar = f.arity
Sign o (Cn(ar - 1, Accum(f), Nargs(ar - 1, ar - 1) ::: List(t)))
}
def Ex(t: Rec, f: Rec) = {
val ar = f.arity
Sign o (Cn(ar - 1, Sigma(f), Nargs(ar - 1, ar - 1) ::: List(t)))
}
//Definition on page 77 of Boolos's book.
def Minr(f: Rec) = {
val ar = f.arity
println("f-arity " + ar)
println("Nargs " + Nargs(ar + 1, ar - 1) + " and " + List(Id(ar + 1, ar)))
Sigma(All(Id(ar, ar - 1), Not o (Cn(ar + 1, f, Nargs(ar + 1, ar - 1) ::: List(Id(ar + 1, ar))))))
}
//Definition on page 77 of Boolos's book.
def Maxr(f: Rec) = {
val ar = f.arity
val rt = Id(ar + 1, ar - 1)
val rf1 = Le o (Id(ar + 2, ar + 1), Id(ar + 2, ar))
val rf2 = Not o (Cn (ar + 2, f, Nargs(ar + 2, ar - 1) ::: List(Id(ar + 2, ar + 1))))
val Qf = Not o All(rt, Disj o (rf1, rf2))
Cn(ar, Sigma(Qf), Nargs(ar, ar) ::: List(Id(ar, ar - 1)))
}
//Prime test
val Prime = Conj o (Less o (Const(1), Id(1, 0)),
All(Minus o (Id(1, 0), Const(1)),
All(Minus o (Id(2, 0), Const(1) o Id(2, 0)),
Noteq o (Mult o (Id(3, 1), Id(3, 2)), Id(3, 0)))))
//Returns the first prime number after n (very slow for n > 4)
val NextPrime = {
val R = Conj o (Less o (Id(2, 0), Id(2, 1)), Prime o Id(2, 1))
Minr(R) o (Id(1, 0), S o Fact)
}
val NthPrime = Pr(Const(2), NextPrime o Id(3, 2)) o (Id(1, 0), Id(1, 0))
def Listsum(k: Int, m: Int) : Rec = m match {
case 0 => Z o Id(k, 0)
case n => Add o (Listsum(k, n - 1), Id(k, n - 1))
}
//strt-function on page 90 of Boolos, but our definition generalises
//the original one in order to deal with multiple input-arguments
def Strt(n: Int) = {
def Strt_aux(l: Int, k: Int) : Rec = k match {
case 0 => Z o Id(l, 0)
case n => {
val rec_dbound = Add o (Listsum(l, n - 1), Const(n - 1) o Id(l, 0))
Add o (Strt_aux(l, n - 1),
Minus o (Power o (Const(2) o Id(l, 0), Add o (Id(l, n - 1), rec_dbound)),
Power o (Const(2) o Id(l, 0), rec_dbound)))
}
}
def Rmap(f: Rec, k: Int) = (0 until k).map{i => f o Id(k, i)}.toList
Cn(n, Strt_aux(n, n), Rmap(S, n))
}
//Mutli-way branching statement on page 79 of Boolos's book
def Branch(rs: List[(Rec, Rec)]) = {
def Branch_aux(rs: List[(Rec, Rec)], l: Int) : Rec = rs match {
case Nil => Z o Id(l, l - 1)
case (rg, rc)::recs => Add o (Mult o (rg, rc), Branch_aux(recs, l))
}
Branch_aux(rs, rs.head._1.arity)
}
val Lg = {
val lgR = Le o (Power o (Id(3, 1), Id(3, 2)), Id(3, 0))
val conR1 = Conj o (Less o (Const(1) o (Id(2, 0), Id(2, 0))),
Less o (Const(1) o (Id(2, 0), Id(2, 1))))
val conR2 = Not o (conR1)
Add o (Mult o (conR1, Maxr(lgR) o (Id(2, 0), Id(2, 1), Id(2, 0))),
Mult o (conR2, Const(0) o (Id(2, 0))))
}
}