(* Title: thys/Turing.thy
Author: Jian Xu, Xingyuan Zhang, and Christian Urban
*)
header {* Turing Machines *}
theory Turing
imports Main
begin
section {* Basic definitions of Turing machine *}
datatype action = W0 | W1 | L | R | Nop
datatype cell = Bk | Oc
type_synonym tape = "cell list \<times> cell list"
type_synonym state = nat
type_synonym instr = "action \<times> state"
type_synonym tprog = "instr list \<times> nat"
type_synonym tprog0 = "instr list"
type_synonym config = "state \<times> tape"
fun nth_of where
"nth_of xs i = (if i \<ge> length xs then None else Some (xs ! i))"
lemma nth_of_map [simp]:
shows "nth_of (map f p) n = (case (nth_of p n) of None \<Rightarrow> None | Some x \<Rightarrow> Some (f x))"
apply(induct p arbitrary: n)
apply(auto)
apply(case_tac n)
apply(auto)
done
fun
fetch :: "instr list \<Rightarrow> state \<Rightarrow> cell \<Rightarrow> instr"
where
"fetch p 0 b = (Nop, 0)"
| "fetch p (Suc s) Bk =
(case nth_of p (2 * s) of
Some i \<Rightarrow> i
| None \<Rightarrow> (Nop, 0))"
|"fetch p (Suc s) Oc =
(case nth_of p ((2 * s) + 1) of
Some i \<Rightarrow> i
| None \<Rightarrow> (Nop, 0))"
lemma fetch_Nil [simp]:
shows "fetch [] s b = (Nop, 0)"
apply(case_tac s)
apply(auto)
apply(case_tac b)
apply(auto)
done
fun
update :: "action \<Rightarrow> tape \<Rightarrow> tape"
where
"update W0 (l, r) = (l, Bk # (tl r))"
| "update W1 (l, r) = (l, Oc # (tl r))"
| "update L (l, r) = (if l = [] then ([], Bk # r) else (tl l, (hd l) # r))"
| "update R (l, r) = (if r = [] then (Bk # l, []) else ((hd r) # l, tl r))"
| "update Nop (l, r) = (l, r)"
abbreviation
"read r == if (r = []) then Bk else hd r"
fun step :: "config \<Rightarrow> tprog \<Rightarrow> config"
where
"step (s, l, r) (p, off) =
(let (a, s') = fetch p (s - off) (read r) in (s', update a (l, r)))"
abbreviation
"step0 c p \<equiv> step c (p, 0)"
fun steps :: "config \<Rightarrow> tprog \<Rightarrow> nat \<Rightarrow> config"
where
"steps c p 0 = c" |
"steps c p (Suc n) = steps (step c p) p n"
abbreviation
"steps0 c p n \<equiv> steps c (p, 0) n"
lemma step_red [simp]:
shows "steps c p (Suc n) = step (steps c p n) p"
by (induct n arbitrary: c) (auto)
lemma steps_add [simp]:
shows "steps c p (m + n) = steps (steps c p m) p n"
by (induct m arbitrary: c) (auto)
lemma step_0 [simp]:
shows "step (0, (l, r)) p = (0, (l, r))"
by (case_tac p, simp)
lemma steps_0 [simp]:
shows "steps (0, (l, r)) p n = (0, (l, r))"
by (induct n) (simp_all)
fun
is_final :: "config \<Rightarrow> bool"
where
"is_final (s, l, r) = (s = 0)"
lemma is_final_eq:
shows "is_final (s, tp) = (s = 0)"
by (case_tac tp) (auto)
lemma is_finalI [intro]:
shows "is_final (0, tp)"
by (simp add: is_final_eq)
lemma after_is_final:
assumes "is_final c"
shows "is_final (steps c p n)"
using assms
apply(induct n)
apply(case_tac [!] c)
apply(auto)
done
lemma is_final:
assumes a: "is_final (steps c p n1)"
and b: "n1 \<le> n2"
shows "is_final (steps c p n2)"
proof -
obtain n3 where eq: "n2 = n1 + n3" using b by (metis le_iff_add)
from a show "is_final (steps c p n2)" unfolding eq
by (simp add: after_is_final)
qed
lemma not_is_final:
assumes a: "\<not> is_final (steps c p n1)"
and b: "n2 \<le> n1"
shows "\<not> is_final (steps c p n2)"
proof (rule notI)
obtain n3 where eq: "n1 = n2 + n3" using b by (metis le_iff_add)
assume "is_final (steps c p n2)"
then have "is_final (steps c p n1)" unfolding eq
by (simp add: after_is_final)
with a show "False" by simp
qed
(* if the machine is in the halting state, there must have
been a state just before the halting state *)
lemma before_final:
assumes "steps0 (1, tp) A n = (0, tp')"
shows "\<exists> n'. \<not> is_final (steps0 (1, tp) A n') \<and> steps0 (1, tp) A (Suc n') = (0, tp')"
using assms
proof(induct n arbitrary: tp')
case (0 tp')
have asm: "steps0 (1, tp) A 0 = (0, tp')" by fact
then show "\<exists>n'. \<not> is_final (steps0 (1, tp) A n') \<and> steps0 (1, tp) A (Suc n') = (0, tp')"
by simp
next
case (Suc n tp')
have ih: "\<And>tp'. steps0 (1, tp) A n = (0, tp') \<Longrightarrow>
\<exists>n'. \<not> is_final (steps0 (1, tp) A n') \<and> steps0 (1, tp) A (Suc n') = (0, tp')" by fact
have asm: "steps0 (1, tp) A (Suc n) = (0, tp')" by fact
obtain s l r where cases: "steps0 (1, tp) A n = (s, l, r)"
by (auto intro: is_final.cases)
then show "\<exists>n'. \<not> is_final (steps0 (1, tp) A n') \<and> steps0 (1, tp) A (Suc n') = (0, tp')"
proof (cases "s = 0")
case True (* in halting state *)
then have "steps0 (1, tp) A n = (0, tp')"
using asm cases by (simp del: steps.simps)
then show ?thesis using ih by simp
next
case False (* not in halting state *)
then have "\<not> is_final (steps0 (1, tp) A n) \<and> steps0 (1, tp) A (Suc n) = (0, tp')"
using asm cases by simp
then show ?thesis by auto
qed
qed
lemma least_steps:
assumes "steps0 (1, tp) A n = (0, tp')"
shows "\<exists> n'. (\<forall>n'' < n'. \<not> is_final (steps0 (1, tp) A n'')) \<and>
(\<forall>n'' \<ge> n'. is_final (steps0 (1, tp) A n''))"
proof -
from before_final[OF assms]
obtain n' where
before: "\<not> is_final (steps0 (1, tp) A n')" and
final: "steps0 (1, tp) A (Suc n') = (0, tp')" by auto
from before
have "\<forall>n'' < Suc n'. \<not> is_final (steps0 (1, tp) A n'')"
using not_is_final by auto
moreover
from final
have "\<forall>n'' \<ge> Suc n'. is_final (steps0 (1, tp) A n'')"
using is_final[of _ _ "Suc n'"] by (auto simp add: is_final_eq)
ultimately
show "\<exists> n'. (\<forall>n'' < n'. \<not> is_final (steps0 (1, tp) A n'')) \<and> (\<forall>n'' \<ge> n'. is_final (steps0 (1, tp) A n''))"
by blast
qed
(* well-formedness of Turing machine programs *)
abbreviation "is_even n \<equiv> (n::nat) mod 2 = 0"
fun
tm_wf :: "tprog \<Rightarrow> bool"
where
"tm_wf (p, off) = (length p \<ge> 2 \<and> is_even (length p) \<and>
(\<forall>(a, s) \<in> set p. s \<le> length p div 2 + off \<and> s \<ge> off))"
abbreviation
"tm_wf0 p \<equiv> tm_wf (p, 0)"
abbreviation exponent :: "'a \<Rightarrow> nat \<Rightarrow> 'a list" ("_ \<up> _" [100, 99] 100)
where "x \<up> n == replicate n x"
consts tape_of :: "'a \<Rightarrow> cell list" ("<_>" 100)
defs (overloaded)
tape_of_nat_abv: "<(n::nat)> \<equiv> Oc \<up> (Suc n)"
fun tape_of_nat_list :: "'a list \<Rightarrow> cell list"
where
"tape_of_nat_list [] = []" |
"tape_of_nat_list [n] = <n>" |
"tape_of_nat_list (n#ns) = <n> @ Bk # (tape_of_nat_list ns)"
fun tape_of_nat_pair :: "'a \<times> 'b \<Rightarrow> cell list"
where
"tape_of_nat_pair (n, m) = <n> @ [Bk] @ <m>"
defs (overloaded)
tape_of_nl_abv: "<(ns::'a list)> \<equiv> tape_of_nat_list ns"
tape_of_nat_pair: "<(np::'a\<times>'b)> \<equiv> tape_of_nat_pair np"
fun
shift :: "instr list \<Rightarrow> nat \<Rightarrow> instr list"
where
"shift p n = (map (\<lambda> (a, s). (a, (if s = 0 then 0 else s + n))) p)"
fun
adjust :: "instr list \<Rightarrow> nat \<Rightarrow> instr list"
where
"adjust p e = map (\<lambda> (a, s). (a, if s = 0 then e else s)) p"
abbreviation
"adjust0 p \<equiv> adjust p (Suc (length p div 2))"
lemma length_shift [simp]:
shows "length (shift p n) = length p"
by simp
lemma length_adjust [simp]:
shows "length (adjust p n) = length p"
by (induct p) (auto)
(* composition of two Turing machines *)
fun
tm_comp :: "instr list \<Rightarrow> instr list \<Rightarrow> instr list" ("_ |+| _" [0, 0] 100)
where
"tm_comp p1 p2 = ((adjust0 p1) @ (shift p2 (length p1 div 2)))"
lemma tm_comp_length:
shows "length (A |+| B) = length A + length B"
by auto
lemma tm_comp_wf[intro]:
"\<lbrakk>tm_wf (A, 0); tm_wf (B, 0)\<rbrakk> \<Longrightarrow> tm_wf (A |+| B, 0)"
by (auto)
lemma tm_comp_step:
assumes unfinal: "\<not> is_final (step0 c A)"
shows "step0 c (A |+| B) = step0 c A"
proof -
obtain s l r where eq: "c = (s, l, r)" by (metis is_final.cases)
have "\<not> is_final (step0 (s, l, r) A)" using unfinal eq by simp
then have "case (fetch A s (read r)) of (a, s) \<Rightarrow> s \<noteq> 0"
by (auto simp add: is_final_eq)
then have "fetch (A |+| B) s (read r) = fetch A s (read r)"
apply(case_tac [!] "read r")
apply(case_tac [!] s)
apply(auto simp: tm_comp_length nth_append)
done
then show "step0 c (A |+| B) = step0 c A" by (simp add: eq)
qed
lemma tm_comp_steps:
assumes "\<not> is_final (steps0 c A n)"
shows "steps0 c (A |+| B) n = steps0 c A n"
using assms
proof(induct n)
case 0
then show "steps0 c (A |+| B) 0 = steps0 c A 0" by auto
next
case (Suc n)
have ih: "\<not> is_final (steps0 c A n) \<Longrightarrow> steps0 c (A |+| B) n = steps0 c A n" by fact
have fin: "\<not> is_final (steps0 c A (Suc n))" by fact
then have fin1: "\<not> is_final (step0 (steps0 c A n) A)"
by (auto simp only: step_red)
then have fin2: "\<not> is_final (steps0 c A n)"
by (metis is_final_eq step_0 surj_pair)
have "steps0 c (A |+| B) (Suc n) = step0 (steps0 c (A |+| B) n) (A |+| B)"
by (simp only: step_red)
also have "... = step0 (steps0 c A n) (A |+| B)" by (simp only: ih[OF fin2])
also have "... = step0 (steps0 c A n) A" by (simp only: tm_comp_step[OF fin1])
finally show "steps0 c (A |+| B) (Suc n) = steps0 c A (Suc n)"
by (simp only: step_red)
qed
lemma tm_comp_fetch_in_A:
assumes h1: "fetch A s x = (a, 0)"
and h2: "s \<le> length A div 2"
and h3: "s \<noteq> 0"
shows "fetch (A |+| B) s x = (a, Suc (length A div 2))"
using h1 h2 h3
apply(case_tac s)
apply(case_tac [!] x)
apply(auto simp: tm_comp_length nth_append)
done
lemma tm_comp_exec_after_first:
assumes h1: "\<not> is_final c"
and h2: "step0 c A = (0, tp)"
and h3: "fst c \<le> length A div 2"
shows "step0 c (A |+| B) = (Suc (length A div 2), tp)"
using h1 h2 h3
apply(case_tac c)
apply(auto simp del: tm_comp.simps)
apply(case_tac "fetch A a Bk")
apply(simp del: tm_comp.simps)
apply(subst tm_comp_fetch_in_A)
apply(auto)[4]
apply(case_tac "fetch A a (hd c)")
apply(simp del: tm_comp.simps)
apply(subst tm_comp_fetch_in_A)
apply(auto)[4]
done
lemma step_in_range:
assumes h1: "\<not> is_final (step0 c A)"
and h2: "tm_wf (A, 0)"
shows "fst (step0 c A) \<le> length A div 2"
using h1 h2
apply(case_tac c)
apply(case_tac a)
apply(auto simp add: prod_case_unfold Let_def)
apply(case_tac "hd c")
apply(auto simp add: prod_case_unfold)
done
lemma steps_in_range:
assumes h1: "\<not> is_final (steps0 (1, tp) A stp)"
and h2: "tm_wf (A, 0)"
shows "fst (steps0 (1, tp) A stp) \<le> length A div 2"
using h1
proof(induct stp)
case 0
then show "fst (steps0 (1, tp) A 0) \<le> length A div 2" using h2
by (auto simp add: steps.simps tm_wf.simps)
next
case (Suc stp)
have ih: "\<not> is_final (steps0 (1, tp) A stp) \<Longrightarrow> fst (steps0 (1, tp) A stp) \<le> length A div 2" by fact
have h: "\<not> is_final (steps0 (1, tp) A (Suc stp))" by fact
from ih h h2 show "fst (steps0 (1, tp) A (Suc stp)) \<le> length A div 2"
by (metis step_in_range step_red)
qed
(* if A goes into the final state, then A |+| B will go into the first state of B *)
lemma tm_comp_next:
assumes a_ht: "steps0 (1, tp) A n = (0, tp')"
and a_wf: "tm_wf (A, 0)"
obtains n' where "steps0 (1, tp) (A |+| B) n' = (Suc (length A div 2), tp')"
proof -
assume a: "\<And>n. steps (1, tp) (A |+| B, 0) n = (Suc (length A div 2), tp') \<Longrightarrow> thesis"
obtain stp' where fin: "\<not> is_final (steps0 (1, tp) A stp')" and h: "steps0 (1, tp) A (Suc stp') = (0, tp')"
using before_final[OF a_ht] by blast
from fin have h1:"steps0 (1, tp) (A |+| B) stp' = steps0 (1, tp) A stp'"
by (rule tm_comp_steps)
from h have h2: "step0 (steps0 (1, tp) A stp') A = (0, tp')"
by (simp only: step_red)
have "steps0 (1, tp) (A |+| B) (Suc stp') = step0 (steps0 (1, tp) (A |+| B) stp') (A |+| B)"
by (simp only: step_red)
also have "... = step0 (steps0 (1, tp) A stp') (A |+| B)" using h1 by simp
also have "... = (Suc (length A div 2), tp')"
by (rule tm_comp_exec_after_first[OF fin h2 steps_in_range[OF fin a_wf]])
finally show thesis using a by blast
qed
lemma tm_comp_fetch_second_zero:
assumes h1: "fetch B s x = (a, 0)"
and hs: "tm_wf (A, 0)" "s \<noteq> 0"
shows "fetch (A |+| B) (s + (length A div 2)) x = (a, 0)"
using h1 hs
apply(case_tac x)
apply(case_tac [!] s)
apply(auto simp: tm_comp_length nth_append)
done
lemma tm_comp_fetch_second_inst:
assumes h1: "fetch B sa x = (a, s)"
and hs: "tm_wf (A, 0)" "sa \<noteq> 0" "s \<noteq> 0"
shows "fetch (A |+| B) (sa + length A div 2) x = (a, s + length A div 2)"
using h1 hs
apply(case_tac x)
apply(case_tac [!] sa)
apply(auto simp: tm_comp_length nth_append)
done
lemma tm_comp_second:
assumes a_wf: "tm_wf (A, 0)"
and steps: "steps0 (1, l, r) B stp = (s', l', r')"
shows "steps0 (Suc (length A div 2), l, r) (A |+| B) stp
= (if s' = 0 then 0 else s' + length A div 2, l', r')"
using steps
proof(induct stp arbitrary: s' l' r')
case 0
then show ?case by (simp add: steps.simps)
next
case (Suc stp s' l' r')
obtain s'' l'' r'' where a: "steps0 (1, l, r) B stp = (s'', l'', r'')"
by (metis is_final.cases)
then have ih1: "s'' = 0 \<Longrightarrow> steps0 (Suc (length A div 2), l, r) (A |+| B) stp = (0, l'', r'')"
and ih2: "s'' \<noteq> 0 \<Longrightarrow> steps0 (Suc (length A div 2), l, r) (A |+| B) stp = (s'' + length A div 2, l'', r'')"
using Suc by (auto)
have h: "steps0 (1, l, r) B (Suc stp) = (s', l', r')" by fact
{ assume "s'' = 0"
then have ?case using a h ih1 by (simp del: steps.simps)
} moreover
{ assume as: "s'' \<noteq> 0" "s' = 0"
from as a h
have "step0 (s'', l'', r'') B = (0, l', r')" by (simp del: steps.simps)
with as have ?case
apply(simp add: ih2[OF as(1)] step.simps del: tm_comp.simps steps.simps)
apply(case_tac "fetch B s'' (read r'')")
apply(auto simp add: tm_comp_fetch_second_zero[OF _ a_wf] simp del: tm_comp.simps)
done
} moreover
{ assume as: "s'' \<noteq> 0" "s' \<noteq> 0"
from as a h
have "step0 (s'', l'', r'') B = (s', l', r')" by (simp del: steps.simps)
with as have ?case
apply(simp add: ih2[OF as(1)] step.simps del: tm_comp.simps steps.simps)
apply(case_tac "fetch B s'' (read r'')")
apply(auto simp add: tm_comp_fetch_second_inst[OF _ a_wf as] simp del: tm_comp.simps)
done
}
ultimately show ?case by blast
qed
lemma tm_comp_final:
assumes "tm_wf (A, 0)"
and "steps0 (1, l, r) B stp = (0, l', r')"
shows "steps0 (Suc (length A div 2), l, r) (A |+| B) stp = (0, l', r')"
using tm_comp_second[OF assms] by (simp)
end