thys2/Abacus.thy
author Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
Fri, 21 Dec 2018 12:31:36 +0100
changeset 290 6e1c03614d36
parent 268 002b07ea0a57
permissions -rw-r--r--
Gave lemmas names in Abacus.ty

theory Abacus
imports Main
begin 

datatype abc_inst =
     Inc nat
   | Dec nat nat
   | Goto nat
  
type_synonym abc_prog = "abc_inst list"

type_synonym abc_state = nat

text {*
  The memory of Abacus machine is defined as a list of contents, with 
  every units addressed by index into the list.
  *}
type_synonym abc_lm = "nat list"

text {*
  Fetching contents out of memory. Units not represented by list elements are considered
  as having content @{text "0"}.
*}
fun abc_lm_v :: "abc_lm \<Rightarrow> nat \<Rightarrow> nat"
  where 
    "abc_lm_v lm n = (if n < length lm then lm ! n else 0)"         


text {*
  Set the content of memory unit @{text "n"} to value @{text "v"}.
  @{text "am"} is the Abacus memory before setting.
  If address @{text "n"} is outside to scope of @{text "am"}, @{text "am"} 
  is extended so that @{text "n"} becomes in scope.
*}

fun abc_lm_s :: "abc_lm \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> abc_lm"
  where
    "abc_lm_s am n v = (if n < length am then am[n := v] else 
                           am @ (replicate (n - length am) 0) @ [v])"


text {*
  The configuration of Abaucs machines consists of its current state and its
  current memory:
*}

type_synonym abc_conf = "abc_state \<times> abc_lm"

text {*
  Fetch instruction out of Abacus program:
*}

fun abc_fetch :: "nat \<Rightarrow> abc_prog \<Rightarrow> abc_inst option" 
  where
  "abc_fetch s p = (if s < length p then Some (p ! s) else None)"

text {*
  Single step execution of Abacus machine. If no instruction is feteched, 
  configuration does not change.
*}

fun abc_step_l :: "abc_conf \<Rightarrow> abc_inst option \<Rightarrow> abc_conf"
  where
  "abc_step_l (s, lm) a = (case a of 
               None \<Rightarrow> (s, lm) |
               Some (Inc n)  \<Rightarrow> (let nv = abc_lm_v lm n in
                       (s + 1, abc_lm_s lm n (nv + 1))) |
               Some (Dec n e) \<Rightarrow> (let nv = abc_lm_v lm n in
                       if (nv = 0) then (e, abc_lm_s lm n 0) 
                       else (s + 1,  abc_lm_s lm n (nv - 1))) |
               Some (Goto n) \<Rightarrow> (n, lm) 
               )"

text {*
  Multi-step execution of Abacus machine.
*}
fun abc_steps_l :: "abc_conf \<Rightarrow> abc_prog \<Rightarrow> nat \<Rightarrow> abc_conf"
  where
  "abc_steps_l (s, lm) p 0 = (s, lm)" |
  "abc_steps_l (s, lm) p (Suc n) = 
      abc_steps_l (abc_step_l (s, lm) (abc_fetch s p)) p n"

fun abc_inst_shift :: "abc_inst \<Rightarrow> nat \<Rightarrow> abc_inst"
  where
  "abc_inst_shift (Inc m) n = Inc m" |
  "abc_inst_shift (Dec m e) n = Dec m (e + n)" |
  "abc_inst_shift (Goto m) n = Goto (m + n)"

fun abc_shift :: "abc_inst list \<Rightarrow> nat \<Rightarrow> abc_inst list" 
  where
  "abc_shift xs n = map (\<lambda> x. abc_inst_shift x n) xs" 

fun abc_comp :: "abc_inst list \<Rightarrow> abc_inst list \<Rightarrow> abc_inst list" (infixl ";" 99)
  where
  "al; bl = (let al_len = length al in al @ abc_shift bl al_len)"


end