thys/Abacus_Hoare.thy
author Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
Fri, 21 Dec 2018 12:31:36 +0100
changeset 290 6e1c03614d36
parent 229 d8e6f0798e23
child 291 93db7414931d
permissions -rwxr-xr-x
Gave lemmas names in Abacus.ty

theory Abacus_Hoare
imports Abacus
begin

type_synonym abc_assert = "nat list \<Rightarrow> bool"

definition 
  assert_imp :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool" ("_ \<mapsto> _" [0, 0] 100)
where
  "assert_imp P Q \<equiv> \<forall>xs. P xs \<longrightarrow> Q xs"

fun abc_holds_for :: "(nat list \<Rightarrow> bool) \<Rightarrow> (nat \<times> nat list) \<Rightarrow> bool" ("_ abc'_holds'_for _" [100, 99] 100)
where
  "P abc_holds_for (s, lm) = P lm"  

(* Hoare Rules *)
(* halting case *)
(*consts abc_Hoare_halt :: "abc_assert \<Rightarrow> abc_prog \<Rightarrow> abc_assert \<Rightarrow> bool" ("({(1_)}/ (_)/ {(1_)})" 50)*)

fun abc_final :: "(nat \<times> nat list) \<Rightarrow> abc_prog \<Rightarrow> bool"
  where 
  "abc_final (s, lm) p = (s = length p)"

fun abc_notfinal :: "abc_conf \<Rightarrow> abc_prog \<Rightarrow> bool"
  where
  "abc_notfinal (s, lm) p = (s < length p)"

definition 
  abc_Hoare_halt :: "abc_assert \<Rightarrow> abc_prog \<Rightarrow> abc_assert \<Rightarrow> bool" ("({(1_)}/ (_)/ {(1_)})" 50)
where
  "abc_Hoare_halt P p Q \<equiv> \<forall>lm. P lm \<longrightarrow> (\<exists>n. abc_final (abc_steps_l (0, lm) p n) p \<and> Q abc_holds_for (abc_steps_l (0, lm) p n))"

lemma abc_Hoare_haltI:
  assumes "\<And>lm. P lm \<Longrightarrow> \<exists>n. abc_final (abc_steps_l (0, lm) p n) p \<and> Q abc_holds_for (abc_steps_l (0, lm) p n)"
  shows "{P} (p::abc_prog) {Q}"
unfolding abc_Hoare_halt_def 
using assms by auto

text {*
  {P} A {Q}   {Q} B {S} 
  -----------------------------------------
  {P} A [+] B {S}
*}

definition
  abc_Hoare_unhalt :: "abc_assert \<Rightarrow> abc_prog \<Rightarrow> bool" ("({(1_)}/ (_)) \<up>" 50)
where
  "abc_Hoare_unhalt P p \<equiv> \<forall>args. P args \<longrightarrow> (\<forall> n .abc_notfinal (abc_steps_l (0, args) p n) p)"

lemma abc_Hoare_unhaltI:
  assumes "\<And>args n. P args \<Longrightarrow> abc_notfinal (abc_steps_l (0, args) p n) p"
  shows "{P} (p::abc_prog) \<up>"
unfolding abc_Hoare_unhalt_def 
using assms by auto

fun abc_inst_shift :: "abc_inst \<Rightarrow> nat \<Rightarrow> abc_inst"
  where
  "abc_inst_shift (Inc m) n = Inc m" |
  "abc_inst_shift (Dec m e) n = Dec m (e + n)" |
  "abc_inst_shift (Goto m) n = Goto (m + n)"

fun abc_shift :: "abc_inst list \<Rightarrow> nat \<Rightarrow> abc_inst list" 
  where
  "abc_shift xs n = map (\<lambda> x. abc_inst_shift x n) xs" 

fun abc_comp :: "abc_inst list \<Rightarrow> abc_inst list \<Rightarrow> 
                           abc_inst list" (infixl "[+]" 99)
  where
  "abc_comp al bl = (let al_len = length al in 
                           al @ abc_shift bl al_len)"

lemma abc_comp_first_step_eq_pre: 
  "s < length A
 \<Longrightarrow> abc_step_l (s, lm) (abc_fetch s (A [+] B)) = 
    abc_step_l (s, lm) (abc_fetch s A)"
by(simp add: abc_step_l.simps abc_fetch.simps nth_append)

lemma abc_before_final: 
  "\<lbrakk>abc_final (abc_steps_l (0, lm) p n) p; p \<noteq> []\<rbrakk>
  \<Longrightarrow> \<exists> n'. abc_notfinal (abc_steps_l (0, lm) p n') p \<and> 
            abc_final (abc_steps_l (0, lm) p (Suc n')) p"
proof(induct n)
  case 0
  thus "?thesis"
    by(simp add: abc_steps_l.simps)
next
  case (Suc n)
  have ind: " \<lbrakk>abc_final (abc_steps_l (0, lm) p n) p; p \<noteq> []\<rbrakk> \<Longrightarrow> 
    \<exists>n'. abc_notfinal (abc_steps_l (0, lm) p n') p \<and> abc_final (abc_steps_l (0, lm) p (Suc n')) p"
    by fact
  have final: "abc_final (abc_steps_l (0, lm) p (Suc n)) p" by fact
  have notnull: "p \<noteq> []" by fact
  show "?thesis"
  proof(cases "abc_final (abc_steps_l (0, lm) p n) p")
    case True
    have "abc_final (abc_steps_l (0, lm) p n) p" by fact
    then have "\<exists>n'. abc_notfinal (abc_steps_l (0, lm) p n') p \<and> abc_final (abc_steps_l (0, lm) p (Suc n')) p"
      using ind notnull
      by simp
    thus "?thesis"
      by simp
  next
    case False
    have "\<not> abc_final (abc_steps_l (0, lm) p n) p" by fact
    from final this have "abc_notfinal (abc_steps_l (0, lm) p n) p" 
      by(case_tac "abc_steps_l (0, lm) p n", simp add: abc_step_red2 
        abc_step_l.simps abc_fetch.simps split: if_splits)
    thus "?thesis"
      using final
      by(rule_tac x = n in exI, simp)
  qed
qed
    
lemma notfinal_Suc:
  "abc_notfinal (abc_steps_l (0, lm) A (Suc n)) A \<Longrightarrow>  
  abc_notfinal (abc_steps_l (0, lm) A n) A"
apply(case_tac "abc_steps_l (0, lm) A n")
apply(simp add: abc_step_red2 abc_fetch.simps abc_step_l.simps split: if_splits)
done

lemma abc_comp_frist_steps_eq_pre: 
  assumes notfinal: "abc_notfinal (abc_steps_l (0, lm)  A n) A"
  and notnull: "A \<noteq> []"
  shows "abc_steps_l (0, lm) (A [+] B) n = abc_steps_l (0, lm) A n"
using notfinal
proof(induct n)
  case 0
  thus "?case"
    by(simp add: abc_steps_l.simps)
next
  case (Suc n)
  have ind: "abc_notfinal (abc_steps_l (0, lm) A n) A \<Longrightarrow> abc_steps_l (0, lm) (A [+] B) n = abc_steps_l (0, lm) A n"
    by fact
  have h: "abc_notfinal (abc_steps_l (0, lm) A (Suc n)) A" by fact
  then have a: "abc_notfinal (abc_steps_l (0, lm) A n) A"
    by(simp add: notfinal_Suc)
  then have b: "abc_steps_l (0, lm) (A [+] B) n = abc_steps_l (0, lm) A n"
    using ind by simp
  obtain s lm' where c: "abc_steps_l (0, lm) A n = (s, lm')"
    by (metis prod.exhaust)
  then have d: "s < length A \<and> abc_steps_l (0, lm) (A [+] B) n = (s, lm')" 
    using a b by simp
  thus "?case"
    using c
    by(simp add: abc_step_red2 abc_fetch.simps abc_step_l.simps nth_append)
qed

declare abc_shift.simps[simp del] abc_comp.simps[simp del]
lemma halt_steps2: "st \<ge> length A \<Longrightarrow> abc_steps_l (st, lm) A stp = (st, lm)"
apply(induct stp)
by(simp_all add: abc_step_red2 abc_steps_l.simps abc_step_l.simps abc_fetch.simps)

lemma halt_steps: "abc_steps_l (length A, lm) A n = (length A, lm)"
apply(induct n, simp add: abc_steps_l.simps)
apply(simp add: abc_step_red2 abc_step_l.simps nth_append abc_fetch.simps)
done

lemma abc_steps_add: 
  "abc_steps_l (as, lm) ap (m + n) = 
         abc_steps_l (abc_steps_l (as, lm) ap m) ap n"
apply(induct m arbitrary: n as lm, simp add: abc_steps_l.simps)
proof -
  fix m n as lm
  assume ind: 
    "\<And>n as lm. abc_steps_l (as, lm) ap (m + n) = 
                   abc_steps_l (abc_steps_l (as, lm) ap m) ap n"
  show "abc_steps_l (as, lm) ap (Suc m + n) = 
             abc_steps_l (abc_steps_l (as, lm) ap (Suc m)) ap n"
    apply(insert ind[of as lm "Suc n"], simp)
    apply(insert ind[of as lm "Suc 0"], simp add: abc_steps_l.simps)
    apply(case_tac "(abc_steps_l (as, lm) ap m)", simp)
    apply(simp add: abc_steps_l.simps)
    apply(case_tac "abc_step_l (a, b) (abc_fetch a ap)", 
          simp add: abc_steps_l.simps)
    done
qed

lemma equal_when_halt: 
  assumes exc1: "abc_steps_l (s, lm) A na = (length A, lma)"
  and exc2: "abc_steps_l (s, lm) A nb = (length A, lmb)"
  shows "lma = lmb"
proof(cases "na > nb")
  case True
  then obtain d where "na = nb + d"
    by (metis add_Suc_right less_iff_Suc_add)
  thus "?thesis" using assms halt_steps
    by(simp add: abc_steps_add)
next
  case False
  then obtain d where "nb = na + d"
    by (metis add.comm_neutral less_imp_add_positive nat_neq_iff)
  thus "?thesis" using assms halt_steps
    by(simp add: abc_steps_add)
qed 
  
lemma abc_comp_frist_steps_halt_eq': 
  assumes final: "abc_steps_l (0, lm) A n = (length A, lm')"
    and notnull: "A \<noteq> []"
  shows "\<exists> n'. abc_steps_l (0, lm) (A [+] B) n' = (length A, lm')"
proof -
  have "\<exists> n'. abc_notfinal (abc_steps_l (0, lm) A n') A \<and> 
    abc_final (abc_steps_l (0, lm) A (Suc n')) A"
    using assms
    by(rule_tac n = n in abc_before_final, simp_all)
  then obtain na where a:
    "abc_notfinal (abc_steps_l (0, lm) A na) A \<and> 
            abc_final (abc_steps_l (0, lm) A (Suc na)) A" ..
  obtain sa lma where b: "abc_steps_l (0, lm) A na = (sa, lma)"
    by (metis prod.exhaust)
  then have c: "abc_steps_l (0, lm) (A [+] B) na = (sa, lma)"
    using a abc_comp_frist_steps_eq_pre[of lm A na B] assms 
    by simp
  have d: "sa < length A" using b a by simp
  then have e: "abc_step_l (sa, lma) (abc_fetch sa (A [+] B)) = 
    abc_step_l (sa, lma) (abc_fetch sa A)"
    by(rule_tac abc_comp_first_step_eq_pre)
  from a have "abc_steps_l (0, lm) A (Suc na) = (length A, lm')"
    using final equal_when_halt
    by(case_tac "abc_steps_l (0, lm) A (Suc na)" , simp)
  then have "abc_steps_l (0, lm) (A [+] B) (Suc na) = (length A, lm')"
    using a b c e
    by(simp add: abc_step_red2)
  thus "?thesis"
    by blast
qed

lemma abc_exec_null: "abc_steps_l sam [] n = sam"
apply(cases sam)
apply(induct n)
apply(auto simp: abc_step_red2)
apply(auto simp: abc_step_l.simps abc_steps_l.simps abc_fetch.simps)
done

lemma abc_comp_frist_steps_halt_eq: 
  assumes final: "abc_steps_l (0, lm) A n = (length A, lm')"
  shows "\<exists> n'. abc_steps_l (0, lm) (A [+] B) n' = (length A, lm')"
using final
apply(case_tac "A = []")
apply(rule_tac x = 0 in exI, simp add: abc_steps_l.simps abc_exec_null)
apply(rule_tac abc_comp_frist_steps_halt_eq', simp_all)
done

lemma abc_comp_second_step_eq: 
  assumes exec: "abc_step_l (s, lm) (abc_fetch s B) = (sa, lma)"
  shows "abc_step_l (s + length A, lm) (abc_fetch (s + length A) (A [+] B))
         = (sa + length A, lma)"
using assms
apply(auto simp: abc_step_l.simps abc_fetch.simps nth_append abc_comp.simps abc_shift.simps split : if_splits )
apply(case_tac [!] "B ! s", auto simp: Let_def)
done

lemma abc_comp_second_steps_eq:
  assumes exec: "abc_steps_l (0, lm) B n = (sa, lm')"
  shows "abc_steps_l (length A, lm) (A [+] B) n = (sa + length A, lm')"
using assms
proof(induct n arbitrary: sa lm')
  case 0
  thus "?case"
    by(simp add: abc_steps_l.simps)
next
  case (Suc n)
  have ind: "\<And>sa lm'. abc_steps_l (0, lm) B n = (sa, lm') \<Longrightarrow> 
    abc_steps_l (length A, lm) (A [+] B) n = (sa + length A, lm')" by fact
  have exec: "abc_steps_l (0, lm) B (Suc n) = (sa, lm')" by fact
  obtain sb lmb where a: " abc_steps_l (0, lm) B n = (sb, lmb)"
    by (metis prod.exhaust)
 then have "abc_steps_l (length A, lm) (A [+] B) n = (sb + length A, lmb)"
   using ind by simp
 moreover have "abc_step_l (sb + length A, lmb) (abc_fetch (sb + length A) (A [+] B)) = (sa + length A, lm') "
   using a exec abc_comp_second_step_eq
   by(simp add: abc_step_red2)    
 ultimately show "?case"
   by(simp add: abc_step_red2)
qed

lemma length_abc_comp[simp, intro]: 
  "length (A [+] B) = length A + length B"
by(auto simp: abc_comp.simps abc_shift.simps)   

lemma abc_Hoare_plus_halt : 
  assumes A_halt : "{P} (A::abc_prog) {Q}"
  and B_halt : "{Q} (B::abc_prog) {S}"
  shows "{P} (A [+] B) {S}"
proof(rule_tac abc_Hoare_haltI)
  fix lm
  assume a: "P lm"
  then obtain na lma where 
    "abc_final (abc_steps_l (0, lm) A na) A"
    and b: "abc_steps_l (0, lm) A na = (length A, lma)"
    and c: "Q abc_holds_for (length A, lma)"
    using A_halt unfolding abc_Hoare_halt_def
    by (metis (full_types) abc_final.simps abc_holds_for.simps prod.exhaust)
  have "\<exists> n. abc_steps_l (0, lm) (A [+] B) n = (length A, lma)"
    using abc_comp_frist_steps_halt_eq b
    by(simp)
  then obtain nx where h1: "abc_steps_l (0, lm) (A [+] B) nx = (length A, lma)" ..   
  from c have "Q lma"
    using c unfolding abc_holds_for.simps
    by simp
  then obtain nb lmb where
    "abc_final (abc_steps_l (0, lma) B nb) B"
    and d: "abc_steps_l (0, lma) B nb = (length B, lmb)"
    and e: "S abc_holds_for (length B, lmb)"
    using B_halt unfolding abc_Hoare_halt_def
    by (metis (full_types) abc_final.simps abc_holds_for.simps prod.exhaust)
  have h2: "abc_steps_l (length A, lma) (A [+] B) nb = (length B + length A, lmb)"
    using d abc_comp_second_steps_eq
    by simp
  thus "\<exists>n. abc_final (abc_steps_l (0, lm) (A [+] B) n) (A [+] B) \<and>
    S abc_holds_for abc_steps_l (0, lm) (A [+] B) n"
    using h1 e
    by(rule_tac x = "nx + nb" in exI, simp add: abc_steps_add)
qed
 
lemma abc_unhalt_append_eq:
  assumes unhalt: "{P} (A::abc_prog) \<up>"
  and P: "P args"
  shows "abc_steps_l (0, args) (A [+] B) stp = abc_steps_l (0, args) A stp"
proof(induct stp)
  case 0
  thus "?case"
    by(simp add: abc_steps_l.simps)
next
  case (Suc stp)
  have ind: "abc_steps_l (0, args) (A [+] B) stp = abc_steps_l (0, args) A stp"
    by fact
  obtain s nl where a: "abc_steps_l (0, args) A stp = (s, nl)"
    by (metis prod.exhaust)
  then have b: "s < length A"
    using unhalt P
    apply(auto simp: abc_Hoare_unhalt_def)
    by (metis abc_notfinal.simps)
  thus "?case"
    using a ind
    by(simp add: abc_step_red2 abc_step_l.simps abc_fetch.simps nth_append abc_comp.simps)
qed

lemma abc_Hoare_plus_unhalt1: 
  "{P} (A::abc_prog) \<up> \<Longrightarrow> {P} (A [+] B) \<up>"
apply(rule_tac abc_Hoare_unhaltI)
apply(frule_tac args = args and B = B and stp = n in abc_unhalt_append_eq)
apply(simp_all add: abc_Hoare_unhalt_def)
apply(erule_tac x = args in allE, simp)
apply(erule_tac x = n in allE)
apply(case_tac "(abc_steps_l (0, args) A n)", simp)
done


lemma notfinal_all_before:
  "\<lbrakk>abc_notfinal (abc_steps_l (0, args) A x) A; y\<le>x \<rbrakk>
  \<Longrightarrow> abc_notfinal (abc_steps_l (0, args) A y) A "
apply(subgoal_tac "\<exists> d. x = y + d", auto)
apply(case_tac "abc_steps_l (0, args) A y",simp)
apply(rule_tac classical, simp add: abc_steps_add leI halt_steps2)
by arith

lemma abc_Hoare_plus_unhalt2':
  assumes unhalt: "{Q} (B::abc_prog) \<up>"
   and halt: "{P} (A::abc_prog) {Q}"
   and notnull: "A \<noteq> []"
   and P: "P args" 
   shows "abc_notfinal (abc_steps_l (0, args) (A [+] B) n) (A [+] B)"
proof -
  obtain st nl stp where a: "abc_final (abc_steps_l (0, args) A stp) A"
    and b: "Q abc_holds_for (length A, nl)"
    and c: "abc_steps_l (0, args) A stp = (st, nl)"
    using halt P unfolding abc_Hoare_halt_def
    by (metis abc_holds_for.simps prod.exhaust)
  thm abc_before_final
  obtain stpa where d: 
    "abc_notfinal (abc_steps_l (0, args) A stpa) A \<and> abc_final (abc_steps_l (0, args) A (Suc stpa)) A"
    using a notnull abc_before_final[of args A stp]
    by(auto)
  thus "?thesis"
  proof(cases "n < Suc stpa")
    case True
    have h: "n < Suc stpa" by fact
    then have "abc_notfinal (abc_steps_l (0, args) A n) A"
      using d
      by(rule_tac notfinal_all_before, auto)
    moreover then have "abc_steps_l (0, args) (A [+] B) n = abc_steps_l (0, args) A n"
      using notnull
      by(rule_tac abc_comp_frist_steps_eq_pre, simp_all)
    ultimately show "?thesis"
      by(case_tac "abc_steps_l (0, args) A n", simp)
  next
    case False
    have "\<not> n < Suc stpa" by fact
    then obtain d where i1: "n = Suc stpa + d"
      by (metis add_Suc less_iff_Suc_add not_less_eq)
    have "abc_steps_l (0, args) A (Suc stpa) = (length A, nl)"
      using d a c
      apply(case_tac "abc_steps_l (0, args) A stp", simp add: equal_when_halt)
      by(case_tac "abc_steps_l (0, args) A (Suc stpa)", simp add: equal_when_halt)
    moreover have  "abc_steps_l (0, args) (A [+] B) stpa = abc_steps_l (0, args) A stpa"
      using notnull d
      by(rule_tac abc_comp_frist_steps_eq_pre, simp_all)
    ultimately have i2: "abc_steps_l (0, args) (A [+] B) (Suc stpa) = (length A, nl)"
      using d
      apply(case_tac "abc_steps_l (0, args) A stpa", simp)
      by(simp add: abc_step_red2 abc_steps_l.simps abc_fetch.simps abc_comp.simps nth_append)
    obtain s' nl' where i3:"abc_steps_l (0, nl) B d = (s', nl')"
      by (metis prod.exhaust)
    then have i4: "abc_steps_l (0, args) (A [+] B) (Suc stpa + d) = (length A + s', nl')"
      using i2  apply(simp only: abc_steps_add)
      using abc_comp_second_steps_eq[of nl B d s' nl']
      by simp
    moreover have "s' < length B"
      using unhalt b i3
      apply(simp add: abc_Hoare_unhalt_def)
      apply(erule_tac x = nl in allE, simp)
      by(erule_tac x = d in allE, simp)
    ultimately show "?thesis"
      using i1
      by(simp)
  qed
qed

lemma abc_comp_null_left[simp]: "[] [+] A = A"
apply(induct A)
apply(case_tac [2] a)
apply(auto simp: abc_comp.simps abc_shift.simps abc_inst_shift.simps)
done

lemma abc_comp_null_right[simp]: "A [+] [] = A"
apply(induct A)
apply(case_tac [2] a)
apply(auto simp: abc_comp.simps abc_shift.simps abc_inst_shift.simps)
done

lemma abc_Hoare_plus_unhalt2:
  "\<lbrakk>{Q} (B::abc_prog)\<up>; {P} (A::abc_prog) {Q}\<rbrakk>\<Longrightarrow> {P} (A [+] B) \<up>"
apply(case_tac "A = []")
apply(simp add: abc_Hoare_halt_def abc_Hoare_unhalt_def abc_exec_null)
apply(rule_tac abc_Hoare_unhaltI)
apply(erule_tac abc_Hoare_plus_unhalt2', simp)
apply(simp, simp)
done

end