thys/Uncomputable.thy
author Sebastiaan Joosten <sebastiaan.joosten@uibk.ac.at>
Mon, 07 Jan 2019 13:44:19 +0100
changeset 292 293e9c6f22e1
parent 291 93db7414931d
permissions -rwxr-xr-x
Added myself to the comments at the start of all files

(* Title: thys/Uncomputable.thy
   Author: Jian Xu, Xingyuan Zhang, and Christian Urban
   Modifications: Sebastiaan Joosten
*)

chapter {* Undeciablity of the Halting Problem *}

theory Uncomputable
imports Turing_Hoare
begin

lemma numeral:
  shows "1 = Suc 0"
  and "2 = Suc 1"
  and "3 = Suc 2"
  and "4 = Suc 3" 
  and "5 = Suc 4" 
  and "6 = Suc 5" 
  and "7 = Suc 6"
  and "8 = Suc 7" 
  and "9 = Suc 8" 
  and "10 = Suc 9"
  and "11 = Suc 10"
  and "12 = Suc 11"
by simp_all

text {* The Copying TM, which duplicates its input. *}

definition 
  tcopy_begin :: "instr list"
where
  "tcopy_begin \<equiv> [(W0, 0), (R, 2), (R, 3), (R, 2),
                 (W1, 3), (L, 4), (L, 4), (L, 0)]"

definition 
  tcopy_loop :: "instr list"
where
  "tcopy_loop \<equiv> [(R, 0), (R, 2),  (R, 3), (W0, 2),
                 (R, 3), (R, 4), (W1, 5), (R, 4),
                 (L, 6), (L, 5), (L, 6), (L, 1)]"

definition 
  tcopy_end :: "instr list"
where
  "tcopy_end \<equiv> [(L, 0), (R, 2), (W1, 3), (L, 4),
                (R, 2), (R, 2), (L, 5), (W0, 4),
                (R, 0), (L, 5)]"

definition 
  tcopy :: "instr list"
where
  "tcopy \<equiv> (tcopy_begin |+| tcopy_loop) |+| tcopy_end"


(* tcopy_begin *)

fun 
  inv_begin0 :: "nat \<Rightarrow> tape \<Rightarrow> bool" and
  inv_begin1 :: "nat \<Rightarrow> tape \<Rightarrow> bool" and
  inv_begin2 :: "nat \<Rightarrow> tape \<Rightarrow> bool" and
  inv_begin3 :: "nat \<Rightarrow> tape \<Rightarrow> bool" and
  inv_begin4 :: "nat \<Rightarrow> tape \<Rightarrow> bool"
where
  "inv_begin0 n (l, r) = ((n > 1 \<and> (l, r) = (Oc \<up> (n - 2), [Oc, Oc, Bk, Oc])) \<or>   
                          (n = 1 \<and> (l, r) = ([], [Bk, Oc, Bk, Oc])))"
| "inv_begin1 n (l, r) = ((l, r) = ([], Oc \<up> n))"
| "inv_begin2 n (l, r) = (\<exists> i j. i > 0 \<and> i + j = n \<and> (l, r) = (Oc \<up> i, Oc \<up> j))"
| "inv_begin3 n (l, r) = (n > 0 \<and> (l, tl r) = (Bk # Oc \<up> n, []))"
| "inv_begin4 n (l, r) = (n > 0 \<and> (l, r) = (Oc \<up> n, [Bk, Oc]) \<or> (l, r) = (Oc \<up> (n - 1), [Oc, Bk, Oc]))"

fun inv_begin :: "nat \<Rightarrow> config \<Rightarrow> bool"
  where
  "inv_begin n (s, tp) = 
        (if s = 0 then inv_begin0 n tp else
         if s = 1 then inv_begin1 n tp else
         if s = 2 then inv_begin2 n tp else
         if s = 3 then inv_begin3 n tp else
         if s = 4 then inv_begin4 n tp 
         else False)"

lemma inv_begin_step_E: "\<lbrakk>0 < i; 0 < j\<rbrakk> \<Longrightarrow> 
  \<exists>ia>0. ia + j - Suc 0 = i + j \<and> Oc # Oc \<up> i = Oc \<up> ia"
by (rule_tac x = "Suc i" in exI, simp)

lemma inv_begin_step: 
  assumes "inv_begin n cf"
  and "n > 0"
  shows "inv_begin n (step0 cf tcopy_begin)"
using assms
unfolding tcopy_begin_def
apply(cases cf)
apply(auto simp: numeral split: if_splits elim:inv_begin_step_E)
apply(case_tac "hd c")
apply(auto)
apply(case_tac c)
apply(simp_all)
done

lemma inv_begin_steps: 
  assumes "inv_begin n cf"
  and "n > 0"
  shows "inv_begin n (steps0 cf tcopy_begin stp)"
apply(induct stp)
apply(simp add: assms)
apply(auto simp del: steps.simps)
apply(rule_tac inv_begin_step)
apply(simp_all add: assms)
done

lemma begin_partial_correctness:
  assumes "is_final (steps0 (1, [], Oc \<up> n) tcopy_begin stp)"
  shows "0 < n \<Longrightarrow> {inv_begin1 n} tcopy_begin {inv_begin0 n}"
proof(rule_tac Hoare_haltI)
  fix l r
  assume h: "0 < n" "inv_begin1 n (l, r)"
  have "inv_begin n (steps0 (1, [], Oc \<up> n) tcopy_begin stp)"
    using h by (rule_tac inv_begin_steps) (simp_all add: inv_begin.simps)
  then show
    "\<exists>stp. is_final (steps0 (1, l, r) tcopy_begin stp) \<and> 
    inv_begin0 n holds_for steps (1, l, r) (tcopy_begin, 0) stp"
    using h assms
    apply(rule_tac x = stp in exI)
    apply(case_tac "(steps0 (1, [], Oc \<up> n) tcopy_begin stp)", simp add: inv_begin.simps)
    done
qed

fun measure_begin_state :: "config \<Rightarrow> nat"
  where
  "measure_begin_state (s, l, r) = (if s = 0 then 0 else 5 - s)"

fun measure_begin_step :: "config \<Rightarrow> nat"
  where
  "measure_begin_step (s, l, r) = 
        (if s = 2 then length r else
         if s = 3 then (if r = [] \<or> r = [Bk] then 1 else 0) else
         if s = 4 then length l 
         else 0)"

definition
  "measure_begin = measures [measure_begin_state, measure_begin_step]"

lemma wf_measure_begin:
  shows "wf measure_begin" 
unfolding measure_begin_def 
by auto

lemma measure_begin_induct [case_names Step]: 
  "\<lbrakk>\<And>n. \<not> P (f n) \<Longrightarrow> (f (Suc n), (f n)) \<in> measure_begin\<rbrakk> \<Longrightarrow> \<exists>n. P (f n)"
using wf_measure_begin
by (metis wf_iff_no_infinite_down_chain)

lemma begin_halts: 
  assumes h: "x > 0"
  shows "\<exists> stp. is_final (steps0 (1, [], Oc \<up> x) tcopy_begin stp)"
proof (induct rule: measure_begin_induct) 
  case (Step n)
  have "\<not> is_final (steps0 (1, [], Oc \<up> x) tcopy_begin n)" by fact
  moreover
  have "inv_begin x (steps0 (1, [], Oc \<up> x) tcopy_begin n)"
    by (rule_tac inv_begin_steps) (simp_all add: inv_begin.simps h)
  moreover
  obtain s l r where eq: "(steps0 (1, [], Oc \<up> x) tcopy_begin n) = (s, l, r)"
    by (metis measure_begin_state.cases)
  ultimately 
  have "(step0 (s, l, r) tcopy_begin, s, l, r) \<in> measure_begin"
    apply(auto simp: measure_begin_def tcopy_begin_def numeral split: if_splits)
    apply(subgoal_tac "r = [Oc]")
    apply(auto)
    by (metis cell.exhaust list.exhaust list.sel(3))
  then 
  show "(steps0 (1, [], Oc \<up> x) tcopy_begin (Suc n), steps0 (1, [], Oc \<up> x) tcopy_begin n) \<in> measure_begin"
    using eq by (simp only: step_red)
qed

lemma begin_correct: 
  shows "0 < n \<Longrightarrow> {inv_begin1 n} tcopy_begin {inv_begin0 n}"
using begin_partial_correctness begin_halts by blast

declare tm_comp.simps [simp del] 
declare adjust.simps[simp del] 
declare shift.simps[simp del]
declare tm_wf.simps[simp del]
declare step.simps[simp del]
declare steps.simps[simp del]

(* tcopy_loop *)

fun 
  inv_loop1_loop :: "nat \<Rightarrow> tape \<Rightarrow> bool" and
  inv_loop1_exit :: "nat \<Rightarrow> tape \<Rightarrow> bool" and
  inv_loop5_loop :: "nat \<Rightarrow> tape \<Rightarrow> bool" and
  inv_loop5_exit :: "nat \<Rightarrow> tape \<Rightarrow> bool" and
  inv_loop6_loop :: "nat \<Rightarrow> tape \<Rightarrow> bool" and
  inv_loop6_exit :: "nat \<Rightarrow> tape \<Rightarrow> bool"
where
  "inv_loop1_loop n (l, r) = (\<exists> i j. i + j + 1 = n \<and> (l, r) = (Oc\<up>i, Oc#Oc#Bk\<up>j @ Oc\<up>j) \<and> j > 0)"
| "inv_loop1_exit n (l, r) = (0 < n \<and> (l, r) = ([], Bk#Oc#Bk\<up>n @ Oc\<up>n))"
| "inv_loop5_loop x (l, r) = 
     (\<exists> i j k t. i + j = Suc x \<and> i > 0 \<and> j > 0 \<and> k + t = j \<and> t > 0 \<and> (l, r) = (Oc\<up>k@Bk\<up>j@Oc\<up>i, Oc\<up>t))"
| "inv_loop5_exit x (l, r) = 
     (\<exists> i j. i + j = Suc x \<and> i > 0 \<and> j > 0 \<and> (l, r) = (Bk\<up>(j - 1)@Oc\<up>i, Bk # Oc\<up>j))"
| "inv_loop6_loop x (l, r) = 
     (\<exists> i j k t. i + j = Suc x \<and> i > 0 \<and> k + t + 1 = j \<and> (l, r) = (Bk\<up>k @ Oc\<up>i, Bk\<up>(Suc t) @ Oc\<up>j))"
| "inv_loop6_exit x (l, r) = 
     (\<exists> i j. i + j = x \<and> j > 0 \<and> (l, r) = (Oc\<up>i, Oc#Bk\<up>j @ Oc\<up>j))"

fun 
  inv_loop0 :: "nat \<Rightarrow> tape \<Rightarrow> bool" and
  inv_loop1 :: "nat \<Rightarrow> tape \<Rightarrow> bool" and
  inv_loop2 :: "nat \<Rightarrow> tape \<Rightarrow> bool" and
  inv_loop3 :: "nat \<Rightarrow> tape \<Rightarrow> bool" and
  inv_loop4 :: "nat \<Rightarrow> tape \<Rightarrow> bool" and
  inv_loop5 :: "nat \<Rightarrow> tape \<Rightarrow> bool" and
  inv_loop6 :: "nat \<Rightarrow> tape \<Rightarrow> bool"
where
  "inv_loop0 n (l, r) =  (0 < n \<and> (l, r) = ([Bk], Oc # Bk\<up>n @ Oc\<up>n))"
| "inv_loop1 n (l, r) = (inv_loop1_loop n (l, r) \<or> inv_loop1_exit n (l, r))"
| "inv_loop2 n (l, r) = (\<exists> i j any. i + j = n \<and> n > 0 \<and> i > 0 \<and> j > 0 \<and> (l, r) = (Oc\<up>i, any#Bk\<up>j@Oc\<up>j))"
| "inv_loop3 n (l, r) = 
     (\<exists> i j k t. i + j = n \<and> i > 0 \<and> j > 0 \<and>  k + t = Suc j \<and> (l, r) = (Bk\<up>k@Oc\<up>i, Bk\<up>t@Oc\<up>j))"
| "inv_loop4 n (l, r) = 
     (\<exists> i j k t. i + j = n \<and> i > 0 \<and> j > 0 \<and>  k + t = j \<and> (l, r) = (Oc\<up>k @ Bk\<up>(Suc j)@Oc\<up>i, Oc\<up>t))"
| "inv_loop5 n (l, r) = (inv_loop5_loop n (l, r) \<or> inv_loop5_exit n (l, r))"
| "inv_loop6 n (l, r) = (inv_loop6_loop n (l, r) \<or> inv_loop6_exit n (l, r))"

fun inv_loop :: "nat \<Rightarrow> config \<Rightarrow> bool"
  where
  "inv_loop x (s, l, r) = 
         (if s = 0 then inv_loop0 x (l, r)
          else if s = 1 then inv_loop1 x (l, r)
          else if s = 2 then inv_loop2 x (l, r)
          else if s = 3 then inv_loop3 x (l, r)
          else if s = 4 then inv_loop4 x (l, r)
          else if s = 5 then inv_loop5 x (l, r)
          else if s = 6 then inv_loop6 x (l, r)
          else False)"
       
declare inv_loop.simps[simp del] inv_loop1.simps[simp del]
        inv_loop2.simps[simp del] inv_loop3.simps[simp del] 
        inv_loop4.simps[simp del] inv_loop5.simps[simp del] 
        inv_loop6.simps[simp del]

lemma Bk_no_Oc_repeatE[elim]: "Bk # list = Oc \<up> t \<Longrightarrow> RR"
by (case_tac t, auto)

lemma inv_loop3_Bk_empty_via_2[elim]: "\<lbrakk>0 < x; inv_loop2 x (b, [])\<rbrakk> \<Longrightarrow> inv_loop3 x (Bk # b, [])"
by (auto simp: inv_loop2.simps inv_loop3.simps)

lemma inv_loop3_Bk_empty[elim]: "\<lbrakk>0 < x; inv_loop3 x (b, [])\<rbrakk> \<Longrightarrow> inv_loop3 x (Bk # b, [])"
by (auto simp: inv_loop3.simps)

lemma inv_loop5_Oc_empty_via_4[elim]: "\<lbrakk>0 < x; inv_loop4 x (b, [])\<rbrakk> \<Longrightarrow> inv_loop5 x (b, [Oc])"
apply(auto simp: inv_loop4.simps inv_loop5.simps)
apply(rule_tac [!] x = i in exI, 
      rule_tac [!] x  = "Suc j" in exI, simp_all)
done

lemma inv_loop1_Bk[elim]: "\<lbrakk>0 < x; inv_loop1 x (b, Bk # list)\<rbrakk> \<Longrightarrow> list = Oc # Bk \<up> x @ Oc \<up> x"
by (auto simp: inv_loop1.simps)

lemma inv_loop3_Bk_via_2[elim]: "\<lbrakk>0 < x; inv_loop2 x (b, Bk # list)\<rbrakk> \<Longrightarrow> inv_loop3 x (Bk # b, list)"
apply(auto simp: inv_loop2.simps inv_loop3.simps)
apply(rule_tac [!] x = i  in exI, rule_tac [!] x = j in exI, simp_all)
done

lemma inv_loop3_Bk_move[elim]: "\<lbrakk>0 < x; inv_loop3 x (b, Bk # list)\<rbrakk> \<Longrightarrow> inv_loop3 x (Bk # b, list)"
apply(auto simp: inv_loop3.simps)
apply(rule_tac [!] x = i in exI, 
      rule_tac [!] x = j in exI, simp_all)
apply(case_tac [!] t, auto)
done

lemma inv_loop5_Oc_via_4_Bk[elim]: "\<lbrakk>0 < x; inv_loop4 x (b, Bk # list)\<rbrakk> \<Longrightarrow> inv_loop5 x (b, Oc # list)"
by (auto simp: inv_loop4.simps inv_loop5.simps)

lemma inv_loop6_Bk_via_5[elim]: "\<lbrakk>0 < x; inv_loop5 x ([], Bk # list)\<rbrakk> \<Longrightarrow> inv_loop6 x ([], Bk # Bk # list)"
by (auto simp: inv_loop6.simps inv_loop5.simps)

lemma inv_loop5_loop_no_Bk[simp]: "inv_loop5_loop x (b, Bk # list) = False"
by (auto simp: inv_loop5.simps)

lemma inv_loop6_exit_no_Bk[simp]: "inv_loop6_exit x (b, Bk # list) = False"
by (auto simp: inv_loop6.simps)

declare inv_loop5_loop.simps[simp del]  inv_loop5_exit.simps[simp del]
       inv_loop6_loop.simps[simp del]  inv_loop6_exit.simps[simp del]

lemma inv_loop6_loopBk_via_5[elim]:"\<lbrakk>0 < x; inv_loop5_exit x (b, Bk # list); b \<noteq> []; hd b = Bk\<rbrakk> 
          \<Longrightarrow> inv_loop6_loop x (tl b, Bk # Bk # list)"
apply(simp only: inv_loop5_exit.simps inv_loop6_loop.simps )
apply(erule_tac exE)+
apply(rule_tac x = i in exI, 
      rule_tac x = j in exI,
      rule_tac x = "j - Suc (Suc 0)" in exI, 
      rule_tac x = "Suc 0" in exI, auto)
apply(case_tac [!] j, simp_all)
apply(case_tac [!] nat, simp_all)
done

lemma inv_loop6_loop_no_Oc_Bk[simp]: "inv_loop6_loop x (b, Oc # Bk # list) = False"
by (auto simp: inv_loop6_loop.simps)

lemma inv_loop6_exit_Oc_Bk_via_5[elim]: "\<lbrakk>x > 0; inv_loop5_exit x (b, Bk # list); b \<noteq> []; hd b = Oc\<rbrakk> \<Longrightarrow> 
  inv_loop6_exit x (tl b, Oc # Bk # list)"
apply(simp only: inv_loop5_exit.simps inv_loop6_exit.simps)
apply(erule_tac exE)+
apply(rule_tac x = "x - 1" in exI, rule_tac x = 1 in exI, simp)
apply(case_tac j, auto)
apply(case_tac [!] nat, auto)
done

lemma inv_loop6_Bk_tail_via_5[elim]: "\<lbrakk>0 < x; inv_loop5 x (b, Bk # list); b \<noteq> []\<rbrakk> \<Longrightarrow> inv_loop6 x (tl b, hd b # Bk # list)"
apply(simp add: inv_loop5.simps inv_loop6.simps)
apply(case_tac "hd b", simp_all, auto)
done

lemma inv_loop6_loop_Bk_Bk_drop[elim]: "\<lbrakk>0 < x; inv_loop6_loop x (b, Bk # list); b \<noteq> []; hd b = Bk\<rbrakk>
              \<Longrightarrow> inv_loop6_loop x (tl b, Bk # Bk # list)"
apply(simp only: inv_loop6_loop.simps)
apply(erule_tac exE)+
apply(rule_tac x = i in exI, rule_tac x = j in exI, 
      rule_tac x = "k - 1" in exI, rule_tac x = "Suc t" in exI, auto)
apply(case_tac [!] k, auto)
done

lemma inv_loop6_exit_Oc_Bk_via_loop6[elim]: "\<lbrakk>0 < x; inv_loop6_loop x (b, Bk # list); b \<noteq> []; hd b = Oc\<rbrakk> 
        \<Longrightarrow> inv_loop6_exit x (tl b, Oc # Bk # list)"
apply(simp only: inv_loop6_loop.simps inv_loop6_exit.simps)
apply(erule_tac exE)+
apply(rule_tac x = "i - 1" in exI, rule_tac x = j in exI, auto)
apply(case_tac [!] k, auto)
done

lemma inv_loop6_Bk_tail[elim]: "\<lbrakk>0 < x; inv_loop6 x (b, Bk # list); b \<noteq> []\<rbrakk> \<Longrightarrow> inv_loop6 x (tl b, hd b # Bk # list)"
apply(simp add: inv_loop6.simps)
apply(case_tac "hd b", simp_all, auto)
done

lemma inv_loop2_Oc_via_1[elim]: "\<lbrakk>0 < x; inv_loop1 x (b, Oc # list)\<rbrakk> \<Longrightarrow> inv_loop2 x (Oc # b, list)"
apply(auto simp: inv_loop1.simps inv_loop2.simps)
apply(rule_tac x = "Suc i" in exI, auto)
done

lemma inv_loop2_Bk_via_Oc[elim]: "\<lbrakk>0 < x; inv_loop2 x (b, Oc # list)\<rbrakk> \<Longrightarrow> inv_loop2 x (b, Bk # list)"
by (auto simp: inv_loop2.simps)

lemma inv_loop4_Oc_via_3[elim]: "\<lbrakk>0 < x; inv_loop3 x (b, Oc # list)\<rbrakk> \<Longrightarrow> inv_loop4 x (Oc # b, list)"
apply(auto simp: inv_loop3.simps inv_loop4.simps)
apply(rule_tac [!] x = i in exI, auto)
apply(rule_tac [!] x = "Suc 0" in exI, rule_tac [!] x = "j - 1" in exI, auto)
apply(case_tac [!] t, auto)
apply(case_tac [!] j, auto)
done

lemma inv_loop4_Oc_move[elim]: "\<lbrakk>0 < x; inv_loop4 x (b, Oc # list)\<rbrakk> \<Longrightarrow> inv_loop4 x (Oc # b, list)"
apply(auto simp: inv_loop4.simps)
apply(rule_tac [!] x = "i" in exI, auto)
apply(rule_tac [!] x = "Suc k" in exI, rule_tac [!] x = "t - 1" in exI, auto)
apply(case_tac [!] t, simp_all)
done

lemma inv_loop5_exit_no_Oc[simp]: "inv_loop5_exit x (b, Oc # list) = False"
by (auto simp: inv_loop5_exit.simps)

lemma inv_loop5_exit_Bk_Oc_via_loop[elim]: " \<lbrakk>inv_loop5_loop x (b, Oc # list); b \<noteq> []; hd b = Bk\<rbrakk>
  \<Longrightarrow> inv_loop5_exit x (tl b, Bk # Oc # list)"
apply(simp only: inv_loop5_loop.simps inv_loop5_exit.simps)
apply(erule_tac exE)+
apply(rule_tac x = i in exI, auto)
apply(case_tac [!] k, auto)
done

lemma inv_loop5_loop_Oc_Oc_drop[elim]: "\<lbrakk>inv_loop5_loop x (b, Oc # list); b \<noteq> []; hd b = Oc\<rbrakk> 
           \<Longrightarrow> inv_loop5_loop x (tl b, Oc # Oc # list)"
apply(simp only:  inv_loop5_loop.simps)
apply(erule_tac exE)+
apply(rule_tac x = i in exI, rule_tac x = j in exI)
apply(rule_tac x = "k - 1" in exI, rule_tac x = "Suc t" in exI, auto)
apply(case_tac [!] k, auto)
done

lemma inv_loop5_Oc_tl[elim]: "\<lbrakk>inv_loop5 x (b, Oc # list); b \<noteq> []\<rbrakk> \<Longrightarrow> inv_loop5 x (tl b, hd b # Oc # list)"
apply(simp add: inv_loop5.simps)
apply(case_tac "hd b", simp_all, auto)
done

lemma inv_loop1_Bk_Oc_via_6[elim]: "\<lbrakk>0 < x; inv_loop6 x ([], Oc # list)\<rbrakk> \<Longrightarrow> inv_loop1 x ([], Bk # Oc # list)"
apply(auto simp: inv_loop6.simps inv_loop1.simps 
  inv_loop6_loop.simps inv_loop6_exit.simps)
done

lemma inv_loop1_Oc_via_6[elim]: "\<lbrakk>0 < x; inv_loop6 x (b, Oc # list); b \<noteq> []\<rbrakk> 
           \<Longrightarrow> inv_loop1 x (tl b, hd b # Oc # list)"
apply(auto simp: inv_loop6.simps inv_loop1.simps 
  inv_loop6_loop.simps inv_loop6_exit.simps)
done


lemma inv_loop_nonempty[simp]:
  "inv_loop1 x (b, []) = False"
  "inv_loop2 x ([], b) = False"
  "inv_loop2 x (l', []) = False"
  "inv_loop3 x (b, []) = False"
  "inv_loop4 x ([], b) = False"
  "inv_loop5 x ([], list) = False"
  "inv_loop6 x ([], Bk # xs) = False"
  by (auto simp: inv_loop1.simps inv_loop2.simps inv_loop3.simps inv_loop4.simps 
   inv_loop5.simps inv_loop6.simps inv_loop5_exit.simps inv_loop5_loop.simps
   inv_loop6_loop.simps)

lemma inv_loop_nonemptyE[elim]:
  "\<lbrakk>inv_loop5 x (b, [])\<rbrakk> \<Longrightarrow> RR" "inv_loop6 x (b, []) \<Longrightarrow> RR" 
  "\<lbrakk>inv_loop1 x (b, Bk # list)\<rbrakk> \<Longrightarrow> b = []"
  by (auto simp: inv_loop4.simps inv_loop5.simps inv_loop5_exit.simps inv_loop5_loop.simps
 inv_loop6.simps inv_loop6_exit.simps inv_loop6_loop.simps inv_loop1.simps)

lemma inv_loop6_Bk_Bk_drop[elim]: "\<lbrakk>inv_loop6 x ([], Bk # list)\<rbrakk> \<Longrightarrow> inv_loop6 x ([], Bk # Bk # list)"
  by (simp)

lemma inv_loop_step: 
  "\<lbrakk>inv_loop x cf; x > 0\<rbrakk> \<Longrightarrow> inv_loop x (step cf (tcopy_loop, 0))"
apply(case_tac cf, case_tac c, case_tac [2] aa)
apply(auto simp: inv_loop.simps step.simps tcopy_loop_def numeral split: if_splits)
done

lemma inv_loop_steps:
  "\<lbrakk>inv_loop x cf; x > 0\<rbrakk> \<Longrightarrow> inv_loop x (steps cf (tcopy_loop, 0) stp)"
apply(induct stp, simp add: steps.simps, simp)
apply(erule_tac inv_loop_step, simp)
done

fun loop_stage :: "config \<Rightarrow> nat"
  where
  "loop_stage (s, l, r) = (if s = 0 then 0
                           else (Suc (length (takeWhile (\<lambda>a. a = Oc) (rev l @ r)))))"

fun loop_state :: "config \<Rightarrow> nat"
  where
  "loop_state (s, l, r) = (if s = 2 \<and> hd r = Oc then 0
                           else if s = 1 then 1
                           else 10 - s)"

fun loop_step :: "config \<Rightarrow> nat"
  where
  "loop_step (s, l, r) = (if s = 3 then length r
                          else if s = 4 then length r
                          else if s = 5 then length l 
                          else if s = 6 then length l
                          else 0)"

definition measure_loop :: "(config \<times> config) set"
  where
   "measure_loop = measures [loop_stage, loop_state, loop_step]"

lemma wf_measure_loop: "wf measure_loop"
unfolding measure_loop_def
by (auto)

lemma measure_loop_induct [case_names Step]: 
  "\<lbrakk>\<And>n. \<not> P (f n) \<Longrightarrow> (f (Suc n), (f n)) \<in> measure_loop\<rbrakk> \<Longrightarrow> \<exists>n. P (f n)"
using wf_measure_loop
by (metis wf_iff_no_infinite_down_chain)

lemma inv_loop4_not_just_Oc[elim]: 
  "\<lbrakk>inv_loop4 x (l', []);
  length (takeWhile (\<lambda>a. a = Oc) (rev l' @ [Oc])) \<noteq> 
  length (takeWhile (\<lambda>a. a = Oc) (rev l'))\<rbrakk>
  \<Longrightarrow> RR"
  "\<lbrakk>inv_loop4 x (l', Bk # list);
   length (takeWhile (\<lambda>a. a = Oc) (rev l' @ Oc # list)) \<noteq> 
    length (takeWhile (\<lambda>a. a = Oc) (rev l' @ Bk # list))\<rbrakk>
    \<Longrightarrow> RR"
apply(auto simp: inv_loop4.simps)
apply(case_tac [!] j, simp_all add: List.takeWhile_tail)
done

lemma takeWhile_replicate_append: 
  "P a \<Longrightarrow> takeWhile P (a\<up>x @ ys) = a\<up>x @ takeWhile P ys"
by (induct x, auto)

lemma takeWhile_replicate: 
  "P a \<Longrightarrow> takeWhile P (a\<up>x) = a\<up>x"
by (induct x, auto)

lemma inv_loop5_Bk_E[elim]: 
   "\<lbrakk>inv_loop5 x (l', Bk # list); l' \<noteq> []; 
   length (takeWhile (\<lambda>a. a = Oc) (rev (tl l') @ hd l' # Bk # list)) \<noteq>
   length (takeWhile (\<lambda>a. a = Oc) (rev l' @ Bk # list))\<rbrakk>
   \<Longrightarrow> RR"
apply(auto simp: inv_loop5.simps inv_loop5_exit.simps)
apply(case_tac [!] j, simp_all)
apply(case_tac [!] "nat", simp_all)
apply(case_tac  nata, simp_all add: List.takeWhile_tail)
apply(simp add: takeWhile_replicate_append takeWhile_replicate)
apply(case_tac  nata, simp_all add: List.takeWhile_tail)
done

lemma inv_loop1_hd_Oc[elim]: "\<lbrakk>inv_loop1 x (l', Oc # list)\<rbrakk> \<Longrightarrow> hd list = Oc"
by (auto simp: inv_loop1.simps)

lemma inv_loop6_not_just_Bk[elim]: 
  "\<lbrakk>inv_loop6 x (l', Bk # list); l' \<noteq> [];
  length (takeWhile (\<lambda>a. a = Oc) (rev (tl l') @ hd l' # Bk # list)) \<noteq> 
  length (takeWhile (\<lambda>a. a = Oc) (rev l' @ Bk # list))\<rbrakk>
  \<Longrightarrow> RR"
apply(auto simp: inv_loop6.simps)
apply(case_tac l', simp_all)
done

lemma inv_loop2_OcE[elim]:
  "\<lbrakk>inv_loop2 x (l', Oc # list); l' \<noteq> []\<rbrakk> \<Longrightarrow> 
  length (takeWhile (\<lambda>a. a = Oc) (rev l' @ Bk # list)) <
  length (takeWhile (\<lambda>a. a = Oc) (rev l' @ Oc # list))"
apply(auto simp: inv_loop2.simps)
apply(simp_all add: takeWhile_tail takeWhile_replicate_append
                takeWhile_replicate)
done

lemma inv_loop5_OcE[elim]: 
  "\<lbrakk>inv_loop5 x (l', Oc # list); l' \<noteq> [];
  length (takeWhile (\<lambda>a. a = Oc) (rev (tl l') @ hd l' # Oc # list)) \<noteq> 
  length (takeWhile (\<lambda>a. a = Oc) (rev l' @ Oc # list))\<rbrakk>
  \<Longrightarrow> RR"
apply(auto simp: inv_loop5.simps)
apply(case_tac l', auto)
done

lemma inv_loop6_OcE[elim]: 
  "\<lbrakk>inv_loop6 x (l', Oc # list); l' \<noteq> []; 
  length (takeWhile (\<lambda>a. a = Oc) (rev (tl l') @ hd l' # Oc # list))
  \<noteq> length (takeWhile (\<lambda>a. a = Oc) (rev l' @ Oc # list))\<rbrakk>
  \<Longrightarrow> RR"
apply(case_tac l')
apply(auto simp: inv_loop6.simps)
done

lemma loop_halts: 
  assumes h: "n > 0" "inv_loop n (1, l, r)"
  shows "\<exists> stp. is_final (steps0 (1, l, r) tcopy_loop stp)"
proof (induct rule: measure_loop_induct) 
  case (Step stp)
  have "\<not> is_final (steps0 (1, l, r) tcopy_loop stp)" by fact
  moreover
  have "inv_loop n (steps0 (1, l, r) tcopy_loop stp)"
    by (rule_tac inv_loop_steps) (simp_all only: h)
  moreover
  obtain s l' r' where eq: "(steps0 (1, l, r) tcopy_loop stp) = (s, l', r')"
    by (metis measure_begin_state.cases)
  ultimately 
  have "(step0 (s, l', r') tcopy_loop, s, l', r') \<in> measure_loop"
    using h(1)
    apply(case_tac r')
    apply(case_tac [2] a)
    apply(auto simp: inv_loop.simps step.simps tcopy_loop_def numeral measure_loop_def split: if_splits)
    done
  then 
  show "(steps0 (1, l, r) tcopy_loop (Suc stp), steps0 (1, l, r) tcopy_loop stp) \<in> measure_loop"
    using eq by (simp only: step_red)
qed

lemma loop_correct:
  assumes "0 < n"
  shows "{inv_loop1 n} tcopy_loop {inv_loop0 n}"
  using assms
proof(rule_tac Hoare_haltI)
  fix l r
  assume h: "0 < n" "inv_loop1 n (l, r)"
  then obtain stp where k: "is_final (steps0 (1, l, r) tcopy_loop stp)" 
    using loop_halts
    apply(simp add: inv_loop.simps)
    apply(blast)
    done
  moreover
  have "inv_loop n (steps0 (1, l, r) tcopy_loop stp)"
    using h 
    by (rule_tac inv_loop_steps) (simp_all add: inv_loop.simps)
  ultimately show
    "\<exists>stp. is_final (steps0 (1, l, r) tcopy_loop stp) \<and> 
    inv_loop0 n holds_for steps0 (1, l, r) tcopy_loop stp"
    using h(1) 
    apply(rule_tac x = stp in exI)
    apply(case_tac "(steps0 (1, l, r) tcopy_loop stp)")
    apply(simp add: inv_loop.simps)
    done
qed




(* tcopy_end *)

fun
  inv_end5_loop :: "nat \<Rightarrow> tape \<Rightarrow> bool" and
  inv_end5_exit :: "nat \<Rightarrow> tape \<Rightarrow> bool" 
where  
  "inv_end5_loop x (l, r) = 
     (\<exists> i j. i + j = x \<and> x > 0 \<and> j > 0 \<and> l = Oc\<up>i @ [Bk] \<and> r = Oc\<up>j @ Bk # Oc\<up>x)"
| "inv_end5_exit x (l, r) = (x > 0 \<and> l = [] \<and> r = Bk # Oc\<up>x @ Bk # Oc\<up>x)"

fun 
  inv_end0 :: "nat \<Rightarrow> tape \<Rightarrow>  bool" and
  inv_end1 :: "nat \<Rightarrow> tape \<Rightarrow> bool" and
  inv_end2 :: "nat \<Rightarrow> tape \<Rightarrow> bool" and
  inv_end3 :: "nat \<Rightarrow> tape \<Rightarrow> bool" and
  inv_end4 :: "nat \<Rightarrow> tape \<Rightarrow> bool" and 
  inv_end5 :: "nat \<Rightarrow> tape \<Rightarrow> bool" 
where
  "inv_end0 n (l, r) = (n > 0 \<and> (l, r) = ([Bk], Oc\<up>n @ Bk # Oc\<up>n))"
| "inv_end1 n (l, r) = (n > 0 \<and> (l, r) = ([Bk], Oc # Bk\<up>n @ Oc\<up>n))"
| "inv_end2 n (l, r) = (\<exists> i j. i + j = Suc n \<and> n > 0 \<and> l = Oc\<up>i @ [Bk] \<and> r = Bk\<up>j @ Oc\<up>n)"
| "inv_end3 n (l, r) =
     (\<exists> i j. n > 0 \<and> i + j = n \<and> l = Oc\<up>i @ [Bk] \<and> r = Oc # Bk\<up>j@ Oc\<up>n)"
| "inv_end4 n (l, r) = (\<exists> any. n > 0 \<and> l = Oc\<up>n @ [Bk] \<and> r = any#Oc\<up>n)"
| "inv_end5 n (l, r) = (inv_end5_loop n (l, r) \<or> inv_end5_exit n (l, r))"

fun 
  inv_end :: "nat \<Rightarrow> config \<Rightarrow> bool"
where
  "inv_end n (s, l, r) = (if s = 0 then inv_end0 n (l, r)
                          else if s = 1 then inv_end1 n (l, r)
                          else if s = 2 then inv_end2 n (l, r)
                          else if s = 3 then inv_end3 n (l, r)
                          else if s = 4 then inv_end4 n (l, r)
                          else if s = 5 then inv_end5 n (l, r)
                          else False)"

declare inv_end.simps[simp del] inv_end1.simps[simp del]
        inv_end0.simps[simp del] inv_end2.simps[simp del]
        inv_end3.simps[simp del] inv_end4.simps[simp del]
        inv_end5.simps[simp del]

lemma inv_end_nonempty[simp]:
  "inv_end1 x (b, []) = False"
  "inv_end1 x ([], list) = False"
  "inv_end2 x (b, []) = False"
  "inv_end3 x (b, []) = False"
  "inv_end4 x (b, []) = False"
  "inv_end5 x (b, []) = False"
  "inv_end5 x ([], Oc # list) = False"
by (auto simp: inv_end1.simps inv_end2.simps inv_end3.simps inv_end4.simps inv_end5.simps)

lemma inv_end0_Bk_via_1[elim]: "\<lbrakk>0 < x; inv_end1 x (b, Bk # list); b \<noteq> []\<rbrakk>
  \<Longrightarrow> inv_end0 x (tl b, hd b # Bk # list)"
by (auto simp: inv_end1.simps inv_end0.simps)

lemma inv_end3_Oc_via_2[elim]: "\<lbrakk>0 < x; inv_end2 x (b, Bk # list)\<rbrakk> 
  \<Longrightarrow> inv_end3 x (b, Oc # list)"
apply(auto simp: inv_end2.simps inv_end3.simps)
apply(rule_tac x = "j - 1" in exI)
apply(case_tac j, simp_all)
apply(case_tac x, simp_all)
done

lemma inv_end2_Bk_via_3[elim]: "\<lbrakk>0 < x; inv_end3 x (b, Bk # list)\<rbrakk> \<Longrightarrow> inv_end2 x (Bk # b, list)"
by (auto simp: inv_end2.simps inv_end3.simps)
  
lemma inv_end5_Bk_via_4[elim]: "\<lbrakk>0 < x; inv_end4 x ([], Bk # list)\<rbrakk> \<Longrightarrow> 
  inv_end5 x ([], Bk # Bk # list)"
by (auto simp: inv_end4.simps inv_end5.simps)
 
lemma inv_end5_Bk_tail_via_4[elim]: "\<lbrakk>0 < x; inv_end4 x (b, Bk # list); b \<noteq> []\<rbrakk> \<Longrightarrow> 
  inv_end5 x (tl b, hd b # Bk # list)"
apply(auto simp: inv_end4.simps inv_end5.simps)
apply(rule_tac x = 1 in exI, simp)
done

lemma inv_end0_Bk_via_5[elim]: "\<lbrakk>0 < x; inv_end5 x (b, Bk # list)\<rbrakk> \<Longrightarrow> inv_end0 x (Bk # b, list)"
apply(auto simp: inv_end5.simps inv_end0.simps)
apply(case_tac [!] j, simp_all)
done

lemma inv_end2_Oc_via_1[elim]: "\<lbrakk>0 < x; inv_end1 x (b, Oc # list)\<rbrakk> \<Longrightarrow> inv_end2 x (Oc # b, list)"
by (auto simp: inv_end1.simps inv_end2.simps)

lemma inv_end4_Bk_Oc_via_2[elim]: "\<lbrakk>0 < x; inv_end2 x ([], Oc # list)\<rbrakk> \<Longrightarrow>
               inv_end4 x ([], Bk # Oc # list)"
by (auto simp: inv_end2.simps inv_end4.simps)

lemma inv_end4_Oc_via_2[elim]:  "\<lbrakk>0 < x; inv_end2 x (b, Oc # list); b \<noteq> []\<rbrakk> \<Longrightarrow>
  inv_end4 x (tl b, hd b # Oc # list)"
apply(auto simp: inv_end2.simps inv_end4.simps)
apply(case_tac [!] j, simp_all)
done

lemma inv_end2_Oc_via_3[elim]: "\<lbrakk>0 < x; inv_end3 x (b, Oc # list)\<rbrakk> \<Longrightarrow> inv_end2 x (Oc # b, list)"
by (auto simp: inv_end2.simps inv_end3.simps)

lemma inv_end4_Bk_via_Oc[elim]: "\<lbrakk>0 < x; inv_end4 x (b, Oc # list)\<rbrakk> \<Longrightarrow> inv_end4 x (b, Bk # list)"
by (auto simp: inv_end2.simps inv_end4.simps)

lemma inv_end5_Bk_drop_Oc[elim]: "\<lbrakk>0 < x; inv_end5 x ([], Oc # list)\<rbrakk> \<Longrightarrow> inv_end5 x ([], Bk # Oc # list)"
by (auto simp: inv_end2.simps inv_end5.simps)

declare inv_end5_loop.simps[simp del]
        inv_end5_exit.simps[simp del]

lemma inv_end5_exit_no_Oc[simp]: "inv_end5_exit x (b, Oc # list) = False"
by (auto simp: inv_end5_exit.simps)

lemma inv_end5_loop_no_Bk_Oc[simp]: "inv_end5_loop x (tl b, Bk # Oc # list) = False"
apply(auto simp: inv_end5_loop.simps)
apply(case_tac [!] j, simp_all)
done

lemma inv_end5_exit_Bk_Oc_via_loop[elim]:
  "\<lbrakk>0 < x; inv_end5_loop x (b, Oc # list); b \<noteq> []; hd b = Bk\<rbrakk> \<Longrightarrow>
  inv_end5_exit x (tl b, Bk # Oc # list)"
apply(auto simp: inv_end5_loop.simps inv_end5_exit.simps)
apply(case_tac [!] i, simp_all)
done

lemma inv_end5_loop_Oc_Oc_drop[elim]: 
  "\<lbrakk>0 < x; inv_end5_loop x (b, Oc # list); b \<noteq> []; hd b = Oc\<rbrakk> \<Longrightarrow>
  inv_end5_loop x (tl b, Oc # Oc # list)"
apply(simp only: inv_end5_loop.simps inv_end5_exit.simps)
apply(erule_tac exE)+
apply(rule_tac x = "i - 1" in exI, 
      rule_tac x = "Suc j" in exI, auto)
apply(case_tac [!] i, simp_all)
done

lemma inv_end5_Oc_tail[elim]: "\<lbrakk>0 < x; inv_end5 x (b, Oc # list); b \<noteq> []\<rbrakk> \<Longrightarrow> 
  inv_end5 x (tl b, hd b # Oc # list)"
apply(simp add: inv_end2.simps inv_end5.simps)
apply(case_tac "hd b", simp_all, auto)
done

lemma inv_end_step:
  "\<lbrakk>x > 0; inv_end x cf\<rbrakk> \<Longrightarrow> inv_end x (step cf (tcopy_end, 0))"
apply(case_tac cf, case_tac c, case_tac [2] aa)
apply(auto simp: inv_end.simps step.simps tcopy_end_def numeral split: if_splits)
done

lemma inv_end_steps:
  "\<lbrakk>x > 0; inv_end x cf\<rbrakk> \<Longrightarrow> inv_end x (steps cf (tcopy_end, 0) stp)"
apply(induct stp, simp add:steps.simps, simp)
apply(erule_tac inv_end_step, simp)
done

fun end_state :: "config \<Rightarrow> nat"
  where
  "end_state (s, l, r) = 
       (if s = 0 then 0
        else if s = 1 then 5
        else if s = 2 \<or> s = 3 then 4
        else if s = 4 then 3 
        else if s = 5 then 2
        else 0)"

fun end_stage :: "config \<Rightarrow> nat"
  where
  "end_stage (s, l, r) = 
          (if s = 2 \<or> s = 3 then (length r) else 0)"

fun end_step :: "config \<Rightarrow> nat"
  where
  "end_step (s, l, r) = 
         (if s = 4 then (if hd r = Oc then 1 else 0)
          else if s = 5 then length l
          else if s = 2 then 1
          else if s = 3 then 0
          else 0)"

definition end_LE :: "(config \<times> config) set"
  where
   "end_LE = measures [end_state, end_stage, end_step]"

lemma wf_end_le: "wf end_LE"
unfolding end_LE_def
by (auto)

lemma halt_lemma: 
  "\<lbrakk>wf LE; \<forall>n. (\<not> P (f n) \<longrightarrow> (f (Suc n), (f n)) \<in> LE)\<rbrakk> \<Longrightarrow> \<exists>n. P (f n)"
by (metis wf_iff_no_infinite_down_chain)

lemma end_halt: 
  "\<lbrakk>x > 0; inv_end x (Suc 0, l, r)\<rbrakk> \<Longrightarrow> 
      \<exists> stp. is_final (steps (Suc 0, l, r) (tcopy_end, 0) stp)"
proof(rule_tac LE = end_LE in halt_lemma)
  show "wf end_LE" by(intro wf_end_le)
next
  assume great: "0 < x"
    and inv_start: "inv_end x (Suc 0, l, r)"
  show "\<forall>n. \<not> is_final (steps (Suc 0, l, r) (tcopy_end, 0) n) \<longrightarrow> 
    (steps (Suc 0, l, r) (tcopy_end, 0) (Suc n), steps (Suc 0, l, r) (tcopy_end, 0) n) \<in> end_LE"
  proof(rule_tac allI, rule_tac impI)
    fix n
    assume notfinal: "\<not> is_final (steps (Suc 0, l, r) (tcopy_end, 0) n)"
    obtain s' l' r' where d: "steps (Suc 0, l, r) (tcopy_end, 0) n = (s', l', r')"
      apply(case_tac "steps (Suc 0, l, r) (tcopy_end, 0) n", auto)
      done
    hence "inv_end x (s', l', r') \<and> s' \<noteq> 0"
      using great inv_start notfinal
      apply(drule_tac stp = n in inv_end_steps, auto)
      done
    hence "(step (s', l', r') (tcopy_end, 0), s', l', r') \<in> end_LE"
      apply(case_tac r', case_tac [2] a)
      apply(auto simp: inv_end.simps step.simps tcopy_end_def numeral end_LE_def split: if_splits)
      done
    thus "(steps (Suc 0, l, r) (tcopy_end, 0) (Suc n), 
      steps (Suc 0, l, r) (tcopy_end, 0) n) \<in> end_LE"
      using d
      by simp
  qed
qed

lemma end_correct:
  "n > 0 \<Longrightarrow> {inv_end1 n} tcopy_end {inv_end0 n}"
proof(rule_tac Hoare_haltI)
  fix l r
  assume h: "0 < n"
    "inv_end1 n (l, r)"
  then have "\<exists> stp. is_final (steps0 (1, l, r) tcopy_end stp)"
    by (simp add: end_halt inv_end.simps)
  then obtain stp where "is_final (steps0 (1, l, r) tcopy_end stp)" ..
  moreover have "inv_end n (steps0 (1, l, r) tcopy_end stp)"
    apply(rule_tac inv_end_steps)
    using h by(simp_all add: inv_end.simps)
  ultimately show
    "\<exists>stp. is_final (steps (1, l, r) (tcopy_end, 0) stp) \<and> 
    inv_end0 n holds_for steps (1, l, r) (tcopy_end, 0) stp"        
    using h
    apply(rule_tac x = stp in exI)
    apply(case_tac "(steps0 (1, l, r) tcopy_end stp)") 
    apply(simp add: inv_end.simps)
    done
qed

(* tcopy *)

lemma tm_wf_tcopy[intro]:
  "tm_wf (tcopy_begin, 0)"
  "tm_wf (tcopy_loop, 0)"
  "tm_wf (tcopy_end, 0)"
by (auto simp: tm_wf.simps tcopy_end_def tcopy_loop_def tcopy_begin_def)

lemma tcopy_correct1: 
  assumes "0 < x"
  shows "{inv_begin1 x} tcopy {inv_end0 x}"
proof -
  have "{inv_begin1 x} tcopy_begin {inv_begin0 x}"
    by (metis assms begin_correct) 
  moreover 
  have "inv_begin0 x \<mapsto> inv_loop1 x"
    unfolding assert_imp_def
    unfolding inv_begin0.simps inv_loop1.simps
    unfolding inv_loop1_loop.simps inv_loop1_exit.simps
    apply(auto simp add: numeral Cons_eq_append_conv)
    by (rule_tac x = "Suc 0" in exI, auto)
  ultimately have "{inv_begin1 x} tcopy_begin {inv_loop1 x}"
    by (rule_tac Hoare_consequence) (auto)
  moreover
  have "{inv_loop1 x} tcopy_loop {inv_loop0 x}"
    by (metis assms loop_correct) 
  ultimately 
  have "{inv_begin1 x} (tcopy_begin |+| tcopy_loop) {inv_loop0 x}"
    by (rule_tac Hoare_plus_halt) (auto)
  moreover 
  have "{inv_end1 x} tcopy_end {inv_end0 x}"
    by (metis assms end_correct) 
  moreover 
  have "inv_loop0 x = inv_end1 x"
    by(auto simp: inv_end1.simps inv_loop1.simps assert_imp_def)
  ultimately 
  show "{inv_begin1 x} tcopy {inv_end0 x}"
    unfolding tcopy_def
    by (rule_tac Hoare_plus_halt) (auto)
qed

abbreviation (input)
  "pre_tcopy n \<equiv> \<lambda>tp. tp = ([]::cell list, Oc \<up> (Suc n))"
abbreviation (input)
  "post_tcopy n \<equiv> \<lambda>tp. tp= ([Bk], <(n, n::nat)>)"

lemma tcopy_correct:
  shows "{pre_tcopy n} tcopy {post_tcopy n}"
proof -
  have "{inv_begin1 (Suc n)} tcopy {inv_end0 (Suc n)}"
    by (rule tcopy_correct1) (simp)
  moreover
  have "pre_tcopy n = inv_begin1 (Suc n)"
    by (auto)
  moreover
  have "inv_end0 (Suc n) = post_tcopy n"
    unfolding fun_eq_iff
    by (auto simp add: inv_end0.simps tape_of_nat_def tape_of_prod_def)
  ultimately
  show "{pre_tcopy n} tcopy {post_tcopy n}" 
    by simp
qed


section {* The {\em Dithering} Turing Machine *}

text {*
  The {\em Dithering} TM, when the input is @{text "1"}, it will loop forever, otherwise, it will
  terminate.
*}

definition dither :: "instr list"
  where
  "dither \<equiv> [(W0, 1), (R, 2), (L, 1), (L, 0)] "

(* invariants of dither *)
abbreviation (input)
  "dither_halt_inv \<equiv> \<lambda>tp. \<exists>k. tp = (Bk \<up> k, <1::nat>)"

abbreviation (input)
  "dither_unhalt_inv \<equiv> \<lambda>tp. \<exists>k. tp = (Bk \<up> k, <0::nat>)"

lemma dither_loops_aux: 
  "(steps0 (1, Bk \<up> m, [Oc]) dither stp = (1, Bk \<up> m, [Oc])) \<or> 
   (steps0 (1, Bk \<up> m, [Oc]) dither stp = (2, Oc # Bk \<up> m, []))"
  apply(induct stp)
  apply(auto simp: steps.simps step.simps dither_def numeral)
  done

lemma dither_loops:
  shows "{dither_unhalt_inv} dither \<up>" 
apply(rule Hoare_unhaltI)
using dither_loops_aux
apply(auto simp add: numeral tape_of_nat_def)
by (metis Suc_neq_Zero is_final_eq)

lemma dither_halts_aux: 
  shows "steps0 (1, Bk \<up> m, [Oc, Oc]) dither 2 = (0, Bk \<up> m, [Oc, Oc])"
unfolding dither_def
by (simp add: steps.simps step.simps numeral)

lemma dither_halts:
  shows "{dither_halt_inv} dither {dither_halt_inv}" 
apply(rule Hoare_haltI)
using dither_halts_aux
apply(auto simp add: tape_of_nat_def)
by (metis (lifting, mono_tags) holds_for.simps is_final_eq)


section {* The diagnal argument below shows the undecidability of Halting problem *}

text {*
  @{text "halts tp x"} means TM @{text "tp"} terminates on input @{text "x"}
  and the final configuration is standard.
*}

definition halts :: "tprog0 \<Rightarrow> nat list \<Rightarrow> bool"
  where
  "halts p ns \<equiv> {(\<lambda>tp. tp = ([], <ns>))} p {(\<lambda>tp. (\<exists>k n l. tp = (Bk \<up> k,  <n::nat> @ Bk \<up> l)))}"

lemma tm_wf0_tcopy[intro, simp]: "tm_wf0 tcopy"
by (auto simp: tcopy_def)

lemma tm_wf0_dither[intro, simp]: "tm_wf0 dither"
by (auto simp: tm_wf.simps dither_def)

text {*
  The following locale specifies that TM @{text "H"} can be used to solve 
  the {\em Halting Problem} and @{text "False"} is going to be derived 
  under this locale. Therefore, the undecidability of {\em Halting Problem}
  is established. 
*}

locale uncomputable = 
  (* The coding function of TM, interestingly, the detailed definition of this 
  funciton @{text "code"} does not affect the final result. *)
  fixes code :: "instr list \<Rightarrow> nat" 
  (* 
  The TM @{text "H"} is the one which is assummed being able to solve the Halting problem.
  *)
  and H :: "instr list"
  assumes h_wf[intro]: "tm_wf0 H"
  (*
  The following two assumptions specifies that @{text "H"} does solve the Halting problem.
  *)
  and h_case: 
  "\<And> M ns. halts M ns \<Longrightarrow> {(\<lambda>tp. tp = ([Bk], <(code M, ns)>))} H {(\<lambda>tp. \<exists>k. tp = (Bk \<up> k, <0::nat>))}"
  and nh_case: 
  "\<And> M ns. \<not> halts M ns \<Longrightarrow> {(\<lambda>tp. tp = ([Bk], <(code M, ns)>))} H {(\<lambda>tp. \<exists>k. tp = (Bk \<up> k, <1::nat>))}"
begin

(* invariants for H *)
abbreviation (input)
  "pre_H_inv M ns \<equiv> \<lambda>tp. tp = ([Bk], <(code M, ns::nat list)>)"

abbreviation (input)
  "post_H_halt_inv \<equiv> \<lambda>tp. \<exists>k. tp = (Bk \<up> k, <1::nat>)"

abbreviation (input)
  "post_H_unhalt_inv \<equiv> \<lambda>tp. \<exists>k. tp = (Bk \<up> k, <0::nat>)"


lemma H_halt_inv:
  assumes "\<not> halts M ns" 
  shows "{pre_H_inv M ns} H {post_H_halt_inv}"
using assms nh_case by auto

lemma H_unhalt_inv:
  assumes "halts M ns" 
  shows "{pre_H_inv M ns} H {post_H_unhalt_inv}"
using assms h_case by auto
   
(* TM that produces the contradiction and its code *)

definition
  "tcontra \<equiv> (tcopy |+| H) |+| dither"
abbreviation
  "code_tcontra \<equiv> code tcontra"

(* assume tcontra does not halt on its code *)
lemma tcontra_unhalt: 
  assumes "\<not> halts tcontra [code tcontra]"
  shows "False"
proof -
  (* invariants *)
  define P1 where "P1 \<equiv> \<lambda>tp. tp = ([]::cell list, <code_tcontra>)"
  define P2 where "P2 \<equiv> \<lambda>tp. tp = ([Bk], <(code_tcontra, code_tcontra)>)"
  define P3 where "P3 \<equiv> \<lambda>tp. \<exists>k. tp = (Bk \<up> k, <1::nat>)"

  (*
  {P1} tcopy {P2}  {P2} H {P3} 
  ----------------------------
     {P1} (tcopy |+| H) {P3}     {P3} dither {P3}
  ------------------------------------------------
                 {P1} tcontra {P3}
  *)

  have H_wf: "tm_wf0 (tcopy |+| H)" by auto

  (* {P1} (tcopy |+| H) {P3} *)
  have first: "{P1} (tcopy |+| H) {P3}" 
  proof (cases rule: Hoare_plus_halt)
    case A_halt (* of tcopy *)
    show "{P1} tcopy {P2}" unfolding P1_def P2_def tape_of_nat_def
      by (rule tcopy_correct)
  next
    case B_halt (* of H *)
    show "{P2} H {P3}"
      unfolding P2_def P3_def 
      using H_halt_inv[OF assms]
      by (simp add: tape_of_prod_def tape_of_list_def)
  qed (simp)

  (* {P3} dither {P3} *)
  have second: "{P3} dither {P3}" unfolding P3_def 
    by (rule dither_halts)
  
  (* {P1} tcontra {P3} *)
  have "{P1} tcontra {P3}" 
    unfolding tcontra_def
    by (rule Hoare_plus_halt[OF first second H_wf])

  with assms show "False"
    unfolding P1_def P3_def
    unfolding halts_def
    unfolding Hoare_halt_def 
    apply(auto)    
    apply(drule_tac x = n in spec)
    apply(case_tac "steps0 (Suc 0, [], <code tcontra>) tcontra n")
    apply(auto simp add: tape_of_list_def)
    by (metis append_Nil2 replicate_0)
qed

(* asumme tcontra halts on its code *)
lemma tcontra_halt: 
  assumes "halts tcontra [code tcontra]"
  shows "False"
proof - 
  (* invariants *)
  define P1 where "P1 \<equiv> \<lambda>tp. tp = ([]::cell list, <code_tcontra>)"
  define P2 where "P2 \<equiv> \<lambda>tp. tp = ([Bk], <(code_tcontra, code_tcontra)>)"
  define Q3 where "Q3 \<equiv> \<lambda>tp. \<exists>k. tp = (Bk \<up> k, <0::nat>)"

  (*
  {P1} tcopy {P2}  {P2} H {Q3} 
  ----------------------------
     {P1} (tcopy |+| H) {Q3}     {Q3} dither loops
  ------------------------------------------------
               {P1} tcontra loops
  *)

  have H_wf: "tm_wf0 (tcopy |+| H)" by auto

  (* {P1} (tcopy |+| H) {Q3} *)
  have first: "{P1} (tcopy |+| H) {Q3}" 
  proof (cases rule: Hoare_plus_halt)
    case A_halt (* of tcopy *)
    show "{P1} tcopy {P2}" unfolding P1_def P2_def tape_of_nat_def
      by (rule tcopy_correct)
  next
    case B_halt (* of H *)
    then show "{P2} H {Q3}"
      unfolding P2_def Q3_def using H_unhalt_inv[OF assms]
      by(simp add: tape_of_prod_def tape_of_list_def)
  qed (simp)

  (* {P3} dither loops *)
  have second: "{Q3} dither \<up>" unfolding Q3_def 
    by (rule dither_loops)
  
  (* {P1} tcontra loops *)
  have "{P1} tcontra \<up>" 
    unfolding tcontra_def
    by (rule Hoare_plus_unhalt[OF first second H_wf])

  with assms show "False"
    unfolding P1_def
    unfolding halts_def
    unfolding Hoare_halt_def Hoare_unhalt_def
    by (auto simp add: tape_of_list_def)
qed

      
text {*
  @{text "False"} can finally derived.
*}

lemma false: "False"
using tcontra_halt tcontra_unhalt 
by auto

end

declare replicate_Suc[simp del]


end