(* Title: thys/Abacus_Hoare.thy
Author: Jian Xu, Xingyuan Zhang, and Christian Urban
Modifications: Sebastiaan Joosten
*)
theory Abacus_Hoare
imports Abacus
begin
type_synonym abc_assert = "nat list \<Rightarrow> bool"
definition
assert_imp :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool" ("_ \<mapsto> _" [0, 0] 100)
where
"assert_imp P Q \<equiv> \<forall>xs. P xs \<longrightarrow> Q xs"
fun abc_holds_for :: "(nat list \<Rightarrow> bool) \<Rightarrow> (nat \<times> nat list) \<Rightarrow> bool" ("_ abc'_holds'_for _" [100, 99] 100)
where
"P abc_holds_for (s, lm) = P lm"
(* Hoare Rules *)
(* halting case *)
(*consts abc_Hoare_halt :: "abc_assert \<Rightarrow> abc_prog \<Rightarrow> abc_assert \<Rightarrow> bool" ("({(1_)}/ (_)/ {(1_)})" 50)*)
fun abc_final :: "(nat \<times> nat list) \<Rightarrow> abc_prog \<Rightarrow> bool"
where
"abc_final (s, lm) p = (s = length p)"
fun abc_notfinal :: "abc_conf \<Rightarrow> abc_prog \<Rightarrow> bool"
where
"abc_notfinal (s, lm) p = (s < length p)"
definition
abc_Hoare_halt :: "abc_assert \<Rightarrow> abc_prog \<Rightarrow> abc_assert \<Rightarrow> bool" ("({(1_)}/ (_)/ {(1_)})" 50)
where
"abc_Hoare_halt P p Q \<equiv> \<forall>lm. P lm \<longrightarrow> (\<exists>n. abc_final (abc_steps_l (0, lm) p n) p \<and> Q abc_holds_for (abc_steps_l (0, lm) p n))"
lemma abc_Hoare_haltI:
assumes "\<And>lm. P lm \<Longrightarrow> \<exists>n. abc_final (abc_steps_l (0, lm) p n) p \<and> Q abc_holds_for (abc_steps_l (0, lm) p n)"
shows "{P} (p::abc_prog) {Q}"
unfolding abc_Hoare_halt_def
using assms by auto
text {*
{P} A {Q} {Q} B {S}
-----------------------------------------
{P} A [+] B {S}
*}
definition
abc_Hoare_unhalt :: "abc_assert \<Rightarrow> abc_prog \<Rightarrow> bool" ("({(1_)}/ (_)) \<up>" 50)
where
"abc_Hoare_unhalt P p \<equiv> \<forall>args. P args \<longrightarrow> (\<forall> n .abc_notfinal (abc_steps_l (0, args) p n) p)"
lemma abc_Hoare_unhaltI:
assumes "\<And>args n. P args \<Longrightarrow> abc_notfinal (abc_steps_l (0, args) p n) p"
shows "{P} (p::abc_prog) \<up>"
unfolding abc_Hoare_unhalt_def
using assms by auto
fun abc_inst_shift :: "abc_inst \<Rightarrow> nat \<Rightarrow> abc_inst"
where
"abc_inst_shift (Inc m) n = Inc m" |
"abc_inst_shift (Dec m e) n = Dec m (e + n)" |
"abc_inst_shift (Goto m) n = Goto (m + n)"
fun abc_shift :: "abc_inst list \<Rightarrow> nat \<Rightarrow> abc_inst list"
where
"abc_shift xs n = map (\<lambda> x. abc_inst_shift x n) xs"
fun abc_comp :: "abc_inst list \<Rightarrow> abc_inst list \<Rightarrow>
abc_inst list" (infixl "[+]" 99)
where
"abc_comp al bl = (let al_len = length al in
al @ abc_shift bl al_len)"
lemma abc_comp_first_step_eq_pre:
"s < length A
\<Longrightarrow> abc_step_l (s, lm) (abc_fetch s (A [+] B)) =
abc_step_l (s, lm) (abc_fetch s A)"
by(simp add: abc_step_l.simps abc_fetch.simps nth_append)
lemma abc_before_final:
"\<lbrakk>abc_final (abc_steps_l (0, lm) p n) p; p \<noteq> []\<rbrakk>
\<Longrightarrow> \<exists> n'. abc_notfinal (abc_steps_l (0, lm) p n') p \<and>
abc_final (abc_steps_l (0, lm) p (Suc n')) p"
proof(induct n)
case 0
thus "?thesis"
by(simp add: abc_steps_l.simps)
next
case (Suc n)
have ind: " \<lbrakk>abc_final (abc_steps_l (0, lm) p n) p; p \<noteq> []\<rbrakk> \<Longrightarrow>
\<exists>n'. abc_notfinal (abc_steps_l (0, lm) p n') p \<and> abc_final (abc_steps_l (0, lm) p (Suc n')) p"
by fact
have final: "abc_final (abc_steps_l (0, lm) p (Suc n)) p" by fact
have notnull: "p \<noteq> []" by fact
show "?thesis"
proof(cases "abc_final (abc_steps_l (0, lm) p n) p")
case True
have "abc_final (abc_steps_l (0, lm) p n) p" by fact
then have "\<exists>n'. abc_notfinal (abc_steps_l (0, lm) p n') p \<and> abc_final (abc_steps_l (0, lm) p (Suc n')) p"
using ind notnull
by simp
thus "?thesis"
by simp
next
case False
have "\<not> abc_final (abc_steps_l (0, lm) p n) p" by fact
from final this have "abc_notfinal (abc_steps_l (0, lm) p n) p"
by(case_tac "abc_steps_l (0, lm) p n", simp add: abc_step_red2
abc_step_l.simps abc_fetch.simps split: if_splits)
thus "?thesis"
using final
by(rule_tac x = n in exI, simp)
qed
qed
lemma notfinal_Suc:
"abc_notfinal (abc_steps_l (0, lm) A (Suc n)) A \<Longrightarrow>
abc_notfinal (abc_steps_l (0, lm) A n) A"
apply(case_tac "abc_steps_l (0, lm) A n")
apply(simp add: abc_step_red2 abc_fetch.simps abc_step_l.simps split: if_splits)
done
lemma abc_comp_frist_steps_eq_pre:
assumes notfinal: "abc_notfinal (abc_steps_l (0, lm) A n) A"
and notnull: "A \<noteq> []"
shows "abc_steps_l (0, lm) (A [+] B) n = abc_steps_l (0, lm) A n"
using notfinal
proof(induct n)
case 0
thus "?case"
by(simp add: abc_steps_l.simps)
next
case (Suc n)
have ind: "abc_notfinal (abc_steps_l (0, lm) A n) A \<Longrightarrow> abc_steps_l (0, lm) (A [+] B) n = abc_steps_l (0, lm) A n"
by fact
have h: "abc_notfinal (abc_steps_l (0, lm) A (Suc n)) A" by fact
then have a: "abc_notfinal (abc_steps_l (0, lm) A n) A"
by(simp add: notfinal_Suc)
then have b: "abc_steps_l (0, lm) (A [+] B) n = abc_steps_l (0, lm) A n"
using ind by simp
obtain s lm' where c: "abc_steps_l (0, lm) A n = (s, lm')"
by (metis prod.exhaust)
then have d: "s < length A \<and> abc_steps_l (0, lm) (A [+] B) n = (s, lm')"
using a b by simp
thus "?case"
using c
by(simp add: abc_step_red2 abc_fetch.simps abc_step_l.simps nth_append)
qed
declare abc_shift.simps[simp del] abc_comp.simps[simp del]
lemma halt_steps2: "st \<ge> length A \<Longrightarrow> abc_steps_l (st, lm) A stp = (st, lm)"
apply(induct stp)
by(simp_all add: abc_step_red2 abc_steps_l.simps abc_step_l.simps abc_fetch.simps)
lemma halt_steps: "abc_steps_l (length A, lm) A n = (length A, lm)"
apply(induct n, simp add: abc_steps_l.simps)
apply(simp add: abc_step_red2 abc_step_l.simps nth_append abc_fetch.simps)
done
lemma abc_steps_add:
"abc_steps_l (as, lm) ap (m + n) =
abc_steps_l (abc_steps_l (as, lm) ap m) ap n"
apply(induct m arbitrary: n as lm, simp add: abc_steps_l.simps)
proof -
fix m n as lm
assume ind:
"\<And>n as lm. abc_steps_l (as, lm) ap (m + n) =
abc_steps_l (abc_steps_l (as, lm) ap m) ap n"
show "abc_steps_l (as, lm) ap (Suc m + n) =
abc_steps_l (abc_steps_l (as, lm) ap (Suc m)) ap n"
apply(insert ind[of as lm "Suc n"], simp)
apply(insert ind[of as lm "Suc 0"], simp add: abc_steps_l.simps)
apply(case_tac "(abc_steps_l (as, lm) ap m)", simp)
apply(simp add: abc_steps_l.simps)
apply(case_tac "abc_step_l (a, b) (abc_fetch a ap)",
simp add: abc_steps_l.simps)
done
qed
lemma equal_when_halt:
assumes exc1: "abc_steps_l (s, lm) A na = (length A, lma)"
and exc2: "abc_steps_l (s, lm) A nb = (length A, lmb)"
shows "lma = lmb"
proof(cases "na > nb")
case True
then obtain d where "na = nb + d"
by (metis add_Suc_right less_iff_Suc_add)
thus "?thesis" using assms halt_steps
by(simp add: abc_steps_add)
next
case False
then obtain d where "nb = na + d"
by (metis add.comm_neutral less_imp_add_positive nat_neq_iff)
thus "?thesis" using assms halt_steps
by(simp add: abc_steps_add)
qed
lemma abc_comp_frist_steps_halt_eq':
assumes final: "abc_steps_l (0, lm) A n = (length A, lm')"
and notnull: "A \<noteq> []"
shows "\<exists> n'. abc_steps_l (0, lm) (A [+] B) n' = (length A, lm')"
proof -
have "\<exists> n'. abc_notfinal (abc_steps_l (0, lm) A n') A \<and>
abc_final (abc_steps_l (0, lm) A (Suc n')) A"
using assms
by(rule_tac n = n in abc_before_final, simp_all)
then obtain na where a:
"abc_notfinal (abc_steps_l (0, lm) A na) A \<and>
abc_final (abc_steps_l (0, lm) A (Suc na)) A" ..
obtain sa lma where b: "abc_steps_l (0, lm) A na = (sa, lma)"
by (metis prod.exhaust)
then have c: "abc_steps_l (0, lm) (A [+] B) na = (sa, lma)"
using a abc_comp_frist_steps_eq_pre[of lm A na B] assms
by simp
have d: "sa < length A" using b a by simp
then have e: "abc_step_l (sa, lma) (abc_fetch sa (A [+] B)) =
abc_step_l (sa, lma) (abc_fetch sa A)"
by(rule_tac abc_comp_first_step_eq_pre)
from a have "abc_steps_l (0, lm) A (Suc na) = (length A, lm')"
using final equal_when_halt
by(case_tac "abc_steps_l (0, lm) A (Suc na)" , simp)
then have "abc_steps_l (0, lm) (A [+] B) (Suc na) = (length A, lm')"
using a b c e
by(simp add: abc_step_red2)
thus "?thesis"
by blast
qed
lemma abc_exec_null: "abc_steps_l sam [] n = sam"
apply(cases sam)
apply(induct n)
apply(auto simp: abc_step_red2)
apply(auto simp: abc_step_l.simps abc_steps_l.simps abc_fetch.simps)
done
lemma abc_comp_frist_steps_halt_eq:
assumes final: "abc_steps_l (0, lm) A n = (length A, lm')"
shows "\<exists> n'. abc_steps_l (0, lm) (A [+] B) n' = (length A, lm')"
using final
apply(case_tac "A = []")
apply(rule_tac x = 0 in exI, simp add: abc_steps_l.simps abc_exec_null)
apply(rule_tac abc_comp_frist_steps_halt_eq', simp_all)
done
lemma abc_comp_second_step_eq:
assumes exec: "abc_step_l (s, lm) (abc_fetch s B) = (sa, lma)"
shows "abc_step_l (s + length A, lm) (abc_fetch (s + length A) (A [+] B))
= (sa + length A, lma)"
using assms
apply(auto simp: abc_step_l.simps abc_fetch.simps nth_append abc_comp.simps abc_shift.simps split : if_splits )
apply(case_tac [!] "B ! s", auto simp: Let_def)
done
lemma abc_comp_second_steps_eq:
assumes exec: "abc_steps_l (0, lm) B n = (sa, lm')"
shows "abc_steps_l (length A, lm) (A [+] B) n = (sa + length A, lm')"
using assms
proof(induct n arbitrary: sa lm')
case 0
thus "?case"
by(simp add: abc_steps_l.simps)
next
case (Suc n)
have ind: "\<And>sa lm'. abc_steps_l (0, lm) B n = (sa, lm') \<Longrightarrow>
abc_steps_l (length A, lm) (A [+] B) n = (sa + length A, lm')" by fact
have exec: "abc_steps_l (0, lm) B (Suc n) = (sa, lm')" by fact
obtain sb lmb where a: " abc_steps_l (0, lm) B n = (sb, lmb)"
by (metis prod.exhaust)
then have "abc_steps_l (length A, lm) (A [+] B) n = (sb + length A, lmb)"
using ind by simp
moreover have "abc_step_l (sb + length A, lmb) (abc_fetch (sb + length A) (A [+] B)) = (sa + length A, lm') "
using a exec abc_comp_second_step_eq
by(simp add: abc_step_red2)
ultimately show "?case"
by(simp add: abc_step_red2)
qed
lemma length_abc_comp[simp, intro]:
"length (A [+] B) = length A + length B"
by(auto simp: abc_comp.simps abc_shift.simps)
lemma abc_Hoare_plus_halt :
assumes A_halt : "{P} (A::abc_prog) {Q}"
and B_halt : "{Q} (B::abc_prog) {S}"
shows "{P} (A [+] B) {S}"
proof(rule_tac abc_Hoare_haltI)
fix lm
assume a: "P lm"
then obtain na lma where
"abc_final (abc_steps_l (0, lm) A na) A"
and b: "abc_steps_l (0, lm) A na = (length A, lma)"
and c: "Q abc_holds_for (length A, lma)"
using A_halt unfolding abc_Hoare_halt_def
by (metis (full_types) abc_final.simps abc_holds_for.simps prod.exhaust)
have "\<exists> n. abc_steps_l (0, lm) (A [+] B) n = (length A, lma)"
using abc_comp_frist_steps_halt_eq b
by(simp)
then obtain nx where h1: "abc_steps_l (0, lm) (A [+] B) nx = (length A, lma)" ..
from c have "Q lma"
using c unfolding abc_holds_for.simps
by simp
then obtain nb lmb where
"abc_final (abc_steps_l (0, lma) B nb) B"
and d: "abc_steps_l (0, lma) B nb = (length B, lmb)"
and e: "S abc_holds_for (length B, lmb)"
using B_halt unfolding abc_Hoare_halt_def
by (metis (full_types) abc_final.simps abc_holds_for.simps prod.exhaust)
have h2: "abc_steps_l (length A, lma) (A [+] B) nb = (length B + length A, lmb)"
using d abc_comp_second_steps_eq
by simp
thus "\<exists>n. abc_final (abc_steps_l (0, lm) (A [+] B) n) (A [+] B) \<and>
S abc_holds_for abc_steps_l (0, lm) (A [+] B) n"
using h1 e
by(rule_tac x = "nx + nb" in exI, simp add: abc_steps_add)
qed
lemma abc_unhalt_append_eq:
assumes unhalt: "{P} (A::abc_prog) \<up>"
and P: "P args"
shows "abc_steps_l (0, args) (A [+] B) stp = abc_steps_l (0, args) A stp"
proof(induct stp)
case 0
thus "?case"
by(simp add: abc_steps_l.simps)
next
case (Suc stp)
have ind: "abc_steps_l (0, args) (A [+] B) stp = abc_steps_l (0, args) A stp"
by fact
obtain s nl where a: "abc_steps_l (0, args) A stp = (s, nl)"
by (metis prod.exhaust)
then have b: "s < length A"
using unhalt P
apply(auto simp: abc_Hoare_unhalt_def)
by (metis abc_notfinal.simps)
thus "?case"
using a ind
by(simp add: abc_step_red2 abc_step_l.simps abc_fetch.simps nth_append abc_comp.simps)
qed
lemma abc_Hoare_plus_unhalt1:
"{P} (A::abc_prog) \<up> \<Longrightarrow> {P} (A [+] B) \<up>"
apply(rule_tac abc_Hoare_unhaltI)
apply(frule_tac args = args and B = B and stp = n in abc_unhalt_append_eq)
apply(simp_all add: abc_Hoare_unhalt_def)
apply(erule_tac x = args in allE, simp)
apply(erule_tac x = n in allE)
apply(case_tac "(abc_steps_l (0, args) A n)", simp)
done
lemma notfinal_all_before:
"\<lbrakk>abc_notfinal (abc_steps_l (0, args) A x) A; y\<le>x \<rbrakk>
\<Longrightarrow> abc_notfinal (abc_steps_l (0, args) A y) A "
apply(subgoal_tac "\<exists> d. x = y + d", auto)
apply(case_tac "abc_steps_l (0, args) A y",simp)
apply(rule_tac classical, simp add: abc_steps_add leI halt_steps2)
by arith
lemma abc_Hoare_plus_unhalt2':
assumes unhalt: "{Q} (B::abc_prog) \<up>"
and halt: "{P} (A::abc_prog) {Q}"
and notnull: "A \<noteq> []"
and P: "P args"
shows "abc_notfinal (abc_steps_l (0, args) (A [+] B) n) (A [+] B)"
proof -
obtain st nl stp where a: "abc_final (abc_steps_l (0, args) A stp) A"
and b: "Q abc_holds_for (length A, nl)"
and c: "abc_steps_l (0, args) A stp = (st, nl)"
using halt P unfolding abc_Hoare_halt_def
by (metis abc_holds_for.simps prod.exhaust)
thm abc_before_final
obtain stpa where d:
"abc_notfinal (abc_steps_l (0, args) A stpa) A \<and> abc_final (abc_steps_l (0, args) A (Suc stpa)) A"
using a notnull abc_before_final[of args A stp]
by(auto)
thus "?thesis"
proof(cases "n < Suc stpa")
case True
have h: "n < Suc stpa" by fact
then have "abc_notfinal (abc_steps_l (0, args) A n) A"
using d
by(rule_tac notfinal_all_before, auto)
moreover then have "abc_steps_l (0, args) (A [+] B) n = abc_steps_l (0, args) A n"
using notnull
by(rule_tac abc_comp_frist_steps_eq_pre, simp_all)
ultimately show "?thesis"
by(case_tac "abc_steps_l (0, args) A n", simp)
next
case False
have "\<not> n < Suc stpa" by fact
then obtain d where i1: "n = Suc stpa + d"
by (metis add_Suc less_iff_Suc_add not_less_eq)
have "abc_steps_l (0, args) A (Suc stpa) = (length A, nl)"
using d a c
apply(case_tac "abc_steps_l (0, args) A stp", simp add: equal_when_halt)
by(case_tac "abc_steps_l (0, args) A (Suc stpa)", simp add: equal_when_halt)
moreover have "abc_steps_l (0, args) (A [+] B) stpa = abc_steps_l (0, args) A stpa"
using notnull d
by(rule_tac abc_comp_frist_steps_eq_pre, simp_all)
ultimately have i2: "abc_steps_l (0, args) (A [+] B) (Suc stpa) = (length A, nl)"
using d
apply(case_tac "abc_steps_l (0, args) A stpa", simp)
by(simp add: abc_step_red2 abc_steps_l.simps abc_fetch.simps abc_comp.simps nth_append)
obtain s' nl' where i3:"abc_steps_l (0, nl) B d = (s', nl')"
by (metis prod.exhaust)
then have i4: "abc_steps_l (0, args) (A [+] B) (Suc stpa + d) = (length A + s', nl')"
using i2 apply(simp only: abc_steps_add)
using abc_comp_second_steps_eq[of nl B d s' nl']
by simp
moreover have "s' < length B"
using unhalt b i3
apply(simp add: abc_Hoare_unhalt_def)
apply(erule_tac x = nl in allE, simp)
by(erule_tac x = d in allE, simp)
ultimately show "?thesis"
using i1
by(simp)
qed
qed
lemma abc_comp_null_left[simp]: "[] [+] A = A"
apply(induct A)
apply(case_tac [2] a)
apply(auto simp: abc_comp.simps abc_shift.simps abc_inst_shift.simps)
done
lemma abc_comp_null_right[simp]: "A [+] [] = A"
apply(induct A)
apply(case_tac [2] a)
apply(auto simp: abc_comp.simps abc_shift.simps abc_inst_shift.simps)
done
lemma abc_Hoare_plus_unhalt2:
"\<lbrakk>{Q} (B::abc_prog)\<up>; {P} (A::abc_prog) {Q}\<rbrakk>\<Longrightarrow> {P} (A [+] B) \<up>"
apply(case_tac "A = []")
apply(simp add: abc_Hoare_halt_def abc_Hoare_unhalt_def abc_exec_null)
apply(rule_tac abc_Hoare_unhaltI)
apply(erule_tac abc_Hoare_plus_unhalt2', simp)
apply(simp, simp)
done
end