thys/Rec_Def.thy
changeset 229 d8e6f0798e23
parent 198 d93cc4295306
child 237 06a6db387cd2
--- a/thys/Rec_Def.thy	Thu Mar 14 20:43:43 2013 +0000
+++ b/thys/Rec_Def.thy	Wed Mar 27 09:47:02 2013 +0000
@@ -1,95 +1,50 @@
-(* Title: thys/Rec_Def.thy
-   Author: Jian Xu, Xingyuan Zhang, and Christian Urban
-*)
-
-header {* Definition of Recursive Functions *}
-
-
 theory Rec_Def
 imports Main
 begin
 
-section {* Recursive functions *}
+datatype recf =  z
+              |  s
+              |  id nat nat
+              |  Cn nat recf "recf list"
+              |  Pr nat recf recf
+              |  Mn nat recf 
 
-datatype recf = 
-  z | s | 
-  -- {* The projection function, where @{text "id i j"} returns the @{text "j"}-th
-  argment out of the @{text "i"} arguments. *}
-  id nat nat | 
-  -- {* The compostion operator, where "@{text "Cn n f [g1; g2; \<dots> ;gm]"} 
-  computes @{text "f (g1(x1, x2, \<dots>, xn), g2(x1, x2, \<dots>, xn), \<dots> , 
-  gm(x1, x2, \<dots> , xn))"} for input argments @{text "x1, \<dots>, xn"}. *}
-  Cn nat recf "recf list" | 
-  -- {* The primitive resursive operator, where @{text "Pr n f g"} computes:
-  @{text "Pr n f g (x1, x2, \<dots>, xn-1, 0) = f(x1, \<dots>, xn-1)"} 
-  and @{text "Pr n f g (x1, x2, \<dots>, xn-1, k') = g(x1, x2, \<dots>, xn-1, k, 
-                                            Pr n f g (x1, \<dots>, xn-1, k))"}.
-  *}
-  Pr nat recf recf | 
-  -- {* The minimization operator, where @{text "Mn n f (x1, x2, \<dots> , xn)"} 
-  computes the first i such that @{text "f (x1, \<dots>, xn, i) = 0"} and for all
-  @{text "j"}, @{text "f (x1, x2, \<dots>, xn, j) > 0"}. *}
-  Mn nat recf 
-
-(*
-partial_function (tailrec) 
-  rec_exec :: "recf \<Rightarrow> nat list \<Rightarrow> nat"
-where
-  "rec_exec f ns = (case (f, ns) of
-      (z, xs) => 0
-   |  (s, xs) => Suc (xs ! 0)
-   |  (id m n, xs) => (xs ! n) 
-   |  (Cn n f gs, xs) => 
-             (let ys = (map (\<lambda> a. rec_exec a xs) gs) in 
-                                  rec_exec f ys)
-   |  (Pr n f g, xs) => 
-         (if last xs = 0 then rec_exec f (butlast xs)
-          else rec_exec g (butlast xs @ [last xs - 1] @
-            [rec_exec (Pr n f g) (butlast xs @ [last xs - 1])]))
-   |  (Mn n f, xs) => (LEAST x. rec_exec f (xs @ [x]) = 0))"
-*)
+definition pred_of_nl :: "nat list \<Rightarrow> nat list"
+  where
+  "pred_of_nl xs = butlast xs @ [last xs - 1]"
 
-text {* 
-  The semantis of recursive operators is given by an inductively defined
-  relation as follows, where  
-  @{text "rec_calc_rel R [x1, x2, \<dots>, xn] r"} means the computation of 
-  @{text "R"} over input arguments @{text "[x1, x2, \<dots>, xn"} terminates
-  and gives rise to a result @{text "r"}
-*}
+function rec_exec :: "recf \<Rightarrow> nat list \<Rightarrow> nat"
+  where
+  "rec_exec z xs = 0" |
+  "rec_exec s xs = (Suc (xs ! 0))" |
+  "rec_exec (id m n) xs = (xs ! n)" |
+  "rec_exec (Cn n f gs) xs = 
+     rec_exec f (map (\<lambda> a. rec_exec a xs) gs)" | 
+  "rec_exec (Pr n f g) xs = 
+     (if last xs = 0 then rec_exec f (butlast xs)
+      else rec_exec g (butlast xs @ (last xs - 1) # [rec_exec (Pr n f g) (butlast xs @ [last xs - 1])]))" |
+  "rec_exec (Mn n f) xs = (LEAST x. rec_exec f (xs @ [x]) = 0)"
+by pat_completeness auto
+
+termination
+apply(relation "measures [\<lambda> (r, xs). size r, (\<lambda> (r, xs). last xs)]")
+apply(auto simp add: less_Suc_eq_le intro: trans_le_add2 list_size_estimation')
+done
 
-inductive rec_calc_rel :: "recf \<Rightarrow> nat list \<Rightarrow> nat \<Rightarrow> bool"
-where
-  calc_z: "rec_calc_rel z [n] 0" |
-  calc_s: "rec_calc_rel s [n] (Suc n)" |
-  calc_id: "\<lbrakk>length args = i; j < i; args!j = r\<rbrakk> \<Longrightarrow> rec_calc_rel (id i j) args r" |
-  calc_cn: "\<lbrakk>length args = n;
-             \<forall> k < length gs. rec_calc_rel (gs ! k) args (rs ! k);
-             length rs = length gs; 
-             rec_calc_rel f rs r\<rbrakk> 
-            \<Longrightarrow> rec_calc_rel (Cn n f gs) args r" |
-  calc_pr_zero: 
-           "\<lbrakk>length args = n;
-             rec_calc_rel f args r0 \<rbrakk> 
-            \<Longrightarrow> rec_calc_rel (Pr n f g) (args @ [0]) r0" |
-  calc_pr_ind: "
-           \<lbrakk> length args = n;
-             rec_calc_rel (Pr n f g) (args @ [k]) rk; 
-             rec_calc_rel g (args @ [k] @ [rk]) rk'\<rbrakk>
-            \<Longrightarrow> rec_calc_rel (Pr n f g) (args @ [Suc k]) rk'"  |
-  calc_mn: "\<lbrakk>length args = n; 
-             rec_calc_rel f (args@[r]) 0; 
-             \<forall> i < r. (\<exists> ri. rec_calc_rel f (args@[i]) ri \<and> ri \<noteq> 0)\<rbrakk> 
-            \<Longrightarrow> rec_calc_rel (Mn n f) args r" 
+inductive terminate :: "recf \<Rightarrow> nat list \<Rightarrow> bool"
+  where
+  termi_z: "terminate z [n]"
+| termi_s: "terminate s [n]"
+| termi_id: "\<lbrakk>n < m; length xs = m\<rbrakk> \<Longrightarrow> terminate (id m n) xs"
+| termi_cn: "\<lbrakk>terminate f (map (\<lambda>g. rec_exec g xs) gs); 
+              \<forall>g \<in> set gs. terminate g xs; length xs = n\<rbrakk> \<Longrightarrow> terminate (Cn n f gs) xs"
+| termi_pr: "\<lbrakk>\<forall> y < x. terminate g (xs @ y # [rec_exec (Pr n f g) (xs @ [y])]);
+              terminate f xs;
+              length xs = n\<rbrakk> 
+              \<Longrightarrow> terminate (Pr n f g) (xs @ [x])"
+| termi_mn: "\<lbrakk>length xs = n; terminate f (xs @ [r]); 
+              rec_exec f (xs @ [r]) = 0;
+              \<forall> i < r. terminate f (xs @ [i]) \<and> rec_exec f (xs @ [i]) > 0\<rbrakk> \<Longrightarrow> terminate (Mn n f) xs"
 
-inductive_cases calc_pr_reverse: "rec_calc_rel (Pr n f g) (lm) rSucy"
 
-inductive_cases calc_z_reverse: "rec_calc_rel z lm x"
-
-inductive_cases calc_s_reverse: "rec_calc_rel s lm x"
-
-inductive_cases calc_id_reverse: "rec_calc_rel (id m n) lm x"
-
-inductive_cases calc_cn_reverse: "rec_calc_rel (Cn n f gs) lm x"
-
-inductive_cases calc_mn_reverse:"rec_calc_rel (Mn n f) lm x"
 end
\ No newline at end of file