--- a/thys/Abacus_Mopup.thy Fri Feb 15 14:07:39 2013 +0000
+++ b/thys/Abacus_Mopup.thy Fri Feb 15 23:02:20 2013 +0800
@@ -666,20 +666,6 @@
lemma mod_ex2: "(a mod (2::nat) = 0) = (\<exists> q. a = 2 * q)"
by arith
-(*
-lemma [simp]: "(a mod 2 \<noteq> Suc 0) = (a mod 2 = 0) "
-by arith
-
-lemma [simp]: "(a mod 2 \<noteq> 0) = (a mod 2 = Suc 0) "
-by arith
-
-
-lemma [simp]: "(2*q - Suc 0) div 2 = (q - 1)"
-by arith
-
-lemma [simp]: "(Suc (2*q)) div 2 = q"
-by arith
-*)
lemma mod_2: "x mod 2 = 0 \<or> x mod 2 = Suc 0"
by arith
@@ -858,8 +844,6 @@
done
qed
-(*we can use Hoare_plus here*)
-
lemma wf_mopup[intro]: "tm_wf (mopup n, 0)"
apply(induct n, simp add: mopup.simps shift.simps mopup_b_def tm_wf.simps)
apply(auto simp: mopup.simps shift.simps mopup_b_def tm_wf.simps)