--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/turing_basic.thy Mon Dec 24 01:26:23 2012 +0000
@@ -0,0 +1,736 @@
+theory turing_basic
+imports Main
+begin
+
+section {* Basic definitions of Turing machine *}
+
+(* Title: Turing machine's definition and its charater
+ Author: Xu Jian <xujian817@hotmail.com>
+ Maintainer: Xu Jian
+*)
+
+text {*
+ Actions of Turing machine (Abbreviated TM in the following* ).
+*}
+
+datatype taction =
+ -- {* Write zero *}
+ W0 |
+ -- {* Write one *}
+ W1 |
+ -- {* Move left *}
+ L |
+ -- {* Move right *}
+ R |
+ -- {* Do nothing *}
+ Nop
+
+text {*
+ Tape contents in every block.
+*}
+
+datatype block =
+ -- {* Blank *}
+ Bk |
+ -- {* Occupied *}
+ Oc
+
+text {*
+ Tape is represented as a pair of lists $(L_{left}, L_{right})$,
+ where $L_left$, named {\em left list}, is used to represent
+ the tape to the left of RW-head and
+ $L_{right}$, named {\em right list}, is used to represent the tape
+ under and to the right of RW-head.
+*}
+
+type_synonym tape = "block list \<times> block list"
+
+text {* The state of turing machine.*}
+type_synonym tstate = nat
+
+text {*
+ Turing machine instruction is represented as a
+ pair @{text "(action, next_state)"},
+ where @{text "action"} is the action to take at the current state
+ and @{text "next_state"} is the next state the machine is getting into
+ after the action.
+*}
+type_synonym tinst = "taction \<times> tstate"
+
+text {*
+ Program of Turing machine is represented as a list of Turing instructions
+ and the execution of the program starts from the head of the list.
+ *}
+type_synonym tprog = "tinst list"
+
+
+text {*
+ Turing machine configuration, which consists of the current state
+ and the tape.
+*}
+type_synonym t_conf = "tstate \<times> tape"
+
+fun nth_of :: "'a list \<Rightarrow> nat \<Rightarrow> 'a option"
+ where
+ "nth_of xs n = (if n < length xs then Some (xs!n)
+ else None)"
+
+text {*
+ The function used to fetech instruction out of Turing program.
+ *}
+
+fun fetch :: "tprog \<Rightarrow> tstate \<Rightarrow> block \<Rightarrow> tinst"
+ where
+ "fetch p s b = (if s = 0 then (Nop, 0) else
+ case b of
+ Bk \<Rightarrow> case nth_of p (2 * (s - 1)) of
+ Some i \<Rightarrow> i
+ | None \<Rightarrow> (Nop, 0)
+ | Oc \<Rightarrow> case nth_of p (2 * (s - 1) +1) of
+ Some i \<Rightarrow> i
+ | None \<Rightarrow> (Nop, 0))"
+
+
+fun new_tape :: "taction \<Rightarrow> tape \<Rightarrow> tape"
+where
+ "new_tape action (leftn, rightn) = (case action of
+ W0 \<Rightarrow> (leftn, Bk#(tl rightn)) |
+ W1 \<Rightarrow> (leftn, Oc#(tl rightn)) |
+ L \<Rightarrow> (if leftn = [] then (tl leftn, Bk#rightn)
+ else (tl leftn, (hd leftn) # rightn)) |
+ R \<Rightarrow> if rightn = [] then (Bk#leftn,tl rightn)
+ else ((hd rightn)#leftn, tl rightn) |
+ Nop \<Rightarrow> (leftn, rightn)
+ )"
+
+text {*
+ The one step function used to transfer Turing machine configuration.
+*}
+fun tstep :: "t_conf \<Rightarrow> tprog \<Rightarrow> t_conf"
+ where
+ "tstep c p = (let (s, l, r) = c in
+ let (ac, ns) = (fetch p s (case r of [] \<Rightarrow> Bk |
+ x # xs \<Rightarrow> x)) in
+ (ns, new_tape ac (l, r)))"
+
+text {*
+ The many-step function.
+*}
+fun steps :: "t_conf \<Rightarrow> tprog \<Rightarrow> nat \<Rightarrow> t_conf"
+ where
+ "steps c p 0 = c" |
+ "steps c p (Suc n) = steps (tstep c p) p n"
+
+lemma tstep_red: "steps c p (Suc n) = tstep (steps c p n) p"
+proof(induct n arbitrary: c)
+ fix c
+ show "steps c p (Suc 0) = tstep (steps c p 0) p" by(simp add: steps.simps)
+next
+ fix n c
+ assume ind: "\<And> c. steps c p (Suc n) = tstep (steps c p n) p"
+ have "steps (tstep c p) p (Suc n) = tstep (steps (tstep c p) p n) p"
+ by(rule ind)
+ thus "steps c p (Suc (Suc n)) = tstep (steps c p (Suc n)) p" by(simp add: steps.simps)
+qed
+
+declare Let_def[simp] option.split[split]
+
+definition
+ "iseven n \<equiv> \<exists> x. n = 2 * x"
+
+
+text {*
+ The following @{text "t_correct"} function is used to specify the wellformedness of Turing
+ machine.
+*}
+fun t_correct :: "tprog \<Rightarrow> bool"
+ where
+ "t_correct p = (length p \<ge> 2 \<and> iseven (length p) \<and>
+ list_all (\<lambda> (acn, s). s \<le> length p div 2) p)"
+
+declare t_correct.simps[simp del]
+
+lemma allimp: "\<lbrakk>\<forall>x. P x \<longrightarrow> Q x; \<forall>x. P x\<rbrakk> \<Longrightarrow> \<forall>x. Q x"
+by(auto elim: allE)
+
+lemma halt_lemma: "\<lbrakk>wf LE; \<forall> n. (\<not> P (f n) \<longrightarrow> (f (Suc n), (f n)) \<in> LE)\<rbrakk> \<Longrightarrow> \<exists> n. P (f n)"
+apply(rule exCI, drule allimp, auto)
+apply(drule_tac f = f in wf_inv_image, simp add: inv_image_def)
+apply(erule wf_induct, auto)
+done
+
+lemma steps_add: "steps c t (x + y) = steps (steps c t x) t y"
+by(induct x arbitrary: c, auto simp: steps.simps tstep_red)
+
+lemma listall_set: "list_all p t \<Longrightarrow> \<forall> a \<in> set t. p a"
+by(induct t, auto)
+
+lemma fetch_ex: "\<exists>b a. fetch T aa ab = (b, a)"
+by(simp add: fetch.simps)
+definition exponent :: "'a \<Rightarrow> nat \<Rightarrow> 'a list" ("_\<^bsup>_\<^esup>" [0, 0]100)
+ where "exponent x n = replicate n x"
+
+text {*
+ @{text "tinres l1 l2"} means left list @{text "l1"} is congruent with
+ @{text "l2"} with respect to the execution of Turing machine.
+ Appending Blank to the right of eigther one does not affect the
+ outcome of excution.
+*}
+
+definition tinres :: "block list \<Rightarrow> block list \<Rightarrow> bool"
+ where
+ "tinres bx by = (\<exists> n. bx = by@Bk\<^bsup>n\<^esup> \<or> by = bx @ Bk\<^bsup>n\<^esup>)"
+
+lemma exp_zero: "a\<^bsup>0\<^esup> = []"
+by(simp add: exponent_def)
+lemma exp_ind_def: "a\<^bsup>Suc x \<^esup> = a # a\<^bsup>x\<^esup>"
+by(simp add: exponent_def)
+
+text {*
+ The following lemma shows the meaning of @{text "tinres"} with respect to
+ one step execution.
+ *}
+lemma tinres_step:
+ "\<lbrakk>tinres l l'; tstep (ss, l, r) t = (sa, la, ra); tstep (ss, l', r) t = (sb, lb, rb)\<rbrakk>
+ \<Longrightarrow> tinres la lb \<and> ra = rb \<and> sa = sb"
+apply(auto simp: tstep.simps fetch.simps new_tape.simps
+ split: if_splits taction.splits list.splits
+ block.splits)
+apply(case_tac [!] "t ! (2 * (ss - Suc 0))",
+ auto simp: exponent_def tinres_def split: if_splits taction.splits list.splits
+ block.splits)
+apply(case_tac [!] "t ! (2 * (ss - Suc 0) + Suc 0)",
+ auto simp: exponent_def tinres_def split: if_splits taction.splits list.splits
+ block.splits)
+done
+
+declare tstep.simps[simp del] steps.simps[simp del]
+
+text {*
+ The following lemma shows the meaning of @{text "tinres"} with respect to
+ many step execution.
+ *}
+lemma tinres_steps:
+ "\<lbrakk>tinres l l'; steps (ss, l, r) t stp = (sa, la, ra); steps (ss, l', r) t stp = (sb, lb, rb)\<rbrakk>
+ \<Longrightarrow> tinres la lb \<and> ra = rb \<and> sa = sb"
+apply(induct stp arbitrary: sa la ra sb lb rb, simp add: steps.simps)
+apply(simp add: tstep_red)
+apply(case_tac "(steps (ss, l, r) t stp)")
+apply(case_tac "(steps (ss, l', r) t stp)")
+proof -
+ fix stp sa la ra sb lb rb a b c aa ba ca
+ assume ind: "\<And>sa la ra sb lb rb. \<lbrakk>steps (ss, l, r) t stp = (sa, la, ra);
+ steps (ss, l', r) t stp = (sb, lb, rb)\<rbrakk> \<Longrightarrow> tinres la lb \<and> ra = rb \<and> sa = sb"
+ and h: " tinres l l'" "tstep (steps (ss, l, r) t stp) t = (sa, la, ra)"
+ "tstep (steps (ss, l', r) t stp) t = (sb, lb, rb)" "steps (ss, l, r) t stp = (a, b, c)"
+ "steps (ss, l', r) t stp = (aa, ba, ca)"
+ have "tinres b ba \<and> c = ca \<and> a = aa"
+ apply(rule_tac ind, simp_all add: h)
+ done
+ thus "tinres la lb \<and> ra = rb \<and> sa = sb"
+ apply(rule_tac l = b and l' = ba and r = c and ss = a
+ and t = t in tinres_step)
+ using h
+ apply(simp, simp, simp)
+ done
+qed
+
+text {*
+ The following function @{text "tshift tp n"} is used to shift Turing programs
+ @{text "tp"} by @{text "n"} when it is going to be combined with others.
+ *}
+
+fun tshift :: "tprog \<Rightarrow> nat \<Rightarrow> tprog"
+ where
+ "tshift tp off = (map (\<lambda> (action, state). (action, (if state = 0 then 0
+ else state + off))) tp)"
+
+text {*
+ When two Turing programs are combined, the end state (state @{text "0"}) of the one
+ at the prefix position needs to be connected to the start state
+ of the one at postfix position. If @{text "tp"} is the Turing program
+ to be at the prefix, @{text "change_termi_state tp"} is the transformed Turing program.
+ *}
+fun change_termi_state :: "tprog \<Rightarrow> tprog"
+ where
+ "change_termi_state t =
+ (map (\<lambda> (acn, ns). if ns = 0 then (acn, Suc ((length t) div 2)) else (acn, ns)) t)"
+
+text {*
+ @{text "t_add tp1 tp2"} is the combined Truing program.
+*}
+
+fun t_add :: "tprog \<Rightarrow> tprog \<Rightarrow> tprog" ("_ |+| _" [0, 0] 100)
+ where
+ "t_add t1 t2 = ((change_termi_state t1) @ (tshift t2 ((length t1) div 2)))"
+
+text {*
+ Tests whether the current configuration is at state @{text "0"}.
+*}
+definition isS0 :: "t_conf \<Rightarrow> bool"
+ where
+ "isS0 c = (let (s, l, r) = c in s = 0)"
+
+declare tstep.simps[simp del] steps.simps[simp del]
+ t_add.simps[simp del] fetch.simps[simp del]
+ new_tape.simps[simp del]
+
+
+text {*
+ Single step execution starting from state @{text "0"} will not make any progress.
+*}
+lemma tstep_0: "tstep (0, tp) p = (0, tp)"
+apply(simp add: tstep.simps fetch.simps new_tape.simps)
+done
+
+
+text {*
+ Many step executions starting from state @{text "0"} will not make any progress.
+*}
+
+lemma steps_0: "steps (0, tp) p stp = (0, tp)"
+apply(induct stp)
+apply(simp add: steps.simps)
+apply(simp add: tstep_red tstep_0)
+done
+
+lemma s_keep_step: "\<lbrakk>a \<le> length A div 2; tstep (a, b, c) A = (s, l, r); t_correct A\<rbrakk>
+ \<Longrightarrow> s \<le> length A div 2"
+apply(simp add: tstep.simps fetch.simps t_correct.simps iseven_def
+ split: if_splits block.splits list.splits)
+apply(case_tac [!] a, auto simp: list_all_length)
+apply(erule_tac x = "2 * nat" in allE, auto)
+apply(erule_tac x = "2 * nat" in allE, auto)
+apply(erule_tac x = "Suc (2 * nat)" in allE, auto)
+done
+
+lemma s_keep: "\<lbrakk>steps (Suc 0, tp) A stp = (s, l, r); t_correct A\<rbrakk> \<Longrightarrow> s \<le> length A div 2"
+proof(induct stp arbitrary: s l r)
+ case 0 thus "?case" by(auto simp: t_correct.simps steps.simps)
+next
+ fix stp s l r
+ assume ind: "\<And>s l r. \<lbrakk>steps (Suc 0, tp) A stp = (s, l, r); t_correct A\<rbrakk> \<Longrightarrow> s \<le> length A div 2"
+ and h1: "steps (Suc 0, tp) A (Suc stp) = (s, l, r)"
+ and h2: "t_correct A"
+ from h1 h2 show "s \<le> length A div 2"
+ proof(simp add: tstep_red, cases "(steps (Suc 0, tp) A stp)", simp)
+ fix a b c
+ assume h3: "tstep (a, b, c) A = (s, l, r)"
+ and h4: "steps (Suc 0, tp) A stp = (a, b, c)"
+ have "a \<le> length A div 2"
+ using h2 h4
+ by(rule_tac l = b and r = c in ind, auto)
+ thus "?thesis"
+ using h3 h2
+ by(simp add: s_keep_step)
+ qed
+qed
+
+lemma t_merge_fetch_pre:
+ "\<lbrakk>fetch A s b = (ac, ns); s \<le> length A div 2; t_correct A; s \<noteq> 0\<rbrakk> \<Longrightarrow>
+ fetch (A |+| B) s b = (ac, if ns = 0 then Suc (length A div 2) else ns)"
+apply(subgoal_tac "2 * (s - Suc 0) < length A \<and> Suc (2 * (s - Suc 0)) < length A")
+apply(auto simp: fetch.simps t_add.simps split: if_splits block.splits)
+apply(simp_all add: nth_append change_termi_state.simps)
+done
+
+lemma [simp]: "\<lbrakk>\<not> a \<le> length A div 2; t_correct A\<rbrakk> \<Longrightarrow> fetch A a b = (Nop, 0)"
+apply(auto simp: fetch.simps del: nth_of.simps split: block.splits)
+apply(case_tac [!] a, auto simp: t_correct.simps iseven_def)
+done
+
+lemma [elim]: "\<lbrakk>t_correct A; \<not> isS0 (tstep (a, b, c) A)\<rbrakk> \<Longrightarrow> a \<le> length A div 2"
+apply(rule_tac classical, auto simp: tstep.simps new_tape.simps isS0_def)
+done
+
+lemma [elim]: "\<lbrakk>t_correct A; \<not> isS0 (tstep (a, b, c) A)\<rbrakk> \<Longrightarrow> 0 < a"
+apply(rule_tac classical, simp add: tstep_0 isS0_def)
+done
+
+
+lemma t_merge_pre_eq_step: "\<lbrakk>tstep (a, b, c) A = cf; t_correct A; \<not> isS0 cf\<rbrakk>
+ \<Longrightarrow> tstep (a, b, c) (A |+| B) = cf"
+apply(subgoal_tac "a \<le> length A div 2 \<and> a \<noteq> 0")
+apply(simp add: tstep.simps)
+apply(case_tac "fetch A a (case c of [] \<Rightarrow> Bk | x # xs \<Rightarrow> x)", simp)
+apply(drule_tac B = B in t_merge_fetch_pre, simp, simp, simp, simp add: isS0_def, auto)
+done
+
+lemma t_merge_pre_eq: "\<lbrakk>steps (Suc 0, tp) A stp = cf; \<not> isS0 cf; t_correct A\<rbrakk>
+ \<Longrightarrow> steps (Suc 0, tp) (A |+| B) stp = cf"
+proof(induct stp arbitrary: cf)
+ case 0 thus "?case" by(simp add: steps.simps)
+next
+ fix stp cf
+ assume ind: "\<And>cf. \<lbrakk>steps (Suc 0, tp) A stp = cf; \<not> isS0 cf; t_correct A\<rbrakk>
+ \<Longrightarrow> steps (Suc 0, tp) (A |+| B) stp = cf"
+ and h1: "steps (Suc 0, tp) A (Suc stp) = cf"
+ and h2: "\<not> isS0 cf"
+ and h3: "t_correct A"
+ from h1 h2 h3 show "steps (Suc 0, tp) (A |+| B) (Suc stp) = cf"
+ proof(simp add: tstep_red, cases "steps (Suc 0, tp) (A) stp", simp)
+ fix a b c
+ assume h4: "tstep (a, b, c) A = cf"
+ and h5: "steps (Suc 0, tp) A stp = (a, b, c)"
+ have "steps (Suc 0, tp) (A |+| B) stp = (a, b, c)"
+ proof(cases a)
+ case 0 thus "?thesis"
+ using h4 h2
+ apply(simp add: tstep_0, cases cf, simp add: isS0_def)
+ done
+ next
+ case (Suc n) thus "?thesis"
+ using h5 h3
+ apply(rule_tac ind, auto simp: isS0_def)
+ done
+ qed
+ thus "tstep (steps (Suc 0, tp) (A |+| B) stp) (A |+| B) = cf"
+ using h4 h5 h3 h2
+ apply(simp)
+ apply(rule t_merge_pre_eq_step, auto)
+ done
+ qed
+qed
+
+declare nth.simps[simp del] tshift.simps[simp del] change_termi_state.simps[simp del]
+
+lemma [simp]: "length (change_termi_state A) = length A"
+by(simp add: change_termi_state.simps)
+
+lemma first_halt_point: "steps (Suc 0, tp) A stp = (0, tp')
+ \<Longrightarrow> \<exists>stp. \<not> isS0 (steps (Suc 0, tp) A stp) \<and> steps (Suc 0, tp) A (Suc stp) = (0, tp')"
+proof(induct stp)
+ case 0 thus "?case" by(simp add: steps.simps)
+next
+ case (Suc n)
+ fix stp
+ assume ind: "steps (Suc 0, tp) A stp = (0, tp') \<Longrightarrow>
+ \<exists>stp. \<not> isS0 (steps (Suc 0, tp) A stp) \<and> steps (Suc 0, tp) A (Suc stp) = (0, tp')"
+ and h: "steps (Suc 0, tp) A (Suc stp) = (0, tp')"
+ from h show "\<exists>stp. \<not> isS0 (steps (Suc 0, tp) A stp) \<and> steps (Suc 0, tp) A (Suc stp) = (0, tp')"
+ proof(simp add: tstep_red, cases "steps (Suc 0, tp) A stp", simp, case_tac a)
+ fix a b c
+ assume g1: "a = (0::nat)"
+ and g2: "tstep (a, b, c) A = (0, tp')"
+ and g3: "steps (Suc 0, tp) A stp = (a, b, c)"
+ have "steps (Suc 0, tp) A stp = (0, tp')"
+ using g2 g1 g3
+ by(simp add: tstep_0)
+ hence "\<exists> stp. \<not> isS0 (steps (Suc 0, tp) A stp) \<and> steps (Suc 0, tp) A (Suc stp) = (0, tp')"
+ by(rule ind)
+ thus "\<exists>stp. \<not> isS0 (steps (Suc 0, tp) A stp) \<and> tstep (steps (Suc 0, tp) A stp) A = (0, tp')"
+ apply(simp add: tstep_red)
+ done
+ next
+ fix a b c nat
+ assume g1: "steps (Suc 0, tp) A stp = (a, b, c)"
+ and g2: "steps (Suc 0, tp) A (Suc stp) = (0, tp')" "a= Suc nat"
+ thus "\<exists>stp. \<not> isS0 (steps (Suc 0, tp) A stp) \<and> tstep (steps (Suc 0, tp) A stp) A = (0, tp')"
+ apply(rule_tac x = stp in exI)
+ apply(simp add: isS0_def tstep_red)
+ done
+ qed
+qed
+
+lemma t_merge_pre_halt_same':
+ "\<lbrakk>\<not> isS0 (steps (Suc 0, tp) A stp) ; steps (Suc 0, tp) A (Suc stp) = (0, tp'); t_correct A\<rbrakk>
+ \<Longrightarrow> steps (Suc 0, tp) (A |+| B) (Suc stp) = (Suc (length A div 2), tp')"
+proof(simp add: tstep_red, cases "steps (Suc 0, tp) A stp", simp)
+ fix a b c
+ assume h1: "\<not> isS0 (a, b, c)"
+ and h2: "tstep (a, b, c) A = (0, tp')"
+ and h3: "t_correct A"
+ and h4: "steps (Suc 0, tp) A stp = (a, b, c)"
+ have "steps (Suc 0, tp) (A |+| B) stp = (a, b, c)"
+ using h1 h4 h3
+ apply(rule_tac t_merge_pre_eq, auto)
+ done
+ moreover have "tstep (a, b, c) (A |+| B) = (Suc (length A div 2), tp')"
+ using h2 h3 h1 h4
+ apply(simp add: tstep.simps)
+ apply(case_tac " fetch A a (case c of [] \<Rightarrow> Bk | x # xs \<Rightarrow> x)", simp)
+ apply(drule_tac B = B in t_merge_fetch_pre, auto simp: isS0_def intro: s_keep)
+ done
+ ultimately show "tstep (steps (Suc 0, tp) (A |+| B) stp) (A |+| B) = (Suc (length A div 2), tp')"
+ by(simp)
+qed
+
+text {*
+ When Turing machine @{text "A"} and @{text "B"} are combined and the execution
+ of @{text "A"} can termination within @{text "stp"} steps,
+ the combined machine @{text "A |+| B"} will eventually get into the starting
+ state of machine @{text "B"}.
+*}
+lemma t_merge_pre_halt_same: "
+ \<lbrakk>steps (Suc 0, tp) A stp = (0, tp'); t_correct A; t_correct B\<rbrakk>
+ \<Longrightarrow> \<exists> stp. steps (Suc 0, tp) (A |+| B) stp = (Suc (length A div 2), tp')"
+proof -
+ assume a_wf: "t_correct A"
+ and b_wf: "t_correct B"
+ and a_ht: "steps (Suc 0, tp) A stp = (0, tp')"
+ have halt_point: "\<exists> stp. \<not> isS0 (steps (Suc 0, tp) A stp) \<and> steps (Suc 0, tp) A (Suc stp) = (0, tp')"
+ using a_ht
+ by(erule_tac first_halt_point)
+ then obtain stp' where "\<not> isS0 (steps (Suc 0, tp) A stp') \<and> steps (Suc 0, tp) A (Suc stp') = (0, tp')"..
+ hence "steps (Suc 0, tp) (A |+| B) (Suc stp') = (Suc (length A div 2), tp')"
+ using a_wf
+ apply(rule_tac t_merge_pre_halt_same', auto)
+ done
+ thus "?thesis" ..
+qed
+
+lemma fetch_0: "fetch p 0 b = (Nop, 0)"
+by(simp add: fetch.simps)
+
+lemma [simp]: "length (tshift B x) = length B"
+by(simp add: tshift.simps)
+
+lemma [simp]: "t_correct A \<Longrightarrow> 2 * (length A div 2) = length A"
+apply(simp add: t_correct.simps iseven_def, auto)
+done
+
+lemma t_merge_fetch_snd:
+ "\<lbrakk>fetch B a b = (ac, ns); t_correct A; t_correct B; a > 0 \<rbrakk>
+ \<Longrightarrow> fetch (A |+| B) (a + length A div 2) b
+ = (ac, if ns = 0 then 0 else ns + length A div 2)"
+apply(auto simp: fetch.simps t_add.simps split: if_splits block.splits)
+apply(case_tac [!] a, simp_all)
+apply(simp_all add: nth_append change_termi_state.simps tshift.simps)
+done
+
+lemma t_merge_snd_eq_step:
+ "\<lbrakk>tstep (s, l, r) B = (s', l', r'); t_correct A; t_correct B; s > 0\<rbrakk>
+ \<Longrightarrow> tstep (s + length A div 2, l, r) (A |+| B) =
+ (if s' = 0 then 0 else s' + length A div 2, l' ,r') "
+apply(simp add: tstep.simps)
+apply(cases "fetch B s (case r of [] \<Rightarrow> Bk | x # xs \<Rightarrow> x)")
+apply(auto simp: t_merge_fetch_snd)
+apply(frule_tac [!] t_merge_fetch_snd, auto)
+done
+
+text {*
+ Relates the executions of TM @{text "B"}, one is when @{text "B"} is executed alone,
+ the other is the execution when @{text "B"} is in the combined TM.
+*}
+lemma t_merge_snd_eq_steps:
+ "\<lbrakk>t_correct A; t_correct B; steps (s, l, r) B stp = (s', l', r'); s > 0\<rbrakk>
+ \<Longrightarrow> steps (s + length A div 2, l, r) (A |+| B) stp =
+ (if s' = 0 then 0 else s' + length A div 2, l', r')"
+proof(induct stp arbitrary: s' l' r')
+ case 0 thus "?case"
+ by(simp add: steps.simps)
+next
+ fix stp s' l' r'
+ assume ind: "\<And>s' l' r'. \<lbrakk>t_correct A; t_correct B; steps (s, l, r) B stp = (s', l', r'); 0 < s\<rbrakk>
+ \<Longrightarrow> steps (s + length A div 2, l, r) (A |+| B) stp =
+ (if s' = 0 then 0 else s' + length A div 2, l', r')"
+ and h1: "steps (s, l, r) B (Suc stp) = (s', l', r')"
+ and h2: "t_correct A"
+ and h3: "t_correct B"
+ and h4: "0 < s"
+ from h1 show "steps (s + length A div 2, l, r) (A |+| B) (Suc stp)
+ = (if s' = 0 then 0 else s' + length A div 2, l', r')"
+ proof(simp only: tstep_red, cases "steps (s, l, r) B stp")
+ fix a b c
+ assume h5: "steps (s, l, r) B stp = (a, b, c)" "tstep (steps (s, l, r) B stp) B = (s', l', r')"
+ hence h6: "(steps (s + length A div 2, l, r) (A |+| B) stp) =
+ ((if a = 0 then 0 else a + length A div 2, b, c))"
+ using h2 h3 h4
+ by(rule_tac ind, auto)
+ thus "tstep (steps (s + length A div 2, l, r) (A |+| B) stp) (A |+| B) =
+ (if s' = 0 then 0 else s'+ length A div 2, l', r')"
+ using h5
+ proof(auto)
+ assume "tstep (0, b, c) B = (0, l', r')" thus "tstep (0, b, c) (A |+| B) = (0, l', r')"
+ by(simp add: tstep_0)
+ next
+ assume "tstep (0, b, c) B = (s', l', r')" "0 < s'"
+ thus "tstep (0, b, c) (A |+| B) = (s' + length A div 2, l', r')"
+ by(simp add: tstep_0)
+ next
+ assume "tstep (a, b, c) B = (0, l', r')" "0 < a"
+ thus "tstep (a + length A div 2, b, c) (A |+| B) = (0, l', r')"
+ using h2 h3
+ by(drule_tac t_merge_snd_eq_step, auto)
+ next
+ assume "tstep (a, b, c) B = (s', l', r')" "0 < a" "0 < s'"
+ thus "tstep (a + length A div 2, b, c) (A |+| B) = (s' + length A div 2, l', r')"
+ using h2 h3
+ by(drule_tac t_merge_snd_eq_step, auto)
+ qed
+ qed
+qed
+
+lemma t_merge_snd_halt_eq:
+ "\<lbrakk>steps (Suc 0, tp) B stp = (0, tp'); t_correct A; t_correct B\<rbrakk>
+ \<Longrightarrow> \<exists>stp. steps (Suc (length A div 2), tp) (A |+| B) stp = (0, tp')"
+apply(case_tac tp, cases tp', simp)
+apply(drule_tac s = "Suc 0" in t_merge_snd_eq_steps, auto)
+done
+
+lemma t_inj: "\<lbrakk>steps (Suc 0, tp) A stpa = (0, tp1); steps (Suc 0, tp) A stpb = (0, tp2)\<rbrakk>
+ \<Longrightarrow> tp1 = tp2"
+proof -
+ assume h1: "steps (Suc 0, tp) A stpa = (0, tp1)"
+ and h2: "steps (Suc 0, tp) A stpb = (0, tp2)"
+ thus "?thesis"
+ proof(cases "stpa < stpb")
+ case True thus "?thesis"
+ using h1 h2
+ apply(drule_tac less_imp_Suc_add, auto)
+ apply(simp del: add_Suc_right add_Suc add: add_Suc_right[THEN sym] steps_add steps_0)
+ done
+ next
+ case False thus "?thesis"
+ using h1 h2
+ apply(drule_tac leI)
+ apply(case_tac "stpb = stpa", auto)
+ apply(subgoal_tac "stpb < stpa")
+ apply(drule_tac less_imp_Suc_add, auto)
+ apply(simp del: add_Suc_right add_Suc add: add_Suc_right[THEN sym] steps_add steps_0)
+ done
+ qed
+qed
+
+type_synonym t_assert = "tape \<Rightarrow> bool"
+
+definition t_imply :: "t_assert \<Rightarrow> t_assert \<Rightarrow> bool" ("_ \<turnstile>-> _" [0, 0] 100)
+ where
+ "t_imply a1 a2 = (\<forall> tp. a1 tp \<longrightarrow> a2 tp)"
+
+
+locale turing_merge =
+ fixes A :: "tprog" and B :: "tprog" and P1 :: "t_assert"
+ and P2 :: "t_assert"
+ and P3 :: "t_assert"
+ and P4 :: "t_assert"
+ and Q1:: "t_assert"
+ and Q2 :: "t_assert"
+ assumes
+ A_wf : "t_correct A"
+ and B_wf : "t_correct B"
+ and A_halt : "P1 tp \<Longrightarrow> \<exists> stp. let (s, tp') = steps (Suc 0, tp) A stp in s = 0 \<and> Q1 tp'"
+ and B_halt : "P2 tp \<Longrightarrow> \<exists> stp. let (s, tp') = steps (Suc 0, tp) B stp in s = 0 \<and> Q2 tp'"
+ and A_uhalt : "P3 tp \<Longrightarrow> \<not> (\<exists> stp. isS0 (steps (Suc 0, tp) A stp))"
+ and B_uhalt: "P4 tp \<Longrightarrow> \<not> (\<exists> stp. isS0 (steps (Suc 0, tp) B stp))"
+begin
+
+
+text {*
+ The following lemma tries to derive the Hoare logic rule for sequentially combined TMs.
+ It deals with the situtation when both @{text "A"} and @{text "B"} are terminated.
+*}
+
+lemma t_merge_halt:
+ assumes aimpb: "Q1 \<turnstile>-> P2"
+ shows "P1 \<turnstile>-> \<lambda> tp. (\<exists> stp tp'. steps (Suc 0, tp) (A |+| B) stp = (0, tp') \<and> Q2 tp')"
+proof(simp add: t_imply_def, auto)
+ fix a b
+ assume h: "P1 (a, b)"
+ hence "\<exists> stp. let (s, tp') = steps (Suc 0, a, b) A stp in s = 0 \<and> Q1 tp'"
+ using A_halt by simp
+ from this obtain stp1 where "let (s, tp') = steps (Suc 0, a, b) A stp1 in s = 0 \<and> Q1 tp'" ..
+ thus "\<exists>stp aa ba. steps (Suc 0, a, b) (A |+| B) stp = (0, aa, ba) \<and> Q2 (aa, ba)"
+ proof(case_tac "steps (Suc 0, a, b) A stp1", simp, erule_tac conjE)
+ fix aa ba c
+ assume g1: "Q1 (ba, c)"
+ and g2: "steps (Suc 0, a, b) A stp1 = (0, ba, c)"
+ hence "P2 (ba, c)"
+ using aimpb apply(simp add: t_imply_def)
+ done
+ hence "\<exists> stp. let (s, tp') = steps (Suc 0, ba, c) B stp in s = 0 \<and> Q2 tp'"
+ using B_halt by simp
+ from this obtain stp2 where "let (s, tp') = steps (Suc 0, ba, c) B stp2 in s = 0 \<and> Q2 tp'" ..
+ thus "?thesis"
+ proof(case_tac "steps (Suc 0, ba, c) B stp2", simp, erule_tac conjE)
+ fix aa bb ca
+ assume g3: " Q2 (bb, ca)" "steps (Suc 0, ba, c) B stp2 = (0, bb, ca)"
+ have "\<exists> stp. steps (Suc 0, a, b) (A |+| B) stp = (Suc (length A div 2), ba , c)"
+ using g2 A_wf B_wf
+ by(rule_tac t_merge_pre_halt_same, auto)
+ moreover have "\<exists> stp. steps (Suc (length A div 2), ba, c) (A |+| B) stp = (0, bb, ca)"
+ using g3 A_wf B_wf
+ apply(rule_tac t_merge_snd_halt_eq, auto)
+ done
+ ultimately show "\<exists>stp aa ba. steps (Suc 0, a, b) (A |+| B) stp = (0, aa, ba) \<and> Q2 (aa, ba)"
+ apply(erule_tac exE, erule_tac exE)
+ apply(rule_tac x = "stp + stpa" in exI, simp add: steps_add)
+ using g3 by simp
+ qed
+ qed
+qed
+
+lemma t_merge_uhalt_tmp:
+ assumes B_uh: "\<forall>stp. \<not> isS0 (steps (Suc 0, b, c) B stp)"
+ and merge_ah: "steps (Suc 0, tp) (A |+| B) stpa = (Suc (length A div 2), b, c)"
+ shows "\<forall> stp. \<not> isS0 (steps (Suc 0, tp) (A |+| B) stp)"
+ using B_uh merge_ah
+apply(rule_tac allI)
+apply(case_tac "stp > stpa")
+apply(erule_tac x = "stp - stpa" in allE)
+apply(case_tac "(steps (Suc 0, b, c) B (stp - stpa))", simp)
+proof -
+ fix stp a ba ca
+ assume h1: "\<not> isS0 (a, ba, ca)" "stpa < stp"
+ and h2: "steps (Suc 0, b, c) B (stp - stpa) = (a, ba, ca)"
+ have "steps (Suc 0 + length A div 2, b, c) (A |+| B) (stp - stpa) =
+ (if a = 0 then 0 else a + length A div 2, ba, ca)"
+ using A_wf B_wf h2
+ by(rule_tac t_merge_snd_eq_steps, auto)
+ moreover have "a > 0" using h1 by(simp add: isS0_def)
+ moreover have "\<exists> stpb. stp = stpa + stpb"
+ using h1 by(rule_tac x = "stp - stpa" in exI, simp)
+ ultimately show "\<not> isS0 (steps (Suc 0, tp) (A |+| B) stp)"
+ using merge_ah
+ by(auto simp: steps_add isS0_def)
+next
+ fix stp
+ assume h: "steps (Suc 0, tp) (A |+| B) stpa = (Suc (length A div 2), b, c)" "\<not> stpa < stp"
+ hence "\<exists> stpb. stpa = stp + stpb" apply(rule_tac x = "stpa - stp" in exI, auto) done
+ thus "\<not> isS0 (steps (Suc 0, tp) (A |+| B) stp)"
+ using h
+ apply(auto)
+ apply(cases "steps (Suc 0, tp) (A |+| B) stp", simp add: steps_add isS0_def steps_0)
+ done
+qed
+
+text {*
+ The following lemma deals with the situation when TM @{text "B"} can not terminate.
+ *}
+
+lemma t_merge_uhalt:
+ assumes aimpb: "Q1 \<turnstile>-> P4"
+ shows "P1 \<turnstile>-> \<lambda> tp. \<not> (\<exists> stp. isS0 (steps (Suc 0, tp) (A |+| B) stp))"
+proof(simp only: t_imply_def, rule_tac allI, rule_tac impI)
+ fix tp
+ assume init_asst: "P1 tp"
+ show "\<not> (\<exists>stp. isS0 (steps (Suc 0, tp) (A |+| B) stp))"
+ proof -
+ have "\<exists> stp. let (s, tp') = steps (Suc 0, tp) A stp in s = 0 \<and> Q1 tp'"
+ using A_halt[of tp] init_asst
+ by(simp)
+ from this obtain stpx where "let (s, tp') = steps (Suc 0, tp) A stpx in s = 0 \<and> Q1 tp'" ..
+ thus "?thesis"
+ proof(cases "steps (Suc 0, tp) A stpx", simp, erule_tac conjE)
+ fix a b c
+ assume "Q1 (b, c)"
+ and h3: "steps (Suc 0, tp) A stpx = (0, b, c)"
+ hence h2: "P4 (b, c)" using aimpb
+ by(simp add: t_imply_def)
+ have "\<exists> stp. steps (Suc 0, tp) (A |+| B) stp = (Suc (length A div 2), b, c)"
+ using h3 A_wf B_wf
+ apply(rule_tac stp = stpx in t_merge_pre_halt_same, auto)
+ done
+ from this obtain stpa where h4:"steps (Suc 0, tp) (A |+| B) stpa = (Suc (length A div 2), b, c)" ..
+ have " \<not> (\<exists> stp. isS0 (steps (Suc 0, b, c) B stp))"
+ using B_uhalt [of "(b, c)"] h2 apply simp
+ done
+ from this and h4 show "\<forall>stp. \<not> isS0 (steps (Suc 0, tp) (A |+| B) stp)"
+ by(rule_tac t_merge_uhalt_tmp, auto)
+ qed
+ qed
+qed
+end
+
+end
+