--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Tests/abacus-2.thy Fri Mar 29 01:36:45 2013 +0000
@@ -0,0 +1,732 @@
+header {*
+ {\em abacus} a kind of register machine
+*}
+
+theory abacus
+imports Main "../Separation_Algebra/Sep_Tactics"
+begin
+
+instantiation set :: (type)sep_algebra
+begin
+
+definition set_zero_def: "0 = {}"
+
+definition plus_set_def: "s1 + s2 = s1 \<union> s2"
+
+definition sep_disj_set_def: "sep_disj s1 s2 = (s1 \<inter> s2 = {})"
+
+lemmas set_ins_def = sep_disj_set_def plus_set_def set_zero_def
+
+instance
+ apply(default)
+ apply(simp add:set_ins_def)
+ apply(simp add:sep_disj_set_def plus_set_def set_zero_def)
+ apply (metis inf_commute)
+ apply(simp add:sep_disj_set_def plus_set_def set_zero_def)
+ apply(simp add:sep_disj_set_def plus_set_def set_zero_def)
+ apply (metis sup_commute)
+ apply(simp add:sep_disj_set_def plus_set_def set_zero_def)
+ apply (metis (lifting) Un_assoc)
+ apply(simp add:sep_disj_set_def plus_set_def set_zero_def)
+ apply (metis (lifting) Int_Un_distrib Un_empty inf_sup_distrib1 sup_eq_bot_iff)
+ apply(simp add:sep_disj_set_def plus_set_def set_zero_def)
+ by (metis (lifting) Int_Un_distrib Int_Un_distrib2 sup_eq_bot_iff)
+end
+
+
+text {*
+ {\em Abacus} instructions:
+*}
+
+datatype abc_inst =
+ -- {* @{text "Inc n"} increments the memory cell (or register)
+ with address @{text "n"} by one.
+ *}
+ Inc nat
+ -- {*
+ @{text "Dec n label"} decrements the memory cell with address @{text "n"} by one.
+ If cell @{text "n"} is already zero, no decrements happens and the executio jumps to
+ the instruction labeled by @{text "label"}.
+ *}
+ | Dec nat nat
+ -- {*
+ @{text "Goto label"} unconditionally jumps to the instruction labeled by @{text "label"}.
+ *}
+ | Goto nat
+
+datatype apg =
+ Instr abc_inst
+ | Label nat
+ | Seq apg apg
+ | Local "(nat \<Rightarrow> apg)"
+
+notation Local (binder "L " 10)
+
+abbreviation prog_instr :: "abc_inst \<Rightarrow> apg" ("\<guillemotright>_" [61] 61)
+where "\<guillemotright>i \<equiv> Instr i"
+
+abbreviation prog_seq :: "apg \<Rightarrow> apg \<Rightarrow> apg" (infixr ";" 52)
+where "c1 ; c2 \<equiv> Seq c1 c2"
+
+type_synonym aconf = "((nat \<rightharpoonup> abc_inst) \<times> nat \<times> (nat \<rightharpoonup> nat) \<times> nat)"
+
+fun astep :: "aconf \<Rightarrow> aconf"
+ where "astep (prog, pc, m, faults) =
+ (case (prog pc) of
+ Some (Inc i) \<Rightarrow>
+ case m(i) of
+ Some n \<Rightarrow> (prog, pc + 1, m(i:= Some (n + 1)), faults)
+ | None \<Rightarrow> (prog, pc, m, faults + 1)
+ | Some (Dec i e) \<Rightarrow>
+ case m(i) of
+ Some n \<Rightarrow> if (n = 0) then (prog, e, m, faults)
+ else (prog, pc + 1, m(i:= Some (n - 1)), faults)
+ | None \<Rightarrow> (prog, pc, m, faults + 1)
+ | Some (Goto pc') \<Rightarrow> (prog, pc', m, faults)
+ | None \<Rightarrow> (prog, pc, m, faults + 1))"
+
+definition "run n = astep ^^ n"
+
+datatype aresource =
+ M nat nat
+ | C nat abc_inst
+ | At nat
+ | Faults nat
+
+definition "prog_set prog = {C i inst | i inst. prog i = Some inst}"
+definition "pc_set pc = {At pc}"
+definition "mem_set m = {M i n | i n. m (i) = Some n} "
+definition "faults_set faults = {Faults faults}"
+
+lemmas cpn_set_def = prog_set_def pc_set_def mem_set_def faults_set_def
+
+fun rset_of :: "aconf \<Rightarrow> aresource set"
+ where "rset_of (prog, pc, m, faults) =
+ prog_set prog \<union> pc_set pc \<union> mem_set m \<union> faults_set faults"
+
+definition "sg e = (\<lambda> s. s = e)"
+
+definition "pc l = sg (pc_set l)"
+
+definition "m a v =sg ({M a v})"
+
+declare rset_of.simps[simp del]
+
+type_synonym assert = "aresource set \<Rightarrow> bool"
+
+primrec assemble_to :: "apg \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> assert"
+ where
+ "assemble_to (Instr ai) i j = (sg ({C i ai}) ** \<langle>(j = i + 1)\<rangle>)" |
+ "assemble_to (Seq p1 p2) i j = (EXS j'. (assemble_to p1 i j') ** (assemble_to p2 j' j))" |
+ "assemble_to (Local fp) i j = (EXS l. (assemble_to (fp l) i j))" |
+ "assemble_to (Label l) i j = \<langle>(i = j \<and> j = l)\<rangle>"
+
+abbreviation asmb_to :: "nat \<Rightarrow> apg \<Rightarrow> nat \<Rightarrow> assert" ("_ :[ _ ]: _" [60, 60, 60] 60)
+ where "i :[ apg ]: j \<equiv> assemble_to apg i j"
+
+lemma stimes_sgD: "(sg x ** q) s \<Longrightarrow> q (s - x) \<and> x \<subseteq> s"
+ apply(erule_tac sep_conjE)
+ apply(unfold set_ins_def sg_def)
+ by (metis Diff_Int2 Diff_Int_distrib2 Diff_Un Diff_cancel
+ Diff_empty Diff_idemp Diff_triv Int_Diff Un_Diff
+ Un_Diff_cancel inf_commute inf_idem sup_bot_right sup_commute sup_ge2)
+
+lemma pcD: "(pc i ** r) (rset_of (prog, i', mem, fault))
+ \<Longrightarrow> i' = i"
+proof -
+ assume "(pc i ** r) (rset_of (prog, i', mem, fault))"
+ from stimes_sgD [OF this[unfolded pc_def], unfolded rset_of.simps]
+ have "pc_set i \<subseteq> prog_set prog \<union> pc_set i' \<union> mem_set mem \<union> faults_set fault" by auto
+ thus ?thesis
+ by (unfold cpn_set_def, auto)
+qed
+
+lemma codeD: "(pc i ** sg {C i inst} ** r) (rset_of (prog, pos, mem, fault))
+ \<Longrightarrow> prog pos = Some inst"
+proof -
+ assume "(pc i ** sg {C i inst} ** r) (rset_of (prog, pos, mem, fault))"
+ thus ?thesis
+ apply(sep_subst pcD)
+ apply(unfold sep_conj_def set_ins_def sg_def rset_of.simps cpn_set_def)
+ by auto
+qed
+
+lemma memD: "((m a v) ** r) (rset_of (prog, pos, mem, fault)) \<Longrightarrow> mem a = Some v"
+proof -
+ assume "((m a v) ** r) (rset_of (prog, pos, mem, fault))"
+ from stimes_sgD[OF this[unfolded rset_of.simps cpn_set_def m_def]]
+ have "{M a v} \<subseteq> {C i inst |i inst. prog i = Some inst} \<union>
+ {At pos} \<union> {M i n |i n. mem i = Some n} \<union> {Faults fault}" by auto
+ thus ?thesis by auto
+qed
+
+definition
+ Hoare_abc :: "assert \<Rightarrow> assert \<Rightarrow> assert \<Rightarrow> bool" ("({(1_)}/ (_)/ {(1_)})" 50)
+where
+ "{p} c {q} \<equiv> (\<forall> s r. (p**c**r) (rset_of s) \<longrightarrow>
+ (\<exists> k. ((q ** c ** r) (rset_of (run k s)))))"
+
+definition "dec_fun v j e = (if (v = 0) then (e, v) else (j, v - 1))"
+
+lemma disj_Diff: "a \<inter> b = {} \<Longrightarrow> a \<union> b - b = a"
+by (metis (lifting) Diff_cancel Un_Diff Un_Diff_Int)
+
+lemma diff_pc_set: "prog_set aa \<union> pc_set i \<union> mem_set ab \<union> faults_set b - pc_set i =
+ prog_set aa \<union> mem_set ab \<union> faults_set b" (is "?L = ?R")
+proof -
+ have "?L = (prog_set aa \<union> mem_set ab \<union> faults_set b \<union> pc_set i) - pc_set i"
+ by auto
+ also have "\<dots> = ?R"
+ proof(rule disj_Diff)
+ show " (prog_set aa \<union> mem_set ab \<union> faults_set b) \<inter> pc_set i = {}"
+ by (unfold cpn_set_def, auto)
+ qed
+ finally show ?thesis .
+qed
+
+lemma M_in_simp: "({M a v} \<subseteq> prog_set x \<union> pc_set y \<union> mem_set mem \<union> faults_set f) =
+ ({M a v} \<subseteq> mem_set mem)"
+ by (unfold cpn_set_def, auto)
+
+lemma mem_set_upd:
+ "{M a v} \<subseteq> mem_set mem \<Longrightarrow> mem_set (mem(a:=Some v')) = ((mem_set mem) - {M a v}) \<union> {M a v'}"
+ by (unfold cpn_set_def, auto)
+
+lemma mem_set_disj: "{M a v} \<subseteq> mem_set mem \<Longrightarrow> {M a v'} \<inter> (mem_set mem - {M a v}) = {}"
+ by (unfold cpn_set_def, auto)
+
+lemma smem_upd: "((m a v) ** r) (rset_of (x, y, mem, f)) \<Longrightarrow>
+ ((m a v') ** r) (rset_of (x, y, mem(a := Some v'), f))"
+proof -
+ have eq_s:"
+ (prog_set x \<union> pc_set y \<union> mem_set mem \<union> faults_set f - {M a v}) =
+ (prog_set x \<union> pc_set y \<union> (mem_set mem - {M a v}) \<union> faults_set f)"
+ by (unfold cpn_set_def, auto)
+ assume "(m a v \<and>* r) (rset_of (x, y, mem, f))"
+ from this[unfolded rset_of.simps m_def]
+ have h: "(sg {M a v} \<and>* r) (prog_set x \<union> pc_set y \<union> mem_set mem \<union> faults_set f)" .
+ hence h0: "r (prog_set x \<union> pc_set y \<union> (mem_set mem - {M a v}) \<union> faults_set f)"
+ by(sep_drule stimes_sgD, clarify, unfold eq_s, auto)
+ from h M_in_simp have "{M a v} \<subseteq> mem_set mem"
+ by(sep_drule stimes_sgD, auto)
+ from mem_set_upd [OF this] mem_set_disj[OF this]
+ have h2: "mem_set (mem(a \<mapsto> v')) = {M a v'} \<union> (mem_set mem - {M a v})"
+ "{M a v'} \<inter> (mem_set mem - {M a v}) = {}" by auto
+ show ?thesis
+ proof -
+ have "(m a v' ** r) (mem_set (mem(a \<mapsto> v')) \<union> prog_set x \<union> pc_set y \<union> faults_set f)"
+ proof(rule sep_conjI)
+ from h0 show "r (prog_set x \<union> pc_set y \<union> (mem_set mem - {M a v}) \<union> faults_set f)" .
+ next
+ show "m a v' ({M a v'})" by (unfold m_def sg_def, simp)
+ next
+ show "mem_set (mem(a \<mapsto> v')) \<union> prog_set x \<union> pc_set y \<union> faults_set f =
+ {M a v'} + (prog_set x \<union> pc_set y \<union> (mem_set mem - {M a v}) \<union> faults_set f)"
+ by (unfold h2(1) set_ins_def eq_s, auto)
+ next
+ from h2(2)
+ show " {M a v'} ## prog_set x \<union> pc_set y \<union> (mem_set mem - {M a v}) \<union> faults_set f"
+ by (unfold cpn_set_def set_ins_def, auto)
+ qed
+ thus ?thesis
+ apply (unfold rset_of.simps)
+ by (metis sup_commute sup_left_commute)
+ qed
+qed
+
+lemma pc_dest: "(pc i') (pc_set i) \<Longrightarrow> i = i'"
+ sorry
+
+lemma spc_upd: "(pc i' ** r) (rset_of (x, i, y, z)) \<Longrightarrow>
+ (pc i'' ** r) (rset_of (x, i'', y, z))"
+proof -
+ assume h: "rset_of (x, i, y, z) \<in> pc i' * r"
+ from stimes_sgD [OF h[unfolded rset_of.simps pc_set_def pc_def]]
+ have h1: "prog_set x \<union> {At i} \<union> mem_set y \<union> faults_set z - {At i'} \<in> r"
+ "{At i'} \<subseteq> prog_set x \<union> {At i} \<union> mem_set y \<union> faults_set z" by auto
+ from h1(2) have eq_i: "i' = i" by (unfold cpn_set_def, auto)
+ have "prog_set x \<union> {At i} \<union> mem_set y \<union> faults_set z - {At i'} =
+ prog_set x \<union> mem_set y \<union> faults_set z "
+ apply (unfold eq_i)
+ by (metis (full_types) Un_insert_left Un_insert_right
+ diff_pc_set faults_set_def insert_commute insert_is_Un
+ pc_set_def sup_assoc sup_bot_left sup_commute)
+ with h1(1) have in_r: "prog_set x \<union> mem_set y \<union> faults_set z \<in> r" by auto
+ show ?thesis
+ proof(unfold rset_of.simps, rule stimesI[OF _ _ _ in_r])
+ show "{At i''} \<in> pc i''" by (unfold pc_def pc_set_def, simp)
+ next
+ show "prog_set x \<union> pc_set i'' \<union> mem_set y \<union> faults_set z =
+ {At i''} \<union> (prog_set x \<union> mem_set y \<union> faults_set z)"
+ by (unfold pc_set_def, auto)
+ next
+ show "{At i''} \<inter> (prog_set x \<union> mem_set y \<union> faults_set z) = {}"
+ by (auto simp:cpn_set_def)
+ qed
+qed
+
+lemma condD: "s \<in> <b>*r \<Longrightarrow> b"
+ by (unfold st_def pasrt_def, auto)
+
+lemma condD1: "s \<in> <b>*r \<Longrightarrow> s \<in> r"
+ by (unfold st_def pasrt_def, auto)
+
+lemma hoare_dec_suc: "{(pc i * m a v) * <(v > 0)>}
+ i:[\<guillemotright>(Dec a e) ]:j
+ {pc j * m a (v - 1)}"
+proof(unfold Hoare_abc_def, clarify)
+ fix prog i' ab b r
+ assume h: "rset_of (prog, i', ab, b) \<in> ((pc i * m a v) * <(0 < v)>) * (i :[ \<guillemotright>Dec a e ]: j) * r"
+ (is "?r \<in> ?S")
+ show "\<exists>k. rset_of (run k (prog, i', ab, b)) \<in> (pc j * m a (v - 1)) * (i :[ \<guillemotright>Dec a e ]: j) * r"
+ proof -
+ from h [unfolded assemble_to.simps]
+ have h1: "?r \<in> pc i * {{C i (Dec a e)}} * m a v * <(0 < v)> * <(j = i + 1)> * r"
+ "?r \<in> m a v * pc i * {{C i (Dec a e)}} * <(0 < v)> * <(j = i + 1)> * r"
+ "?r \<in> <(0 < v)> * <(j = i + 1)> * m a v * pc i * {{C i (Dec a e)}} * r"
+ "?r \<in> <(j = i + 1)> * <(0 < v)> * m a v * pc i * {{C i (Dec a e)}} * r"
+ by ((metis stimes_ac)+)
+ note h2 = condD [OF h1(3)] condD[OF h1(4)] pcD[OF h1(1)] codeD[OF h1(1)] memD[OF h1(2)]
+ hence stp: "run 1 (prog, i', ab, b) = (prog, Suc i, ab(a \<mapsto> v - Suc 0), b)" (is "?x = ?y")
+ by (unfold run_def, auto)
+ have "rset_of ?x \<in> (pc j * m a (v - 1)) * (i :[ \<guillemotright>Dec a e ]: j) * r"
+ proof -
+ have "rset_of ?y \<in> (pc j * m a (v - 1)) * (i :[ \<guillemotright>Dec a e ]: j) * r"
+ proof -
+ from spc_upd[OF h1(1), of "Suc i"]
+ have "rset_of (prog, (Suc i), ab, b) \<in>
+ m a v * pc (Suc i) * {{C i (Dec a e)}} * <(0 < v)> * <(j = i + 1)> * r"
+ by (metis stimes_ac)
+ from smem_upd[OF this, of "v - (Suc 0)"]
+ have "rset_of ?y \<in>
+ m a (v - Suc 0) * pc (Suc i) * {{C i (Dec a e)}} * <(0 < v)> * <(j = i + 1)> * r" .
+ hence "rset_of ?y \<in> <(0 < v)> *
+ (pc (Suc i) * m a (v - Suc 0)) * ({{C i (Dec a e)}} * <(j = i + 1)>) * r"
+ by (metis stimes_ac)
+ from condD1[OF this]
+ have "rset_of ?y \<in> (pc (Suc i) * m a (v - Suc 0)) * ({{C i (Dec a e)}} * <(j = i + 1)>) * r" .
+ thus ?thesis
+ by (unfold h2(2) assemble_to.simps, simp)
+ qed
+ with stp show ?thesis by simp
+ qed
+ thus ?thesis by blast
+ qed
+qed
+
+lemma hoare_dec_fail: "{pc i * m a 0}
+ i:[ \<guillemotright>(Dec a e) ]:j
+ {pc e * m a 0}"
+proof(unfold Hoare_abc_def, clarify)
+ fix prog i' ab b r
+ assume h: "rset_of (prog, i', ab, b) \<in> (pc i * m a 0) * (i :[ \<guillemotright>Dec a e ]: j) * r"
+ (is "?r \<in> ?S")
+ show "\<exists>k. rset_of (run k (prog, i', ab, b)) \<in> (pc e * m a 0) * (i :[ \<guillemotright>Dec a e ]: j) * r"
+ proof -
+ from h [unfolded assemble_to.simps]
+ have h1: "?r \<in> pc i * {{C i (Dec a e)}} * m a 0 * <(j = i + 1)> * r"
+ "?r \<in> m a 0 * pc i * {{C i (Dec a e)}} * <(j = i + 1)> * r"
+ "?r \<in> <(j = i + 1)> * m a 0 * pc i * {{C i (Dec a e)}} * r"
+ by ((metis stimes_ac)+)
+ note h2 = condD [OF h1(3)] pcD[OF h1(1)] codeD[OF h1(1)] memD[OF h1(2)]
+ hence stp: "run 1 (prog, i', ab, b) = (prog, e, ab, b)" (is "?x = ?y")
+ by (unfold run_def, auto)
+ have "rset_of ?x \<in> (pc e * m a 0) * (i :[ \<guillemotright>Dec a e ]: j) * r"
+ proof -
+ have "rset_of ?y \<in> (pc e * m a 0) * (i :[ \<guillemotright>Dec a e ]: j) * r"
+ proof -
+ from spc_upd[OF h1(1), of "e"]
+ have "rset_of ?y \<in> pc e * {{C i (Dec a e)}} * m a 0 * <(j = i + 1)> * r" .
+ thus ?thesis
+ by (unfold assemble_to.simps, metis stimes_ac)
+ qed
+ with stp show ?thesis by simp
+ qed
+ thus ?thesis by blast
+ qed
+qed
+
+lemma pasrtD_p: "\<lbrakk>{p*<b>} c {q}\<rbrakk> \<Longrightarrow> (b \<longrightarrow> {p} c {q})"
+ apply (unfold Hoare_abc_def pasrt_def, auto)
+ by (fold emp_def, simp add:emp_unit_r)
+
+lemma hoare_dec: "dec_fun v j e = (pc', v') \<Longrightarrow>
+ {pc i * m a v}
+ i:[ \<guillemotright>(Dec a e) ]:j
+ {pc pc' * m a v'}"
+proof -
+ assume "dec_fun v j e = (pc', v')"
+ thus "{pc i * m a v}
+ i:[ \<guillemotright>(Dec a e) ]:j
+ {pc pc' * m a v'}"
+ apply (auto split:if_splits simp:dec_fun_def)
+ apply (insert hoare_dec_fail, auto)[1]
+ apply (insert hoare_dec_suc, auto)
+ apply (atomize)
+ apply (erule_tac x = i in allE, erule_tac x = a in allE,
+ erule_tac x = v in allE, erule_tac x = e in allE, erule_tac x = pc' in allE)
+ by (drule_tac pasrtD_p, clarify)
+qed
+
+lemma hoare_inc: "{pc i * m a v}
+ i:[ \<guillemotright>(Inc a) ]:j
+ {pc j * m a (v + 1)}"
+proof(unfold Hoare_abc_def, clarify)
+ fix prog i' ab b r
+ assume h: "rset_of (prog, i', ab, b) \<in> (pc i * m a v) * (i :[ \<guillemotright>Inc a ]: j) * r"
+ (is "?r \<in> ?S")
+ show "\<exists>k. rset_of (run k (prog, i', ab, b)) \<in> (pc j * m a (v + 1)) * (i :[ \<guillemotright>Inc a ]: j) * r"
+ proof -
+ from h [unfolded assemble_to.simps]
+ have h1: "?r \<in> pc i * {{C i (Inc a)}} * m a v * <(j = i + 1)> * r"
+ "?r \<in> m a v * pc i * {{C i (Inc a)}} * <(j = i + 1)> * r"
+ "?r \<in> <(j = i + 1)> * m a v * pc i * {{C i (Inc a)}} * r"
+ by ((metis stimes_ac)+)
+ note h2 = condD [OF h1(3)] pcD[OF h1(1)] codeD[OF h1(1)] memD[OF h1(2)]
+ hence stp: "run 1 (prog, i', ab, b) = (prog, Suc i, ab(a \<mapsto> Suc v), b)" (is "?x = ?y")
+ by (unfold run_def, auto)
+ have "rset_of ?x \<in> (pc j * m a (v + 1)) * (i :[ \<guillemotright>Inc a]: j) * r"
+ proof -
+ have "rset_of ?y \<in> (pc j * m a (v + 1)) * (i :[ \<guillemotright>Inc a ]: j) * r"
+ proof -
+ from spc_upd[OF h1(1), of "Suc i"]
+ have "rset_of (prog, (Suc i), ab, b) \<in>
+ m a v * pc (Suc i) * {{C i (Inc a)}} * <(j = i + 1)> * r"
+ by (metis stimes_ac)
+ from smem_upd[OF this, of "Suc v"]
+ have "rset_of ?y \<in>
+ m a (v + 1) * pc (i + 1) * {{C i (Inc a)}} * <(j = i + 1)> * r" by simp
+ thus ?thesis
+ by (unfold h2(1) assemble_to.simps, metis stimes_ac)
+ qed
+ with stp show ?thesis by simp
+ qed
+ thus ?thesis by blast
+ qed
+qed
+
+lemma hoare_goto: "{pc i}
+ i:[ \<guillemotright>(Goto e) ]:j
+ {pc e}"
+proof(unfold Hoare_abc_def, clarify)
+ fix prog i' ab b r
+ assume h: "rset_of (prog, i', ab, b) \<in> pc i * (i :[ \<guillemotright>Goto e ]: j) * r"
+ (is "?r \<in> ?S")
+ show "\<exists>k. rset_of (run k (prog, i', ab, b)) \<in> pc e * (i :[ \<guillemotright>Goto e ]: j) * r"
+ proof -
+ from h [unfolded assemble_to.simps]
+ have h1: "?r \<in> pc i * {{C i (Goto e)}} * <(j = i + 1)> * r"
+ by ((metis stimes_ac)+)
+ note h2 = pcD[OF h1(1)] codeD[OF h1(1)]
+ hence stp: "run 1 (prog, i', ab, b) = (prog, e, ab, b)" (is "?x = ?y")
+ by (unfold run_def, auto)
+ have "rset_of ?x \<in> pc e * (i :[ \<guillemotright>Goto e]: j) * r"
+ proof -
+ from spc_upd[OF h1(1), of "e"]
+ show ?thesis
+ by (unfold stp assemble_to.simps, metis stimes_ac)
+ qed
+ thus ?thesis by blast
+ qed
+qed
+
+no_notation stimes (infixr "*" 70)
+
+interpretation foo: comm_monoid_mult
+ "stimes :: 'a set set => 'a set set => 'a set set" "emp::'a set set"
+apply(default)
+apply(simp add: stimes_assoc)
+apply(simp add: stimes_comm)
+apply(simp add: emp_def[symmetric])
+done
+
+
+notation stimes (infixr "*" 70)
+
+(*used by simplifier for numbers *)
+thm mult_cancel_left
+
+(*
+interpretation foo: comm_ring_1 "op * :: 'a set set => 'a set set => 'a set set" "{{}}::'a set set"
+apply(default)
+*)
+
+lemma frame: "{p} c {q} \<Longrightarrow> \<forall> r. {p * r} c {q * r}"
+apply (unfold Hoare_abc_def, clarify)
+apply (erule_tac x = "(a, aa, ab, b)" in allE)
+apply (erule_tac x = "r * ra" in allE)
+apply(metis stimes_ac)
+done
+
+lemma code_extension: "\<lbrakk>{p} c {q}\<rbrakk> \<Longrightarrow> (\<forall> e. {p} c * e {q})"
+ apply (unfold Hoare_abc_def, clarify)
+ apply (erule_tac x = "(a, aa, ab, b)" in allE)
+ apply (erule_tac x = "e * r" in allE)
+ apply(metis stimes_ac)
+ done
+
+lemma run_add: "run (n1 + n2) s = run n1 (run n2 s)"
+apply (unfold run_def)
+by (metis funpow_add o_apply)
+
+lemma composition: "\<lbrakk>{p} c1 {q}; {q} c2 {r}\<rbrakk> \<Longrightarrow> {p} c1 * c2 {r}"
+proof -
+ assume h: "{p} c1 {q}" "{q} c2 {r}"
+ from code_extension [OF h(1), rule_format, of "c2"]
+ have "{p} c1 * c2 {q}" .
+ moreover from code_extension [OF h(2), rule_format, of "c1"] and stimes_comm
+ have "{q} c1 * c2 {r}" by metis
+ ultimately show "{p} c1 * c2 {r}"
+ apply (unfold Hoare_abc_def, clarify)
+ proof -
+ fix a aa ab b ra
+ assume h1: "\<forall>s r. rset_of s \<in> p * (c1 * c2) * r \<longrightarrow>
+ (\<exists>k. rset_of (run k s) \<in> q * (c1 * c2) * r)"
+ and h2: "\<forall>s ra. rset_of s \<in> q * (c1 * c2) * ra \<longrightarrow>
+ (\<exists>k. rset_of (run k s) \<in> r * (c1 * c2) * ra)"
+ and h3: "rset_of (a, aa, ab, b) \<in> p * (c1 * c2) * ra"
+ show "\<exists>k. rset_of (run k (a, aa, ab, b)) \<in> r * (c1 * c2) * ra"
+ proof -
+ let ?s = "(a, aa, ab, b)"
+ from h1 [rule_format, of ?s, OF h3]
+ obtain n1 where "rset_of (run n1 ?s) \<in> q * (c1 * c2) * ra" by blast
+ from h2 [rule_format, OF this]
+ obtain n2 where "rset_of (run n2 (run n1 ?s)) \<in> r * (c1 * c2) * ra" by blast
+ with run_add show ?thesis by metis
+ qed
+ qed
+qed
+
+lemma stimes_simp: "s \<in> x * y = (\<exists> s1 s2. (s = s1 \<union> s2 \<and> s1 \<inter> s2 = {} \<and> s1 \<in> x \<and> s2 \<in> y))"
+by (metis (lifting) stimesE stimesI)
+
+lemma hoare_seq:
+ "\<lbrakk>\<forall> i j. {pc i * p} i:[c1]:j {pc j * q};
+ \<forall> j k. {pc j * q} j:[c2]:k {pc k * r}\<rbrakk> \<Longrightarrow> {pc i * p} i:[(c1 ; c2)]:k {pc k *r}"
+proof -
+ assume h: "\<forall>i j. {pc i * p} i :[ c1 ]: j {pc j * q}" "\<forall> j k. {pc j * q} j:[c2]:k {pc k * r}"
+ show "{pc i * p} i:[(c1 ; c2)]:k {pc k *r}"
+ proof(subst Hoare_abc_def, clarify)
+ fix a aa ab b ra
+ assume "rset_of (a, aa, ab, b) \<in> (pc i * p) * (i :[ (c1 ; c2) ]: k) * ra"
+ hence "rset_of (a, aa, ab, b) \<in> (i :[ (c1 ; c2) ]: k) * (pc i * p * ra)" (is "?s \<in> ?X * ?Y")
+ by (metis stimes_ac)
+ from stimesE[OF this] obtain s1 s2 where
+ sp: "rset_of(a, aa, ab, b) = s1 \<union> s2" "s1 \<inter> s2 = {}" "s1 \<in> ?X" "s2 \<in> ?Y" by blast
+ from sp (3) obtain j' where
+ "s1 \<in> (i:[c1]:j') * (j':[c2]:k)" (is "s1 \<in> ?Z")
+ by (auto simp:assemble_to.simps)
+ from stimesI[OF sp(1, 2) this sp(4)]
+ have "?s \<in> (pc i * p) * (i :[ c1 ]: j') * (j' :[ c2 ]: k) * ra" by (metis stimes_ac)
+ from h(1)[unfolded Hoare_abc_def, rule_format, OF this]
+ obtain ka where
+ "rset_of (run ka (a, aa, ab, b)) \<in> (pc j' * q) * (j' :[ c2 ]: k) * ((i :[ c1 ]: j') * ra)"
+ sorry
+ from h(2)[unfolded Hoare_abc_def, rule_format, OF this]
+ obtain kb where
+ "rset_of (run kb (run ka (a, aa, ab, b)))
+ \<in> (pc k * r) * (j' :[ c2 ]: k) * (i :[ c1 ]: j') * ra" by blast
+ hence h3: "rset_of (run (kb + ka) (a, aa, ab, b))
+ \<in> pc k * r * (j' :[ c2 ]: k) * ((i :[ c1 ]: j') * ra)"
+ sorry
+ hence "rset_of (run (kb + ka) (a, aa, ab, b)) \<in> pc k * r * (i :[ (c1 ; c2) ]: k) * ra"
+ proof -
+ have "rset_of (run (kb + ka) (a, aa, ab, b)) \<in> (i :[ (c1 ; c2) ]: k) * (pc k * r * ra)"
+ proof -
+ from h3 have "rset_of (run (kb + ka) (a, aa, ab, b))
+ \<in> ((j' :[ c2 ]: k) * ((i :[ c1 ]: j'))) * (pc k * r * ra)"
+ by (metis stimes_ac)
+ then obtain
+ s1 s2 where h4: "rset_of (run (kb + ka) (a, aa, ab, b)) = s1 \<union> s2"
+ " s1 \<inter> s2 = {}" "s1 \<in> (j' :[ c2 ]: k) * (i :[ c1 ]: j')"
+ "s2 \<in> pc k * r * ra" by (rule stimesE, blast)
+ from h4(3) have "s1 \<in> (i :[ (c1 ; c2) ]: k)"
+ sorry
+ from stimesI [OF h4(1, 2) this h4(4)]
+ show ?thesis .
+ qed
+ thus ?thesis by (metis stimes_ac)
+ qed
+ thus "\<exists>ka. rset_of (run ka (a, aa, ab, b)) \<in> (pc k * r) * (i :[ (c1 ; c2) ]: k) * ra"
+ by (metis stimes_ac)
+ qed
+qed
+
+lemma hoare_local:
+ "\<forall> l i j. {pc i*p} i:[c(l)]:j {pc j * q}
+ \<Longrightarrow> {pc i * p} i:[Local c]:j {pc j * q}"
+proof -
+ assume h: "\<forall> l i j. {pc i*p} i:[c(l)]:j {pc j * q} "
+ show "{pc i * p} i:[Local c]:j {pc j * q}"
+ proof(unfold assemble_to.simps Hoare_abc_def, clarify)
+ fix a aa ab b r
+ assume h1: "rset_of (a, aa, ab, b) \<in> (pc i * p) * (\<Union>l. i :[ c l ]: j) * r"
+ hence "rset_of (a, aa, ab, b) \<in> (\<Union>l. i :[ c l ]: j) * (pc i * p * r)"
+ by (metis stimes_ac)
+ then obtain s1 s2 l
+ where "rset_of (a, aa, ab, b) = s1 \<union> s2"
+ "s1 \<inter> s2 = {}"
+ "s1 \<in> (i :[ c l ]: j)"
+ "s2 \<in> pc i * p * r"
+ by (rule stimesE, auto)
+ from stimesI[OF this]
+ have "rset_of (a, aa, ab, b) \<in> (pc i * p) * (i :[ c l ]: j) * r"
+ by (metis stimes_ac)
+ from h[unfolded Hoare_abc_def, rule_format, OF this]
+ obtain k where "rset_of (run k (a, aa, ab, b)) \<in> (i :[ c l ]: j) * (pc j * q * r)"
+ sorry
+ then obtain s1 s2
+ where h3: "rset_of (run k (a, aa, ab, b)) = s1 \<union> s2"
+ " s1 \<inter> s2 = {}" "s1 \<in> (\<Union> l. (i :[ c l ]: j))" "s2 \<in> pc j * q * r"
+ by(rule stimesE, auto)
+ from stimesI[OF this]
+ show "\<exists>k. rset_of (run k (a, aa, ab, b)) \<in> (pc j * q) * (\<Union>l. i :[ c l ]: j) * r"
+ by (metis stimes_ac)
+ qed
+qed
+
+lemma move_pure: "{p*<b>} c {q} = (b \<longrightarrow> {p} c {q})"
+proof(unfold Hoare_abc_def, default, clarify)
+ fix prog i' mem ft r
+ assume h: "\<forall>s r. rset_of s \<in> (p * <b>) * c * r \<longrightarrow> (\<exists>k. rset_of (run k s) \<in> q * c * r)"
+ "b" "rset_of (prog, i', mem, ft) \<in> p * c * r"
+ show "\<exists>k. rset_of (run k (prog, i', mem, ft)) \<in> q * c * r"
+ proof(rule h(1)[rule_format])
+ have "(p * <b>) * c * r = <b> * p * c * r" by (metis stimes_ac)
+ moreover have "rset_of (prog, i', mem, ft) \<in> \<dots>"
+ proof(rule stimesI[OF _ _ _ h(3)])
+ from h(2) show "{} \<in> <b>" by (auto simp:pasrt_def)
+ qed auto
+ ultimately show "rset_of (prog, i', mem, ft) \<in> (p * <b>) * c * r"
+ by (simp)
+ qed
+next
+ assume h: "b \<longrightarrow> (\<forall>s r. rset_of s \<in> p * c * r \<longrightarrow> (\<exists>k. rset_of (run k s) \<in> q * c * r))"
+ show "\<forall>s r. rset_of s \<in> (p * <b>) * c * r \<longrightarrow> (\<exists>k. rset_of (run k s) \<in> q * c * r)"
+ proof -
+ { fix s r
+ assume "rset_of s \<in> (p * <b>) * c * r"
+ hence h1: "rset_of s \<in> <b> * p * c * r" by (metis stimes_ac)
+ have "(\<exists>k. rset_of (run k s) \<in> q * c * r)"
+ proof(rule h[rule_format])
+ from condD[OF h1] show b .
+ next
+ from condD1[OF h1] show "rset_of s \<in> p * c * r" .
+ qed
+ } thus ?thesis by blast
+ qed
+qed
+
+lemma precond_ex: "{\<Union> x. p x} c {q} = (\<forall> x. {p x} c {q})"
+proof(unfold Hoare_abc_def, default, clarify)
+ fix x prog i' mem ft r
+ assume h: "\<forall>s r. rset_of s \<in> UNION UNIV p * c * r \<longrightarrow> (\<exists>k. rset_of (run k s) \<in> q * c * r)"
+ "rset_of (prog, i', mem, ft) \<in> p x * c * r"
+ show "\<exists>k. rset_of (run k (prog, i', mem, ft)) \<in> q * c * r"
+ proof(rule h[rule_format])
+ from h(2) show "rset_of (prog, i', mem, ft) \<in> UNION UNIV p * c * r" by (auto simp:stimes_def)
+ qed
+next
+ assume h: "\<forall>x s r. rset_of s \<in> p x * c * r \<longrightarrow> (\<exists>k. rset_of (run k s) \<in> q * c * r)"
+ show "\<forall>s r. rset_of s \<in> UNION UNIV p * c * r \<longrightarrow> (\<exists>k. rset_of (run k s) \<in> q * c * r)"
+ proof -
+ { fix s r
+ assume "rset_of s \<in> UNION UNIV p * c * r"
+ then obtain x where "rset_of s \<in> p x * c * r"
+ by (unfold st_def, auto, metis)
+ hence "(\<exists>k. rset_of (run k s) \<in> q * c * r)"
+ by(rule h[rule_format])
+ } thus ?thesis by blast
+ qed
+qed
+
+lemma code_exI: "\<lbrakk>\<And>l. {p} c l * c' {q}\<rbrakk> \<Longrightarrow> {p} (\<Union> l. c l) * c' {q}"
+proof(unfold Hoare_abc_def, default, clarify)
+ fix prog i' mem ft r
+ assume h: "\<And>l. \<forall>s r. rset_of s \<in> p * (c l * c') * r \<longrightarrow> (\<exists>k. rset_of (run k s) \<in> q * (c l * c') * r)"
+ "rset_of (prog, i', mem, ft) \<in> p * (UNION UNIV c * c') * r"
+ show " \<exists>k. rset_of (run k (prog, i', mem, ft)) \<in> q * (UNION UNIV c * c') * r"
+ proof -
+ from h(2) obtain l where "rset_of (prog, i', mem, ft) \<in> p * (c l * c') * r"
+ apply (unfold st_def, auto)
+ by metis
+ from h(1)[rule_format, OF this]
+ obtain k where " rset_of (run k (prog, i', mem, ft)) \<in> q * (c l * c') * r" by blast
+ thus ?thesis by (unfold st_def, auto, metis)
+ qed
+qed
+
+lemma code_exIe: "\<lbrakk>\<And>l. {p} c l{q}\<rbrakk> \<Longrightarrow> {p} \<Union> l. (c l) {q}"
+proof -
+ assume "\<And>l. {p} c l {q}"
+ thus "{p} \<Union>l. c l {q}"
+ by(rule code_exI[where c'= "emp", unfolded emp_unit_r])
+qed
+
+lemma pre_stren: "\<lbrakk>{p} c {q}; r \<subseteq> p\<rbrakk> \<Longrightarrow> {r} c {q}"
+proof(unfold Hoare_abc_def, clarify)
+ fix prog i' mem ft r'
+ assume h: "\<forall>s r. rset_of s \<in> p * c * r \<longrightarrow> (\<exists>k. rset_of (run k s) \<in> q * c * r)"
+ " r \<subseteq> p" " rset_of (prog, i', mem, ft) \<in> r * c * r'"
+ show "\<exists>k. rset_of (run k (prog, i', mem, ft)) \<in> q * c * r'"
+ proof(rule h(1)[rule_format])
+ from stimes_mono[OF h(2), of "c * r'"] h(3)
+ show "rset_of (prog, i', mem, ft) \<in> p * c * r'" by auto
+ qed
+qed
+
+lemma post_weaken: "\<lbrakk>{p} c {q}; q \<subseteq> r\<rbrakk> \<Longrightarrow> {p} c {r}"
+proof(unfold Hoare_abc_def, clarify)
+ fix prog i' mem ft r'
+ assume h: "\<forall>s r. rset_of s \<in> p * c * r \<longrightarrow> (\<exists>k. rset_of (run k s) \<in> q * c * r)"
+ " q \<subseteq> r" "rset_of (prog, i', mem, ft) \<in> p * c * r'"
+ show "\<exists>k. rset_of (run k (prog, i', mem, ft)) \<in> r * c * r'"
+ proof -
+ from h(1)[rule_format, OF h(3)]
+ obtain k where "rset_of (run k (prog, i', mem, ft)) \<in> q * c * r'" by auto
+ moreover from h(2) have "\<dots> \<subseteq> r * c * r'" by (metis stimes_mono)
+ ultimately show ?thesis by auto
+ qed
+qed
+
+definition "clear a = (L start exit. Label start; \<guillemotright>Dec a exit; \<guillemotright> Goto start; Label exit)"
+
+lemma "{pc i * m a v} i:[clear a]:j {pc j*m a 0}"
+proof (unfold clear_def, rule hoare_local, default+)
+ fix l i j
+ show "{pc i * m a v} i :[ (L exit. Label l ; \<guillemotright>Dec a exit ; \<guillemotright>Goto l ; Label exit) ]: j
+ {pc j * m a 0}"
+ proof(rule hoare_local, default+)
+ fix la i j
+ show "{pc i * m a v} i :[ (Label l ; \<guillemotright>Dec a la ; \<guillemotright>Goto l ; Label la) ]: j {pc j * m a 0}"
+ proof(subst assemble_to.simps, rule code_exIe)
+ have "\<And>j'. {pc i * m a v} (j' :[ (\<guillemotright>Dec a la ; \<guillemotright>Goto l ; Label la) ]: j) * (i :[ Label l ]: j')
+ {pc j * m a 0}"
+ proof(subst assemble_to.simps, rule code_exI)
+ fix j' j'a
+ show "{pc i * m a v}
+ ((j' :[ \<guillemotright>Dec a la ]: j'a) * (j'a :[ (\<guillemotright>Goto l ; Label la) ]: j)) * (i :[ Label l ]: j')
+ {pc j * m a 0}"
+ proof(unfold assemble_to.simps)
+ have "{pc i * m a v}
+ ((\<Union>j'. ({{C j'a (Goto l)}} * <(j' = j'a + 1)>) * ({{C j' (Dec a la)}} * <(j'a = j' + 1)>)
+ * <(j' = j \<and> j = la)>)) *
+ <(i = j' \<and> j' = l)>
+ {pc j * m a 0}"
+ proof(rule code_exI, fold assemble_to.simps, unfold assemble_to.simps(4))
+ thm assemble_to.simps
+ qed
+ thus "{pc i * m a v}
+ (({{C j' (Dec a la)}} * <(j'a = j' + 1)>) *
+ (\<Union>j'. ({{C j'a (Goto l)}} * <(j' = j'a + 1)>) * <(j' = j \<and> j = la)>)) *
+ <(i = j' \<and> j' = l)>
+ {pc j * m a 0}" sorry
+ qed
+ qed
+ thus "\<And>j'. {pc i * m a v} (i :[ Label l ]: j') * (j' :[ (\<guillemotright>Dec a la ; \<guillemotright>Goto l ; Label la) ]: j)
+ {pc j * m a 0}" by (metis stimes_ac)
+ qed
+ qed
+qed
+
+end