Tests/abacus-2.thy
changeset 232 8f89170bb076
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Tests/abacus-2.thy	Fri Mar 29 01:36:45 2013 +0000
@@ -0,0 +1,732 @@
+header {* 
+ {\em abacus} a kind of register machine
+*}
+
+theory abacus
+imports Main "../Separation_Algebra/Sep_Tactics"
+begin
+
+instantiation set :: (type)sep_algebra
+begin
+
+definition set_zero_def: "0 = {}"
+
+definition plus_set_def: "s1 + s2 = s1 \<union> s2"
+
+definition sep_disj_set_def: "sep_disj s1 s2 = (s1 \<inter> s2 = {})"
+
+lemmas set_ins_def = sep_disj_set_def plus_set_def set_zero_def
+
+instance
+  apply(default)
+  apply(simp add:set_ins_def)
+  apply(simp add:sep_disj_set_def plus_set_def set_zero_def)
+  apply (metis inf_commute)
+  apply(simp add:sep_disj_set_def plus_set_def set_zero_def)
+  apply(simp add:sep_disj_set_def plus_set_def set_zero_def)
+  apply (metis sup_commute)
+  apply(simp add:sep_disj_set_def plus_set_def set_zero_def)
+  apply (metis (lifting) Un_assoc)
+  apply(simp add:sep_disj_set_def plus_set_def set_zero_def)
+  apply (metis (lifting) Int_Un_distrib Un_empty inf_sup_distrib1 sup_eq_bot_iff)
+  apply(simp add:sep_disj_set_def plus_set_def set_zero_def)
+  by (metis (lifting) Int_Un_distrib Int_Un_distrib2 sup_eq_bot_iff)
+end
+
+
+text {*
+  {\em Abacus} instructions:
+*}
+
+datatype abc_inst =
+  -- {* @{text "Inc n"} increments the memory cell (or register) 
+         with address @{text "n"} by one.
+     *}
+     Inc nat
+  -- {*
+     @{text "Dec n label"} decrements the memory cell with address @{text "n"} by one. 
+      If cell @{text "n"} is already zero, no decrements happens and the executio jumps to
+      the instruction labeled by @{text "label"}.
+     *}
+   | Dec nat nat
+  -- {*
+  @{text "Goto label"} unconditionally jumps to the instruction labeled by @{text "label"}.
+  *}
+   | Goto nat
+
+datatype apg = 
+   Instr abc_inst
+ | Label nat
+ | Seq apg apg
+ | Local "(nat \<Rightarrow> apg)"
+
+notation Local (binder "L " 10)
+
+abbreviation prog_instr :: "abc_inst \<Rightarrow> apg" ("\<guillemotright>_" [61] 61)
+where "\<guillemotright>i \<equiv> Instr i"
+
+abbreviation prog_seq :: "apg \<Rightarrow> apg \<Rightarrow> apg" (infixr ";" 52)
+where "c1 ; c2 \<equiv> Seq c1 c2"
+
+type_synonym aconf = "((nat \<rightharpoonup> abc_inst) \<times> nat \<times> (nat \<rightharpoonup> nat) \<times> nat)"
+
+fun astep :: "aconf \<Rightarrow> aconf"
+  where "astep (prog, pc, m, faults) = 
+              (case (prog pc) of
+                  Some (Inc i) \<Rightarrow> 
+                         case m(i) of
+                           Some n \<Rightarrow> (prog, pc + 1, m(i:= Some (n + 1)), faults)
+                         | None \<Rightarrow> (prog, pc, m, faults + 1)
+                | Some (Dec i e) \<Rightarrow> 
+                         case m(i) of
+                           Some n \<Rightarrow> if (n = 0) then (prog, e, m, faults)
+                                     else (prog, pc + 1, m(i:= Some (n - 1)), faults)
+                         | None \<Rightarrow> (prog, pc, m, faults + 1)
+                | Some (Goto pc') \<Rightarrow> (prog, pc', m, faults)
+                | None \<Rightarrow> (prog, pc, m, faults + 1))"
+
+definition "run n = astep ^^ n"
+
+datatype aresource = 
+    M nat nat
+  | C nat abc_inst
+  | At nat
+  | Faults nat
+
+definition "prog_set prog = {C i inst | i inst. prog i = Some inst}"
+definition "pc_set pc = {At pc}"
+definition "mem_set m = {M i n | i n. m (i) = Some n} "
+definition "faults_set faults = {Faults faults}"
+
+lemmas cpn_set_def = prog_set_def pc_set_def mem_set_def faults_set_def
+
+fun rset_of :: "aconf \<Rightarrow> aresource set"
+  where "rset_of (prog, pc, m, faults) = 
+               prog_set prog \<union> pc_set pc \<union> mem_set m \<union> faults_set faults"
+
+definition "sg e = (\<lambda> s. s = e)"
+
+definition "pc l = sg (pc_set l)"
+
+definition "m a v =sg ({M a v})"
+
+declare rset_of.simps[simp del]
+
+type_synonym assert = "aresource set \<Rightarrow> bool"
+
+primrec assemble_to :: "apg \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> assert" 
+  where 
+  "assemble_to (Instr ai) i j = (sg ({C i ai}) ** \<langle>(j = i + 1)\<rangle>)" |
+  "assemble_to (Seq p1 p2) i j = (EXS j'. (assemble_to p1 i j') ** (assemble_to p2 j' j))" |
+  "assemble_to (Local fp) i j  = (EXS l. (assemble_to (fp l) i j))" | 
+  "assemble_to (Label l) i j = \<langle>(i = j \<and> j = l)\<rangle>"
+
+abbreviation asmb_to :: "nat \<Rightarrow> apg \<Rightarrow> nat \<Rightarrow> assert" ("_ :[ _ ]: _" [60, 60, 60] 60)
+  where "i :[ apg ]: j \<equiv> assemble_to apg i j"
+
+lemma stimes_sgD: "(sg x ** q) s \<Longrightarrow> q (s - x) \<and> x \<subseteq> s"
+  apply(erule_tac sep_conjE)
+  apply(unfold set_ins_def sg_def)
+  by (metis Diff_Int2 Diff_Int_distrib2 Diff_Un Diff_cancel 
+    Diff_empty Diff_idemp Diff_triv Int_Diff Un_Diff 
+    Un_Diff_cancel inf_commute inf_idem sup_bot_right sup_commute sup_ge2)
+
+lemma pcD: "(pc i ** r) (rset_of (prog, i', mem, fault))
+       \<Longrightarrow> i' = i"
+proof -
+  assume "(pc i ** r) (rset_of (prog, i', mem, fault))"
+  from stimes_sgD [OF this[unfolded pc_def], unfolded rset_of.simps]
+  have "pc_set i \<subseteq> prog_set prog \<union> pc_set i' \<union> mem_set mem \<union> faults_set fault" by auto
+  thus ?thesis 
+    by (unfold cpn_set_def, auto)
+qed
+
+lemma codeD: "(pc i ** sg {C i inst} ** r) (rset_of (prog, pos, mem, fault))
+       \<Longrightarrow> prog pos = Some inst"
+proof -
+  assume "(pc i ** sg {C i inst} ** r) (rset_of (prog, pos, mem, fault))" 
+  thus ?thesis
+    apply(sep_subst pcD)
+    apply(unfold sep_conj_def set_ins_def sg_def rset_of.simps cpn_set_def)
+    by auto
+qed
+
+lemma memD: "((m a v) ** r) (rset_of (prog, pos, mem, fault))  \<Longrightarrow> mem a = Some v"
+proof -
+  assume "((m a v) ** r) (rset_of (prog, pos, mem, fault))"
+  from stimes_sgD[OF this[unfolded rset_of.simps cpn_set_def m_def]]
+  have "{M a v} \<subseteq> {C i inst |i inst. prog i = Some inst} \<union> 
+            {At pos} \<union> {M i n |i n. mem i = Some n} \<union> {Faults fault}" by auto
+  thus ?thesis by auto
+qed
+
+definition
+  Hoare_abc :: "assert \<Rightarrow> assert  \<Rightarrow> assert \<Rightarrow> bool" ("({(1_)}/ (_)/ {(1_)})" 50)
+where
+  "{p} c {q} \<equiv> (\<forall> s r. (p**c**r) (rset_of s) \<longrightarrow>
+    (\<exists> k. ((q ** c ** r) (rset_of (run k s)))))" 
+
+definition "dec_fun v j e = (if (v = 0) then (e, v) else (j, v - 1))"
+
+lemma disj_Diff: "a \<inter> b = {} \<Longrightarrow> a \<union> b - b = a"
+by (metis (lifting) Diff_cancel Un_Diff Un_Diff_Int)
+
+lemma diff_pc_set: "prog_set aa \<union> pc_set i \<union> mem_set ab \<union> faults_set b - pc_set i = 
+         prog_set aa \<union> mem_set ab \<union> faults_set b"  (is "?L = ?R")
+proof -
+  have "?L = (prog_set aa \<union> mem_set ab \<union> faults_set b \<union> pc_set i)  - pc_set i"
+    by auto
+  also have "\<dots> = ?R"
+  proof(rule disj_Diff)
+    show " (prog_set aa \<union> mem_set ab \<union> faults_set b) \<inter> pc_set i = {}"
+      by (unfold cpn_set_def, auto)
+  qed
+  finally show ?thesis .
+qed
+
+lemma M_in_simp: "({M a v} \<subseteq> prog_set x \<union> pc_set y \<union> mem_set mem \<union> faults_set f) = 
+        ({M a v} \<subseteq> mem_set mem)"
+  by (unfold cpn_set_def, auto)
+
+lemma mem_set_upd: 
+  "{M a v} \<subseteq> mem_set mem \<Longrightarrow> mem_set (mem(a:=Some v')) = ((mem_set mem) - {M a v}) \<union> {M a v'}"
+  by (unfold cpn_set_def, auto)
+
+lemma mem_set_disj: "{M a v} \<subseteq> mem_set mem \<Longrightarrow> {M a v'} \<inter>  (mem_set mem - {M a v}) = {}"
+  by (unfold cpn_set_def, auto)
+
+lemma smem_upd: "((m a v) ** r) (rset_of (x, y, mem, f))  \<Longrightarrow> 
+                    ((m a v') ** r) (rset_of (x, y, mem(a := Some v'), f))"
+proof -
+  have eq_s:"
+    (prog_set x \<union> pc_set y \<union> mem_set mem \<union> faults_set f - {M a v}) =
+    (prog_set x \<union> pc_set y \<union> (mem_set mem - {M a v}) \<union> faults_set f)"
+    by (unfold cpn_set_def, auto)
+  assume "(m a v \<and>* r) (rset_of (x, y, mem, f))"
+  from this[unfolded rset_of.simps m_def]
+  have h: "(sg {M a v} \<and>* r) (prog_set x \<union> pc_set y \<union> mem_set mem \<union> faults_set f)" .
+  hence h0: "r (prog_set x \<union> pc_set y \<union> (mem_set mem - {M a v}) \<union> faults_set f)"
+    by(sep_drule stimes_sgD, clarify, unfold eq_s, auto)
+  from h M_in_simp have "{M a v} \<subseteq> mem_set mem"
+    by(sep_drule stimes_sgD, auto)
+  from mem_set_upd [OF this] mem_set_disj[OF this]
+  have h2: "mem_set (mem(a \<mapsto> v')) = {M a v'} \<union> (mem_set mem - {M a v})" 
+           "{M a v'} \<inter> (mem_set mem - {M a v}) = {}" by auto
+  show ?thesis
+  proof -
+    have "(m a v' ** r) (mem_set (mem(a \<mapsto> v')) \<union>  prog_set x \<union> pc_set y \<union> faults_set f)"
+    proof(rule sep_conjI)
+      from h0 show "r (prog_set x \<union> pc_set y \<union> (mem_set mem - {M a v}) \<union> faults_set f)" .
+    next
+      show "m a v' ({M a v'})" by (unfold m_def sg_def, simp)
+    next
+      show "mem_set (mem(a \<mapsto> v')) \<union> prog_set x \<union> pc_set y \<union> faults_set f =
+            {M a v'} + (prog_set x \<union> pc_set y \<union> (mem_set mem - {M a v}) \<union> faults_set f)"
+        by (unfold h2(1) set_ins_def eq_s, auto)
+    next
+      from h2(2)
+      show " {M a v'} ## prog_set x \<union> pc_set y \<union> (mem_set mem - {M a v}) \<union> faults_set f"
+        by (unfold cpn_set_def set_ins_def, auto)
+    qed
+    thus ?thesis 
+      apply (unfold rset_of.simps)
+      by (metis sup_commute sup_left_commute)
+  qed
+qed
+
+lemma pc_dest: "(pc i') (pc_set i) \<Longrightarrow> i = i'"
+  sorry
+
+lemma spc_upd: "(pc i' ** r) (rset_of (x, i, y, z))  \<Longrightarrow> 
+                (pc i'' ** r) (rset_of (x, i'', y, z))"
+proof -
+  assume h: "rset_of (x, i, y, z) \<in> pc i' * r"
+  from stimes_sgD [OF h[unfolded rset_of.simps pc_set_def pc_def]]
+  have h1: "prog_set x \<union> {At i} \<union> mem_set y \<union> faults_set z - {At i'} \<in> r" 
+           "{At i'} \<subseteq> prog_set x \<union> {At i} \<union> mem_set y \<union> faults_set z" by auto
+  from h1(2) have eq_i: "i' = i" by (unfold cpn_set_def, auto)
+  have "prog_set x \<union> {At i} \<union> mem_set y \<union> faults_set z - {At i'} =
+        prog_set x  \<union> mem_set y \<union> faults_set z "
+    apply (unfold eq_i)
+    by (metis (full_types) Un_insert_left Un_insert_right 
+         diff_pc_set faults_set_def insert_commute insert_is_Un 
+          pc_set_def sup_assoc sup_bot_left sup_commute)
+  with h1(1) have in_r: "prog_set x \<union>  mem_set y \<union> faults_set z \<in> r" by auto
+  show ?thesis
+  proof(unfold rset_of.simps, rule stimesI[OF _ _ _ in_r])
+    show "{At i''} \<in> pc i''" by (unfold pc_def pc_set_def, simp)
+  next
+    show "prog_set x \<union> pc_set i'' \<union> mem_set y \<union> faults_set z =
+    {At i''} \<union> (prog_set x \<union> mem_set y \<union> faults_set z)"
+      by (unfold pc_set_def, auto)
+  next
+    show "{At i''} \<inter> (prog_set x \<union> mem_set y \<union> faults_set z) = {}"
+      by (auto simp:cpn_set_def)
+  qed
+qed
+
+lemma condD: "s \<in> <b>*r \<Longrightarrow> b"
+  by (unfold st_def pasrt_def, auto)
+
+lemma condD1: "s \<in> <b>*r \<Longrightarrow> s \<in> r"
+  by (unfold st_def pasrt_def, auto)
+
+lemma hoare_dec_suc: "{(pc i * m a v) * <(v > 0)>} 
+                          i:[\<guillemotright>(Dec a e) ]:j  
+                      {pc j * m a (v - 1)}"
+proof(unfold Hoare_abc_def, clarify)
+  fix prog i' ab b r 
+  assume h: "rset_of (prog, i', ab, b) \<in> ((pc i * m a v) * <(0 < v)>) * (i :[ \<guillemotright>Dec a e ]: j) * r"
+                           (is "?r \<in> ?S")
+  show "\<exists>k. rset_of (run k (prog, i', ab, b)) \<in> (pc j * m a (v - 1)) * (i :[ \<guillemotright>Dec a e ]: j) * r"
+  proof -
+    from h [unfolded assemble_to.simps]
+    have h1: "?r \<in> pc i * {{C i (Dec a e)}} * m a v * <(0 < v)> *  <(j = i + 1)> * r"
+             "?r \<in>  m a v * pc i * {{C i (Dec a e)}} * <(0 < v)> *  <(j = i + 1)> * r"
+             "?r \<in>   <(0 < v)> *  <(j = i + 1)> * m a v * pc i * {{C i (Dec a e)}} * r"
+             "?r \<in>   <(j = i + 1)> * <(0 < v)> *   m a v * pc i * {{C i (Dec a e)}} * r"
+      by ((metis stimes_ac)+)
+    note h2 =  condD [OF h1(3)] condD[OF h1(4)] pcD[OF h1(1)] codeD[OF h1(1)] memD[OF h1(2)]
+    hence stp: "run 1 (prog, i', ab, b) = (prog, Suc i, ab(a \<mapsto> v - Suc 0), b)" (is "?x = ?y")
+      by (unfold run_def, auto)
+    have "rset_of ?x \<in> (pc j * m a (v - 1)) * (i :[ \<guillemotright>Dec a e ]: j) * r"
+    proof -
+      have "rset_of ?y \<in> (pc j * m a (v - 1)) * (i :[ \<guillemotright>Dec a e ]: j) * r"
+      proof -
+        from spc_upd[OF h1(1), of "Suc i"]
+        have "rset_of (prog, (Suc i), ab, b) \<in> 
+                m a v * pc (Suc i) * {{C i (Dec a e)}} * <(0 < v)> * <(j = i + 1)> * r" 
+          by (metis stimes_ac)
+        from smem_upd[OF this, of "v - (Suc 0)"]
+        have "rset_of ?y \<in> 
+           m a (v - Suc 0) * pc (Suc i) * {{C i (Dec a e)}} * <(0 < v)> * <(j = i + 1)> * r" .
+        hence "rset_of ?y \<in> <(0 < v)> *
+                (pc (Suc i) * m a (v - Suc 0)) * ({{C i (Dec a e)}} * <(j = i + 1)>) * r"
+          by (metis stimes_ac)
+        from condD1[OF this] 
+        have "rset_of ?y \<in> (pc (Suc i) * m a (v - Suc 0)) * ({{C i (Dec a e)}} * <(j = i + 1)>) * r" .
+        thus ?thesis
+          by (unfold h2(2) assemble_to.simps, simp)
+      qed
+      with stp show ?thesis by simp
+    qed
+    thus ?thesis by blast
+  qed
+qed
+
+lemma hoare_dec_fail: "{pc i * m a 0} 
+                          i:[ \<guillemotright>(Dec a e) ]:j   
+                       {pc e * m a 0}"
+proof(unfold Hoare_abc_def, clarify)
+  fix prog i' ab b r 
+  assume h: "rset_of (prog, i', ab, b) \<in> (pc i * m a 0) * (i :[ \<guillemotright>Dec a e ]: j) * r"
+                           (is "?r \<in> ?S")
+  show "\<exists>k. rset_of (run k (prog, i', ab, b)) \<in> (pc e * m a 0) * (i :[ \<guillemotright>Dec a e ]: j) * r"
+  proof -
+    from h [unfolded assemble_to.simps]
+    have h1: "?r \<in> pc i * {{C i (Dec a e)}} * m a 0  *  <(j = i + 1)> * r"
+             "?r \<in>  m a 0 * pc i * {{C i (Dec a e)}} *  <(j = i + 1)> * r"
+             "?r \<in> <(j = i + 1)> * m a 0 * pc i * {{C i (Dec a e)}} * r"
+      by ((metis stimes_ac)+)
+    note h2 =  condD [OF h1(3)]  pcD[OF h1(1)] codeD[OF h1(1)] memD[OF h1(2)]
+    hence stp: "run 1 (prog, i', ab, b) = (prog, e, ab, b)" (is "?x = ?y")
+      by (unfold run_def, auto)
+    have "rset_of ?x \<in> (pc e * m a 0) * (i :[ \<guillemotright>Dec a e ]: j) * r"
+    proof -
+      have "rset_of ?y \<in> (pc e * m a 0) * (i :[ \<guillemotright>Dec a e ]: j) * r"
+      proof -
+        from spc_upd[OF h1(1), of "e"]
+        have "rset_of ?y \<in> pc e * {{C i (Dec a e)}} * m a 0 * <(j = i + 1)> * r" .
+        thus ?thesis
+          by (unfold assemble_to.simps, metis stimes_ac)
+      qed
+      with stp show ?thesis by simp
+    qed
+    thus ?thesis by blast
+  qed
+qed
+
+lemma pasrtD_p: "\<lbrakk>{p*<b>} c {q}\<rbrakk> \<Longrightarrow> (b \<longrightarrow> {p} c {q})"
+  apply (unfold Hoare_abc_def pasrt_def, auto)
+  by (fold emp_def, simp add:emp_unit_r)
+
+lemma hoare_dec: "dec_fun v j e = (pc', v') \<Longrightarrow> 
+                    {pc i * m a v} 
+                       i:[ \<guillemotright>(Dec a e) ]:j   
+                    {pc pc' * m a v'}"
+proof -
+  assume "dec_fun v j e = (pc', v')"
+  thus  "{pc i * m a v} 
+                       i:[ \<guillemotright>(Dec a e) ]:j   
+                    {pc pc' * m a v'}"
+    apply (auto split:if_splits simp:dec_fun_def)
+    apply (insert hoare_dec_fail, auto)[1]
+    apply (insert hoare_dec_suc, auto)
+    apply (atomize)
+    apply (erule_tac x = i in allE, erule_tac x = a in allE,
+           erule_tac x = v in allE, erule_tac x = e in allE, erule_tac x = pc' in allE)
+    by (drule_tac pasrtD_p, clarify)
+qed
+
+lemma hoare_inc: "{pc i * m a v} 
+                      i:[ \<guillemotright>(Inc a) ]:j   
+                  {pc j * m a (v + 1)}"
+proof(unfold Hoare_abc_def, clarify)
+  fix prog i' ab b r 
+  assume h: "rset_of (prog, i', ab, b) \<in> (pc i * m a v) * (i :[ \<guillemotright>Inc a ]: j) * r"
+                           (is "?r \<in> ?S")
+  show "\<exists>k. rset_of (run k (prog, i', ab, b)) \<in> (pc j * m a (v + 1)) * (i :[ \<guillemotright>Inc a ]: j) * r"
+  proof -
+    from h [unfolded assemble_to.simps]
+    have h1: "?r \<in> pc i * {{C i (Inc a)}} * m a v *  <(j = i + 1)> * r"
+             "?r \<in>  m a v * pc i * {{C i (Inc a)}} * <(j = i + 1)> * r"
+             "?r \<in>   <(j = i + 1)> * m a v * pc i * {{C i (Inc a)}} * r"
+      by ((metis stimes_ac)+)
+    note h2 =  condD [OF h1(3)] pcD[OF h1(1)] codeD[OF h1(1)] memD[OF h1(2)]
+    hence stp: "run 1 (prog, i', ab, b) = (prog, Suc i, ab(a \<mapsto> Suc v), b)" (is "?x = ?y")
+      by (unfold run_def, auto)
+    have "rset_of ?x \<in> (pc j * m a (v + 1)) * (i :[ \<guillemotright>Inc a]: j) * r"
+    proof -
+      have "rset_of ?y \<in> (pc j * m a (v + 1)) * (i :[ \<guillemotright>Inc a ]: j) * r"
+      proof -
+        from spc_upd[OF h1(1), of "Suc i"]
+        have "rset_of (prog, (Suc i), ab, b) \<in> 
+                m a v * pc (Suc i) * {{C i (Inc a)}} * <(j = i + 1)> * r" 
+          by (metis stimes_ac)
+        from smem_upd[OF this, of "Suc v"]
+        have "rset_of ?y \<in> 
+           m a (v + 1) * pc (i + 1) * {{C i (Inc a)}} * <(j = i + 1)> * r" by simp
+        thus ?thesis
+          by (unfold h2(1) assemble_to.simps, metis stimes_ac)
+      qed
+      with stp show ?thesis by simp
+    qed
+    thus ?thesis by blast
+  qed
+qed
+
+lemma hoare_goto: "{pc i} 
+                      i:[ \<guillemotright>(Goto e) ]:j   
+                   {pc e}"
+proof(unfold Hoare_abc_def, clarify)
+  fix prog i' ab b r 
+  assume h: "rset_of (prog, i', ab, b) \<in> pc i * (i :[ \<guillemotright>Goto e ]: j) * r"
+                           (is "?r \<in> ?S")
+  show "\<exists>k. rset_of (run k (prog, i', ab, b)) \<in> pc e * (i :[ \<guillemotright>Goto e ]: j) * r"
+  proof -
+    from h [unfolded assemble_to.simps]
+    have h1: "?r \<in> pc i * {{C i (Goto e)}} *  <(j = i + 1)> * r"
+      by ((metis stimes_ac)+)
+    note h2 = pcD[OF h1(1)] codeD[OF h1(1)] 
+    hence stp: "run 1 (prog, i', ab, b) = (prog, e, ab, b)" (is "?x = ?y")
+      by (unfold run_def, auto)
+    have "rset_of ?x \<in> pc e * (i :[ \<guillemotright>Goto e]: j) * r"
+    proof -
+      from spc_upd[OF h1(1), of "e"] 
+      show ?thesis
+        by (unfold stp assemble_to.simps, metis stimes_ac)
+    qed
+    thus ?thesis by blast
+  qed
+qed
+
+no_notation stimes (infixr "*" 70)
+
+interpretation foo: comm_monoid_mult 
+  "stimes :: 'a set set => 'a set set => 'a set set" "emp::'a set set"
+apply(default)
+apply(simp add: stimes_assoc)
+apply(simp add: stimes_comm)
+apply(simp add: emp_def[symmetric])
+done
+
+
+notation stimes (infixr "*" 70)
+
+(*used by simplifier for numbers *)
+thm mult_cancel_left
+
+(*
+interpretation foo: comm_ring_1 "op * :: 'a set set => 'a set set => 'a set set" "{{}}::'a set set" 
+apply(default)
+*)
+
+lemma frame: "{p} c {q} \<Longrightarrow>  \<forall> r. {p * r} c {q * r}"
+apply (unfold Hoare_abc_def, clarify)
+apply (erule_tac x = "(a, aa, ab, b)" in allE)
+apply (erule_tac x = "r * ra" in allE) 
+apply(metis stimes_ac)
+done
+
+lemma code_extension: "\<lbrakk>{p} c {q}\<rbrakk> \<Longrightarrow> (\<forall> e. {p} c * e {q})"
+  apply (unfold Hoare_abc_def, clarify)
+  apply (erule_tac x = "(a, aa, ab, b)" in allE)
+  apply (erule_tac x = "e * r" in allE)
+  apply(metis stimes_ac)
+  done
+
+lemma run_add: "run (n1 + n2) s = run n1 (run n2 s)"
+apply (unfold run_def)
+by (metis funpow_add o_apply)
+
+lemma composition: "\<lbrakk>{p} c1 {q}; {q} c2 {r}\<rbrakk> \<Longrightarrow> {p} c1 * c2 {r}"
+proof -
+  assume h: "{p} c1 {q}" "{q} c2 {r}"
+  from code_extension [OF h(1), rule_format, of "c2"] 
+  have "{p} c1 * c2 {q}" .
+  moreover from code_extension [OF h(2), rule_format, of "c1"] and stimes_comm
+  have "{q} c1 * c2 {r}" by metis
+  ultimately show "{p} c1 * c2 {r}"
+    apply (unfold Hoare_abc_def, clarify)
+    proof -
+      fix a aa ab b ra
+      assume h1: "\<forall>s r. rset_of s \<in> p * (c1 * c2) * r \<longrightarrow>
+                       (\<exists>k. rset_of (run k s) \<in> q * (c1 * c2) * r)"
+        and h2: "\<forall>s ra. rset_of s \<in> q * (c1 * c2) * ra \<longrightarrow>
+                       (\<exists>k. rset_of (run k s) \<in> r * (c1 * c2) * ra)"
+        and h3: "rset_of (a, aa, ab, b) \<in> p * (c1 * c2) * ra"
+      show "\<exists>k. rset_of (run k (a, aa, ab, b)) \<in> r * (c1 * c2) * ra"
+      proof -
+        let ?s = "(a, aa, ab, b)"
+        from h1 [rule_format, of ?s, OF h3]
+        obtain n1 where "rset_of (run n1 ?s) \<in> q * (c1 * c2) * ra" by blast
+        from h2 [rule_format, OF this]
+        obtain n2 where "rset_of (run n2 (run n1 ?s)) \<in> r * (c1 * c2) * ra" by blast
+        with run_add show ?thesis by metis
+      qed
+    qed
+qed
+
+lemma stimes_simp: "s \<in> x * y = (\<exists> s1 s2. (s = s1 \<union> s2 \<and> s1 \<inter> s2 = {} \<and> s1 \<in> x \<and> s2 \<in> y))"
+by (metis (lifting) stimesE stimesI)
+
+lemma hoare_seq: 
+  "\<lbrakk>\<forall> i j. {pc i * p} i:[c1]:j {pc j * q}; 
+    \<forall> j k. {pc j * q} j:[c2]:k {pc k * r}\<rbrakk> \<Longrightarrow>  {pc i * p} i:[(c1 ; c2)]:k {pc k *r}"
+proof -
+  assume h: "\<forall>i j. {pc i * p} i :[ c1 ]: j {pc j * q}" "\<forall> j k. {pc j * q} j:[c2]:k {pc k * r}"
+  show "{pc i * p} i:[(c1 ; c2)]:k {pc k *r}"
+  proof(subst Hoare_abc_def, clarify)
+    fix a aa ab b ra
+    assume "rset_of (a, aa, ab, b) \<in> (pc i * p) * (i :[ (c1 ; c2) ]: k) * ra"
+    hence "rset_of (a, aa, ab, b) \<in> (i :[ (c1 ; c2) ]: k) * (pc i * p * ra)" (is "?s \<in> ?X * ?Y")
+      by (metis stimes_ac)
+    from stimesE[OF this] obtain s1 s2 where
+      sp: "rset_of(a, aa, ab, b) = s1 \<union> s2" "s1 \<inter> s2 = {}" "s1 \<in> ?X" "s2 \<in> ?Y" by blast
+    from sp (3) obtain j' where 
+      "s1 \<in> (i:[c1]:j') * (j':[c2]:k)" (is "s1 \<in> ?Z")
+      by (auto simp:assemble_to.simps)
+    from stimesI[OF sp(1, 2) this sp(4)]
+    have "?s \<in>  (pc i * p) * (i :[ c1 ]: j') * (j' :[ c2 ]: k) * ra" by (metis stimes_ac)
+    from h(1)[unfolded Hoare_abc_def, rule_format, OF this]
+    obtain ka where 
+      "rset_of (run ka (a, aa, ab, b)) \<in> (pc j' * q) * (j' :[ c2 ]: k) * ((i :[ c1 ]: j') * ra)" 
+      sorry
+    from h(2)[unfolded Hoare_abc_def, rule_format, OF this]
+    obtain kb where 
+      "rset_of (run kb (run ka (a, aa, ab, b)))
+      \<in>  (pc k * r) * (j' :[ c2 ]: k) * (i :[ c1 ]: j') * ra" by blast
+    hence h3: "rset_of (run (kb + ka) (a, aa, ab, b))
+      \<in> pc k * r * (j' :[ c2 ]: k) * ((i :[ c1 ]: j') * ra)" 
+      sorry
+    hence "rset_of (run (kb + ka) (a, aa, ab, b)) \<in> pc k * r * (i :[ (c1 ; c2) ]: k) * ra"
+    proof -
+      have "rset_of (run (kb + ka) (a, aa, ab, b)) \<in> (i :[ (c1 ; c2) ]: k) * (pc k * r * ra)"
+      proof -
+        from h3 have "rset_of (run (kb + ka) (a, aa, ab, b))
+          \<in> ((j' :[ c2 ]: k) * ((i :[ c1 ]: j'))) * (pc k * r *  ra)"
+          by (metis stimes_ac)
+        then obtain 
+          s1 s2 where h4: "rset_of (run (kb + ka) (a, aa, ab, b)) = s1 \<union> s2"
+          " s1 \<inter> s2 = {}" "s1 \<in> (j' :[ c2 ]: k) * (i :[ c1 ]: j')"
+          "s2 \<in>  pc k * r * ra" by (rule stimesE, blast)
+        from h4(3) have "s1 \<in> (i :[ (c1 ; c2) ]: k)"
+          sorry
+        from stimesI [OF h4(1, 2) this h4(4)]
+        show ?thesis .
+      qed
+      thus ?thesis by (metis stimes_ac)
+    qed
+    thus "\<exists>ka. rset_of (run ka (a, aa, ab, b)) \<in> (pc k * r) * (i :[ (c1 ; c2) ]: k) * ra"
+      by (metis stimes_ac)
+  qed
+qed
+  
+lemma hoare_local: 
+  "\<forall> l i j. {pc i*p} i:[c(l)]:j {pc j * q} 
+  \<Longrightarrow> {pc i * p} i:[Local c]:j {pc j * q}"
+proof -
+  assume h: "\<forall> l i j. {pc i*p} i:[c(l)]:j {pc j * q} "
+  show "{pc i * p} i:[Local c]:j {pc j * q}"
+  proof(unfold assemble_to.simps Hoare_abc_def, clarify)
+    fix a aa ab b r
+    assume h1: "rset_of (a, aa, ab, b) \<in> (pc i * p) * (\<Union>l. i :[ c l ]: j) * r"
+    hence "rset_of (a, aa, ab, b) \<in> (\<Union>l. i :[ c l ]: j) * (pc i * p * r)" 
+      by (metis stimes_ac)
+    then obtain s1 s2 l 
+      where "rset_of (a, aa, ab, b) = s1 \<union> s2"
+                "s1 \<inter> s2 = {}"
+                "s1 \<in> (i :[ c l ]: j)"
+                "s2 \<in> pc i * p * r"
+      by (rule stimesE, auto)
+    from stimesI[OF this]
+    have "rset_of (a, aa, ab, b) \<in> (pc i * p) * (i :[ c l ]: j) * r" 
+      by (metis stimes_ac)
+    from h[unfolded Hoare_abc_def, rule_format, OF this]
+    obtain k where "rset_of (run k (a, aa, ab, b)) \<in> (i :[ c l ]: j) * (pc j * q * r)" 
+      sorry
+    then obtain s1 s2
+      where h3: "rset_of (run k (a, aa, ab, b)) = s1 \<union> s2"
+                " s1 \<inter> s2 = {}" "s1 \<in> (\<Union> l. (i :[ c l ]: j))" "s2 \<in> pc j * q * r" 
+      by(rule stimesE, auto)
+    from stimesI[OF this]
+    show "\<exists>k. rset_of (run k (a, aa, ab, b)) \<in> (pc j * q) * (\<Union>l. i :[ c l ]: j) * r"
+      by (metis stimes_ac)
+  qed
+qed
+
+lemma move_pure: "{p*<b>} c {q} = (b \<longrightarrow> {p} c {q})"
+proof(unfold Hoare_abc_def, default, clarify)
+  fix prog i' mem ft r
+  assume h: "\<forall>s r. rset_of s \<in> (p * <b>) * c * r \<longrightarrow> (\<exists>k. rset_of (run k s) \<in> q * c * r)"
+            "b" "rset_of (prog, i', mem, ft) \<in> p * c * r"
+  show "\<exists>k. rset_of (run k (prog, i', mem, ft)) \<in> q * c * r"
+  proof(rule h(1)[rule_format])
+    have "(p * <b>) * c * r = <b> * p * c * r" by (metis stimes_ac)
+    moreover have "rset_of (prog, i', mem, ft) \<in> \<dots>"
+    proof(rule stimesI[OF _ _ _ h(3)])
+      from h(2) show "{} \<in> <b>" by (auto simp:pasrt_def)
+    qed auto
+    ultimately show "rset_of (prog, i', mem, ft) \<in> (p * <b>) * c * r"
+      by (simp)
+  qed
+next
+  assume h: "b \<longrightarrow> (\<forall>s r. rset_of s \<in> p * c * r \<longrightarrow> (\<exists>k. rset_of (run k s) \<in> q * c * r))"
+  show "\<forall>s r. rset_of s \<in> (p * <b>) * c * r \<longrightarrow> (\<exists>k. rset_of (run k s) \<in> q * c * r)"
+  proof -
+    { fix s r 
+      assume "rset_of s \<in> (p * <b>) * c * r"
+      hence h1: "rset_of s \<in> <b> * p * c * r" by (metis stimes_ac)
+      have "(\<exists>k. rset_of (run k s) \<in> q * c * r)"
+      proof(rule h[rule_format])
+        from condD[OF h1] show b .
+      next
+        from condD1[OF h1] show "rset_of s \<in> p * c * r" .
+      qed
+    } thus ?thesis by blast
+  qed
+qed
+
+lemma precond_ex: "{\<Union> x. p x} c {q} = (\<forall> x. {p x} c {q})"
+proof(unfold Hoare_abc_def, default, clarify)
+  fix x prog i' mem ft r
+  assume h: "\<forall>s r. rset_of s \<in> UNION UNIV p * c * r \<longrightarrow> (\<exists>k. rset_of (run k s) \<in> q * c * r)"
+            "rset_of (prog, i', mem, ft) \<in> p x * c * r"
+  show "\<exists>k. rset_of (run k (prog, i', mem, ft)) \<in> q * c * r"
+  proof(rule h[rule_format])
+    from h(2) show "rset_of (prog, i', mem, ft) \<in> UNION UNIV p * c * r" by (auto simp:stimes_def)
+  qed
+next
+  assume h: "\<forall>x s r. rset_of s \<in> p x * c * r \<longrightarrow> (\<exists>k. rset_of (run k s) \<in> q * c * r)"
+  show "\<forall>s r. rset_of s \<in> UNION UNIV p * c * r \<longrightarrow> (\<exists>k. rset_of (run k s) \<in> q * c * r)"
+  proof -
+    { fix s r
+      assume "rset_of s \<in> UNION UNIV p * c * r"
+      then obtain x where "rset_of s \<in> p x * c * r" 
+        by (unfold st_def, auto, metis)
+      hence "(\<exists>k. rset_of (run k s) \<in> q * c * r)"
+        by(rule h[rule_format])
+    } thus ?thesis by blast
+  qed
+qed
+
+lemma code_exI: "\<lbrakk>\<And>l. {p} c l * c' {q}\<rbrakk> \<Longrightarrow> {p} (\<Union> l. c l) * c' {q}"
+proof(unfold Hoare_abc_def, default, clarify)
+  fix prog i' mem ft r
+  assume h: "\<And>l. \<forall>s r. rset_of s \<in> p * (c l * c') * r \<longrightarrow> (\<exists>k. rset_of (run k s) \<in> q * (c l * c') * r)"
+            "rset_of (prog, i', mem, ft) \<in> p * (UNION UNIV c * c') * r"
+  show " \<exists>k. rset_of (run k (prog, i', mem, ft)) \<in> q * (UNION UNIV c * c') * r"
+  proof -
+    from h(2) obtain l where "rset_of (prog, i', mem, ft) \<in> p * (c l * c') * r"
+      apply (unfold st_def, auto)
+      by metis
+    from h(1)[rule_format, OF this]
+    obtain k where " rset_of (run k (prog, i', mem, ft)) \<in> q * (c l * c') * r" by blast
+    thus ?thesis by (unfold st_def, auto, metis)
+  qed
+qed
+
+lemma code_exIe: "\<lbrakk>\<And>l. {p} c l{q}\<rbrakk> \<Longrightarrow> {p} \<Union> l. (c l) {q}"
+proof -
+  assume "\<And>l. {p} c l {q}"
+  thus "{p} \<Union>l. c l {q}"
+    by(rule code_exI[where c'= "emp", unfolded emp_unit_r])
+qed
+
+lemma pre_stren: "\<lbrakk>{p} c {q}; r \<subseteq> p\<rbrakk> \<Longrightarrow> {r} c {q}"
+proof(unfold Hoare_abc_def, clarify)
+  fix prog i' mem ft r'
+  assume h: "\<forall>s r. rset_of s \<in> p * c * r \<longrightarrow> (\<exists>k. rset_of (run k s) \<in> q * c * r)"
+            " r \<subseteq> p" " rset_of (prog, i', mem, ft) \<in> r * c * r'"
+  show "\<exists>k. rset_of (run k (prog, i', mem, ft)) \<in> q * c * r'"
+  proof(rule h(1)[rule_format])
+    from stimes_mono[OF h(2), of "c * r'"] h(3)
+    show "rset_of (prog, i', mem, ft) \<in> p * c * r'" by auto
+  qed
+qed
+
+lemma post_weaken: "\<lbrakk>{p} c {q}; q \<subseteq> r\<rbrakk> \<Longrightarrow> {p} c {r}"
+proof(unfold Hoare_abc_def, clarify)
+  fix prog i' mem ft r'
+  assume h: "\<forall>s r. rset_of s \<in> p * c * r \<longrightarrow> (\<exists>k. rset_of (run k s) \<in> q * c * r)"
+            " q \<subseteq> r" "rset_of (prog, i', mem, ft) \<in> p * c * r'"
+  show "\<exists>k. rset_of (run k (prog, i', mem, ft)) \<in> r * c * r'"
+  proof -
+    from h(1)[rule_format, OF h(3)]
+    obtain k where "rset_of (run k (prog, i', mem, ft)) \<in> q * c * r'" by auto
+    moreover from h(2) have "\<dots> \<subseteq> r * c * r'" by (metis stimes_mono)
+    ultimately show ?thesis by auto
+  qed
+qed
+
+definition "clear a = (L start exit. Label start; \<guillemotright>Dec a exit; \<guillemotright> Goto start; Label exit)"
+
+lemma "{pc i * m a v} i:[clear a]:j {pc j*m a 0}"
+proof (unfold clear_def, rule hoare_local, default+)
+  fix l i j
+  show "{pc i * m a v} i :[ (L exit. Label l ; \<guillemotright>Dec a exit ; \<guillemotright>Goto l ; Label exit) ]: j
+            {pc j * m a 0}"
+  proof(rule hoare_local, default+)
+    fix la i j 
+    show "{pc i * m a v} i :[ (Label l ; \<guillemotright>Dec a la ; \<guillemotright>Goto l ; Label la) ]: j {pc j * m a 0}"
+    proof(subst assemble_to.simps, rule code_exIe)
+      have "\<And>j'. {pc i * m a v}  (j' :[ (\<guillemotright>Dec a la ; \<guillemotright>Goto l ; Label la) ]: j) * (i :[ Label l ]: j')
+         {pc j * m a 0}" 
+      proof(subst assemble_to.simps, rule code_exI)
+        fix j' j'a
+        show "{pc i * m a v}
+       ((j' :[ \<guillemotright>Dec a la ]: j'a) * (j'a :[ (\<guillemotright>Goto l ; Label la) ]: j)) * (i :[ Label l ]: j')
+       {pc j * m a 0}"
+        proof(unfold assemble_to.simps)
+          have "{pc i * m a v}
+    ((\<Union>j'. ({{C j'a (Goto l)}} * <(j' = j'a + 1)>) * ({{C j' (Dec a la)}} * <(j'a = j' + 1)>) 
+      * <(j' = j \<and> j = la)>)) *
+    <(i = j' \<and> j' = l)>
+    {pc j * m a 0}"
+          proof(rule code_exI, fold assemble_to.simps, unfold assemble_to.simps(4))
+            thm assemble_to.simps
+          qed
+          thus "{pc i * m a v}
+    (({{C j' (Dec a la)}} * <(j'a = j' + 1)>) *
+     (\<Union>j'. ({{C j'a (Goto l)}} * <(j' = j'a + 1)>) * <(j' = j \<and> j = la)>)) *
+    <(i = j' \<and> j' = l)>
+    {pc j * m a 0}" sorry
+        qed
+      qed
+      thus "\<And>j'. {pc i * m a v} (i :[ Label l ]: j') * (j' :[ (\<guillemotright>Dec a la ; \<guillemotright>Goto l ; Label la) ]: j)
+         {pc j * m a 0}" by (metis stimes_ac)
+    qed
+  qed
+qed
+
+end