--- a/thys/uncomputable.thy Sun Jan 20 16:01:16 2013 +0000
+++ b/thys/uncomputable.thy Tue Jan 22 14:38:56 2013 +0000
@@ -996,8 +996,6 @@
next
show "tm_wf (tcopy_init |+| tcopy_loop, 0)" by auto
next
- show "tm_wf (tcopy_end, 0)" by auto
-next
assume "0 < x"
thus "{inv_init1 x} (tcopy_init |+| tcopy_loop) {inv_loop0 x}"
proof(rule_tac Hoare_plus_halt)
@@ -1008,8 +1006,6 @@
next
show "tm_wf (tcopy_init, 0)" by auto
next
- show "tm_wf (tcopy_loop, 0)" by auto
- next
assume "0 < x"
thus "{inv_init1 x} tcopy_init {inv_init0 x}"
by(erule_tac init_correct)
@@ -1345,7 +1341,7 @@
let ?Q2 = "\<lambda>(l, r). (\<exists>nd. l = Bk \<up> nd) \<and> r = [Oc]"
let ?P3 = ?Q2
assume h: "haltP (?tcontr, 0) [code ?tcontr]"
- have "{?P1} ?tcontr"
+ have "{?P1} ?tcontr \<up>"
proof(rule_tac Hoare_plus_unhalt, auto)
show "?Q2 \<mapsto> ?P3"
apply(simp add: assert_imp_def)
@@ -1384,7 +1380,7 @@
done
qed
next
- show "{?P3} dither"
+ show "{?P3} dither \<up>"
using Hoare_unhalt_def
proof(auto)
fix nd n