--- a/thys2/Recs.thy Thu Jan 10 12:48:43 2019 +0000
+++ b/thys2/Recs.thy Thu Jan 10 12:51:24 2019 +0000
@@ -44,8 +44,8 @@
by (simp add:lessThan_Suc mult_ac)
lemma setsum_add_nat_ivl2: "n \<le> p \<Longrightarrow>
- setsum f {..<n} + setsum f {n..p} = setsum f {..p::nat}"
- apply(subst setsum.union_disjoint[symmetric])
+ sum f {..<n} + sum f {n..p} = sum f {..p::nat}"
+ apply(subst sum.union_disjoint[symmetric])
apply(auto simp add: ivl_disj_un_one)
done
@@ -133,7 +133,7 @@
have eq_zero: "(\<Sum>i \<in> {m..<n}. f i) = 0"
using h2 by auto
have "(\<Sum>i < n. f i) = (\<Sum>i \<in> {..<m}. f i) + (\<Sum>i \<in> {m..<n}. f i)"
- using h1 by (metis atLeast0LessThan le0 setsum_add_nat_ivl)
+ using h1 by (metis atLeast0LessThan le0 sum_add_nat_ivl)
also have "... = (\<Sum>i \<in> {..<m}. f i)" using eq_zero by simp
finally show "(\<Sum>i < n. f i) = (\<Sum>i < m. f i)" by simp
qed