--- a/thys/turing_basic.thy Thu Feb 07 06:39:06 2013 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,428 +0,0 @@
-(* Title: Turing machines
- Author: Xu Jian <xujian817@hotmail.com>
- Maintainer: Xu Jian
-*)
-
-theory turing_basic
-imports Main
-begin
-
-section {* Basic definitions of Turing machine *}
-
-datatype action = W0 | W1 | L | R | Nop
-
-datatype cell = Bk | Oc
-
-type_synonym tape = "cell list \<times> cell list"
-
-type_synonym state = nat
-
-type_synonym instr = "action \<times> state"
-
-type_synonym tprog = "instr list \<times> nat"
-
-type_synonym tprog0 = "instr list"
-
-type_synonym config = "state \<times> tape"
-
-fun nth_of where
- "nth_of xs i = (if i \<ge> length xs then None
- else Some (xs ! i))"
-
-lemma nth_of_map [simp]:
- shows "nth_of (map f p) n = (case (nth_of p n) of None \<Rightarrow> None | Some x \<Rightarrow> Some (f x))"
-apply(induct p arbitrary: n)
-apply(auto)
-apply(case_tac n)
-apply(auto)
-done
-
-fun
- fetch :: "instr list \<Rightarrow> state \<Rightarrow> cell \<Rightarrow> instr"
-where
- "fetch p 0 b = (Nop, 0)"
-| "fetch p (Suc s) Bk =
- (case nth_of p (2 * s) of
- Some i \<Rightarrow> i
- | None \<Rightarrow> (Nop, 0))"
-|"fetch p (Suc s) Oc =
- (case nth_of p ((2 * s) + 1) of
- Some i \<Rightarrow> i
- | None \<Rightarrow> (Nop, 0))"
-
-lemma fetch_Nil [simp]:
- shows "fetch [] s b = (Nop, 0)"
-apply(case_tac s)
-apply(auto)
-apply(case_tac b)
-apply(auto)
-done
-
-fun
- update :: "action \<Rightarrow> tape \<Rightarrow> tape"
-where
- "update W0 (l, r) = (l, Bk # (tl r))"
-| "update W1 (l, r) = (l, Oc # (tl r))"
-| "update L (l, r) = (if l = [] then ([], Bk # r) else (tl l, (hd l) # r))"
-| "update R (l, r) = (if r = [] then (Bk # l, []) else ((hd r) # l, tl r))"
-| "update Nop (l, r) = (l, r)"
-
-abbreviation
- "read r == if (r = []) then Bk else hd r"
-
-fun step :: "config \<Rightarrow> tprog \<Rightarrow> config"
- where
- "step (s, l, r) (p, off) =
- (let (a, s') = fetch p (s - off) (read r) in (s', update a (l, r)))"
-
-fun steps :: "config \<Rightarrow> tprog \<Rightarrow> nat \<Rightarrow> config"
- where
- "steps c p 0 = c" |
- "steps c p (Suc n) = steps (step c p) p n"
-
-
-abbreviation
- "step0 c p \<equiv> step c (p, 0)"
-
-abbreviation
- "steps0 c p n \<equiv> steps c (p, 0) n"
-
-lemma step_red [simp]:
- shows "steps c p (Suc n) = step (steps c p n) p"
-by (induct n arbitrary: c) (auto)
-
-lemma steps_add [simp]:
- shows "steps c p (m + n) = steps (steps c p m) p n"
-by (induct m arbitrary: c) (auto)
-
-lemma step_0 [simp]:
- shows "step (0, (l, r)) p = (0, (l, r))"
-by (case_tac p, simp)
-
-lemma steps_0 [simp]:
- shows "steps (0, (l, r)) p n = (0, (l, r))"
-by (induct n) (simp_all)
-
-
-
-fun
- is_final :: "config \<Rightarrow> bool"
-where
- "is_final (s, l, r) = (s = 0)"
-
-lemma is_final_eq:
- shows "is_final (s, tp) = (s = 0)"
-by (case_tac tp) (auto)
-
-lemma after_is_final:
- assumes "is_final c"
- shows "is_final (steps c p n)"
-using assms
-apply(induct n)
-apply(case_tac [!] c)
-apply(auto)
-done
-
-lemma not_is_final:
- assumes a: "\<not> is_final (steps c p n1)"
- and b: "n2 \<le> n1"
- shows "\<not> is_final (steps c p n2)"
-proof (rule notI)
- obtain n3 where eq: "n1 = n2 + n3" using b by (metis le_iff_add)
- assume "is_final (steps c p n2)"
- then have "is_final (steps c p n1)" unfolding eq
- by (simp add: after_is_final)
- with a show "False" by simp
-qed
-
-(* if the machine is in the halting state, there must have
- been a state just before the halting state *)
-lemma before_final:
- assumes "steps0 (1, tp) A n = (0, tp')"
- shows "\<exists> n'. \<not> is_final (steps0 (1, tp) A n') \<and> steps0 (1, tp) A (Suc n') = (0, tp')"
-using assms
-proof(induct n arbitrary: tp')
- case (0 tp')
- have asm: "steps0 (1, tp) A 0 = (0, tp')" by fact
- then show "\<exists>n'. \<not> is_final (steps0 (1, tp) A n') \<and> steps0 (1, tp) A (Suc n') = (0, tp')"
- by simp
-next
- case (Suc n tp')
- have ih: "\<And>tp'. steps0 (1, tp) A n = (0, tp') \<Longrightarrow>
- \<exists>n'. \<not> is_final (steps0 (1, tp) A n') \<and> steps0 (1, tp) A (Suc n') = (0, tp')" by fact
- have asm: "steps0 (1, tp) A (Suc n) = (0, tp')" by fact
- obtain s l r where cases: "steps0 (1, tp) A n = (s, l, r)"
- by (auto intro: is_final.cases)
- then show "\<exists>n'. \<not> is_final (steps0 (1, tp) A n') \<and> steps0 (1, tp) A (Suc n') = (0, tp')"
- proof (cases "s = 0")
- case True (* in halting state *)
- then have "steps0 (1, tp) A n = (0, tp')"
- using asm cases by (simp del: steps.simps)
- then show ?thesis using ih by simp
- next
- case False (* not in halting state *)
- then have "\<not> is_final (steps0 (1, tp) A n) \<and> steps0 (1, tp) A (Suc n) = (0, tp')"
- using asm cases by simp
- then show ?thesis by auto
- qed
-qed
-
-(* well-formedness of Turing machine programs *)
-abbreviation "is_even n \<equiv> (n::nat) mod 2 = 0"
-
-fun
- tm_wf :: "tprog \<Rightarrow> bool"
-where
- "tm_wf (p, off) = (length p \<ge> 2 \<and> is_even (length p) \<and>
- (\<forall>(a, s) \<in> set p. s \<le> length p div 2 + off \<and> s \<ge> off))"
-
-abbreviation
- "tm_wf0 p \<equiv> tm_wf (p, 0)"
-
-abbreviation exponent :: "'a \<Rightarrow> nat \<Rightarrow> 'a list" ("_ \<up> _" [100, 99] 100)
- where "x \<up> n == replicate n x"
-
-consts tape_of :: "'a \<Rightarrow> cell list" ("<_>" 100)
-
-defs (overloaded)
- tape_of_nat_abv: "<(n::nat)> \<equiv> Oc \<up> (Suc n)"
-
-fun tape_of_nat_list :: "'a list \<Rightarrow> cell list"
- where
- "tape_of_nat_list [] = []" |
- "tape_of_nat_list [n] = <n>" |
- "tape_of_nat_list (n#ns) = <n> @ Bk # (tape_of_nat_list ns)"
-
-fun tape_of_nat_pair :: "'a \<times> 'b \<Rightarrow> cell list"
- where
- "tape_of_nat_pair (n, m) = <n> @ [Bk] @ <m>"
-
-
-defs (overloaded)
- tape_of_nl_abv: "<(ns::'a list)> \<equiv> tape_of_nat_list ns"
- tape_of_nat_pair: "<(np::'a\<times>'b)> \<equiv> tape_of_nat_pair np"
-
-fun
- shift :: "instr list \<Rightarrow> nat \<Rightarrow> instr list"
-where
- "shift p n = (map (\<lambda> (a, s). (a, (if s = 0 then 0 else s + n))) p)"
-
-fun
- adjust :: "instr list \<Rightarrow> instr list"
-where
- "adjust p = map (\<lambda> (a, s). (a, if s = 0 then (Suc (length p div 2)) else s)) p"
-
-lemma length_shift [simp]:
- shows "length (shift p n) = length p"
-by simp
-
-lemma length_adjust [simp]:
- shows "length (adjust p) = length p"
-by (induct p) (auto)
-
-
-(* composition of two Turing machines *)
-fun
- tm_comp :: "instr list \<Rightarrow> instr list \<Rightarrow> instr list" ("_ |+| _" [0, 0] 100)
-where
- "tm_comp p1 p2 = ((adjust p1) @ (shift p2 (length p1 div 2)))"
-
-lemma tm_comp_length:
- shows "length (A |+| B) = length A + length B"
-by auto
-
-lemma tm_comp_wf[intro]:
- "\<lbrakk>tm_wf (A, 0); tm_wf (B, 0)\<rbrakk> \<Longrightarrow> tm_wf (A |+| B, 0)"
-by (auto simp: tm_wf.simps shift.simps adjust.simps tm_comp_length tm_comp.simps)
-
-
-lemma tm_comp_step:
- assumes unfinal: "\<not> is_final (step0 c A)"
- shows "step0 c (A |+| B) = step0 c A"
-proof -
- obtain s l r where eq: "c = (s, l, r)" by (metis is_final.cases)
- have "\<not> is_final (step0 (s, l, r) A)" using unfinal eq by simp
- then have "case (fetch A s (read r)) of (a, s) \<Rightarrow> s \<noteq> 0"
- by (auto simp add: is_final_eq)
- then have "fetch (A |+| B) s (read r) = fetch A s (read r)"
- apply(case_tac [!] "read r")
- apply(case_tac [!] s)
- apply(auto simp: tm_comp_length nth_append)
- done
- then show "step0 c (A |+| B) = step0 c A" by (simp add: eq)
-qed
-
-lemma tm_comp_steps:
- assumes "\<not> is_final (steps0 c A n)"
- shows "steps0 c (A |+| B) n = steps0 c A n"
-using assms
-proof(induct n)
- case 0
- then show "steps0 c (A |+| B) 0 = steps0 c A 0" by auto
-next
- case (Suc n)
- have ih: "\<not> is_final (steps0 c A n) \<Longrightarrow> steps0 c (A |+| B) n = steps0 c A n" by fact
- have fin: "\<not> is_final (steps0 c A (Suc n))" by fact
- then have fin1: "\<not> is_final (step0 (steps0 c A n) A)"
- by (auto simp only: step_red)
- then have fin2: "\<not> is_final (steps0 c A n)"
- by (metis is_final_eq step_0 surj_pair)
-
- have "steps0 c (A |+| B) (Suc n) = step0 (steps0 c (A |+| B) n) (A |+| B)"
- by (simp only: step_red)
- also have "... = step0 (steps0 c A n) (A |+| B)" by (simp only: ih[OF fin2])
- also have "... = step0 (steps0 c A n) A" by (simp only: tm_comp_step[OF fin1])
- finally show "steps0 c (A |+| B) (Suc n) = steps0 c A (Suc n)"
- by (simp only: step_red)
-qed
-
-lemma tm_comp_fetch_in_A:
- assumes h1: "fetch A s x = (a, 0)"
- and h2: "s \<le> length A div 2"
- and h3: "s \<noteq> 0"
- shows "fetch (A |+| B) s x = (a, Suc (length A div 2))"
-using h1 h2 h3
-apply(case_tac s)
-apply(case_tac [!] x)
-apply(auto simp: tm_comp_length nth_append)
-done
-
-lemma tm_comp_exec_after_first:
- assumes h1: "\<not> is_final c"
- and h2: "step0 c A = (0, tp)"
- and h3: "fst c \<le> length A div 2"
- shows "step0 c (A |+| B) = (Suc (length A div 2), tp)"
-using h1 h2 h3
-apply(case_tac c)
-apply(auto simp del: tm_comp.simps)
-apply(case_tac "fetch A a Bk")
-apply(simp del: tm_comp.simps)
-apply(subst tm_comp_fetch_in_A)
-apply(auto)[4]
-apply(case_tac "fetch A a (hd c)")
-apply(simp del: tm_comp.simps)
-apply(subst tm_comp_fetch_in_A)
-apply(auto)[4]
-done
-
-lemma step_in_range:
- assumes h1: "\<not> is_final (step0 c A)"
- and h2: "tm_wf (A, 0)"
- shows "fst (step0 c A) \<le> length A div 2"
-using h1 h2
-apply(case_tac c)
-apply(case_tac a)
-apply(auto simp add: prod_case_unfold Let_def)
-apply(case_tac "hd c")
-apply(auto simp add: prod_case_unfold)
-done
-
-lemma steps_in_range:
- assumes h1: "\<not> is_final (steps0 (1, tp) A stp)"
- and h2: "tm_wf (A, 0)"
- shows "fst (steps0 (1, tp) A stp) \<le> length A div 2"
-using h1
-proof(induct stp)
- case 0
- then show "fst (steps0 (1, tp) A 0) \<le> length A div 2" using h2
- by (auto simp add: steps.simps tm_wf.simps)
-next
- case (Suc stp)
- have ih: "\<not> is_final (steps0 (1, tp) A stp) \<Longrightarrow> fst (steps0 (1, tp) A stp) \<le> length A div 2" by fact
- have h: "\<not> is_final (steps0 (1, tp) A (Suc stp))" by fact
- from ih h h2 show "fst (steps0 (1, tp) A (Suc stp)) \<le> length A div 2"
- by (metis step_in_range step_red)
-qed
-
-lemma tm_comp_pre_halt_same:
- assumes a_ht: "steps0 (1, tp) A n = (0, tp')"
- and a_wf: "tm_wf (A, 0)"
- obtains n' where "steps0 (1, tp) (A |+| B) n' = (Suc (length A div 2), tp')"
-proof -
- assume a: "\<And>n. steps (1, tp) (A |+| B, 0) n = (Suc (length A div 2), tp') \<Longrightarrow> thesis"
- obtain stp' where fin: "\<not> is_final (steps0 (1, tp) A stp')" and h: "steps0 (1, tp) A (Suc stp') = (0, tp')"
- using before_final[OF a_ht] by blast
- from fin have h1:"steps0 (1, tp) (A |+| B) stp' = steps0 (1, tp) A stp'"
- by (rule tm_comp_steps)
- from h have h2: "step0 (steps0 (1, tp) A stp') A = (0, tp')"
- by (simp only: step_red)
-
- have "steps0 (1, tp) (A |+| B) (Suc stp') = step0 (steps0 (1, tp) (A |+| B) stp') (A |+| B)"
- by (simp only: step_red)
- also have "... = step0 (steps0 (1, tp) A stp') (A |+| B)" using h1 by simp
- also have "... = (Suc (length A div 2), tp')"
- by (rule tm_comp_exec_after_first[OF fin h2 steps_in_range[OF fin a_wf]])
- finally show thesis using a by blast
-qed
-
-lemma tm_comp_fetch_second_zero:
- assumes h1: "fetch B s x = (a, 0)"
- and hs: "tm_wf (A, 0)" "s \<noteq> 0"
- shows "fetch (A |+| B) (s + (length A div 2)) x = (a, 0)"
-using h1 hs
-apply(case_tac x)
-apply(case_tac [!] s)
-apply(auto simp: tm_comp_length nth_append)
-done
-
-lemma tm_comp_fetch_second_inst:
- assumes h1: "fetch B sa x = (a, s)"
- and hs: "tm_wf (A, 0)" "sa \<noteq> 0" "s \<noteq> 0"
- shows "fetch (A |+| B) (sa + length A div 2) x = (a, s + length A div 2)"
-using h1 hs
-apply(case_tac x)
-apply(case_tac [!] sa)
-apply(auto simp: tm_comp_length nth_append)
-done
-
-
-lemma tm_comp_second_same:
- assumes a_wf: "tm_wf (A, 0)"
- and steps: "steps0 (1, l, r) B stp = (s', l', r')"
- shows "steps0 (Suc (length A div 2), l, r) (A |+| B) stp
- = (if s' = 0 then 0 else s' + length A div 2, l', r')"
-using steps
-proof(induct stp arbitrary: s' l' r')
- case 0
- then show ?case by (simp add: steps.simps)
-next
- case (Suc stp s' l' r')
- obtain s'' l'' r'' where a: "steps0 (1, l, r) B stp = (s'', l'', r'')"
- by (metis is_final.cases)
- then have ih1: "s'' = 0 \<Longrightarrow> steps0 (Suc (length A div 2), l, r) (A |+| B) stp = (0, l'', r'')"
- and ih2: "s'' \<noteq> 0 \<Longrightarrow> steps0 (Suc (length A div 2), l, r) (A |+| B) stp = (s'' + length A div 2, l'', r'')"
- using Suc by (auto)
- have h: "steps0 (1, l, r) B (Suc stp) = (s', l', r')" by fact
-
- { assume "s'' = 0"
- then have ?case using a h ih1 by (simp del: steps.simps)
- } moreover
- { assume as: "s'' \<noteq> 0" "s' = 0"
- from as a h
- have "step0 (s'', l'', r'') B = (0, l', r')" by (simp del: steps.simps)
- with as have ?case
- apply(simp add: ih2[OF as(1)] step.simps del: tm_comp.simps steps.simps)
- apply(case_tac "fetch B s'' (read r'')")
- apply(auto simp add: tm_comp_fetch_second_zero[OF _ a_wf] simp del: tm_comp.simps)
- done
- } moreover
- { assume as: "s'' \<noteq> 0" "s' \<noteq> 0"
- from as a h
- have "step0 (s'', l'', r'') B = (s', l', r')" by (simp del: steps.simps)
- with as have ?case
- apply(simp add: ih2[OF as(1)] step.simps del: tm_comp.simps steps.simps)
- apply(case_tac "fetch B s'' (read r'')")
- apply(auto simp add: tm_comp_fetch_second_inst[OF _ a_wf as] simp del: tm_comp.simps)
- done
- }
- ultimately show ?case by blast
-qed
-
-lemma tm_comp_second_halt_same:
- assumes "tm_wf (A, 0)"
- and "steps0 (1, l, r) B stp = (0, l', r')"
- shows "steps0 (Suc (length A div 2), l, r) (A |+| B) stp = (0, l', r')"
-using tm_comp_second_same[OF assms] by (simp)
-
-end
-