--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/thys/Rec_Def.thy Sun Feb 10 19:49:07 2013 +0000
@@ -0,0 +1,87 @@
+theory Rec_Def
+imports Main
+begin
+
+section {*
+ Recursive functions
+*}
+
+text {*
+ Datatype of recursive operators.
+*}
+
+datatype recf =
+ -- {* The zero function, which always resturns @{text "0"} as result. *}
+ z |
+ -- {* The successor function, which increments its arguments. *}
+ s |
+ -- {*
+ The projection function, where @{text "id i j"} returns the @{text "j"}-th
+ argment out of the @{text "i"} arguments.
+ *}
+ id nat nat |
+ -- {*
+ The compostion operator, where "@{text "Cn n f [g1; g2; \<dots> ;gm]"}
+ computes @{text "f (g1(x1, x2, \<dots>, xn), g2(x1, x2, \<dots>, xn), \<dots> ,
+ gm(x1, x2, \<dots> , xn))"} for input argments @{text "x1, \<dots>, xn"}.
+ *}
+ Cn nat recf "recf list" |
+-- {*
+ The primitive resursive operator, where @{text "Pr n f g"} computes:
+ @{text "Pr n f g (x1, x2, \<dots>, xn-1, 0) = f(x1, \<dots>, xn-1)"}
+ and @{text "Pr n f g (x1, x2, \<dots>, xn-1, k') = g(x1, x2, \<dots>, xn-1, k,
+ Pr n f g (x1, \<dots>, xn-1, k))"}.
+ *}
+ Pr nat recf recf |
+-- {*
+ The minimization operator, where @{text "Mn n f (x1, x2, \<dots> , xn)"}
+ computes the first i such that @{text "f (x1, \<dots>, xn, i) = 0"} and for all
+ @{text "j"}, @{text "f (x1, x2, \<dots>, xn, j) > 0"}.
+ *}
+ Mn nat recf
+
+text {*
+ The semantis of recursive operators is given by an inductively defined
+ relation as follows, where
+ @{text "rec_calc_rel R [x1, x2, \<dots>, xn] r"} means the computation of
+ @{text "R"} over input arguments @{text "[x1, x2, \<dots>, xn"} terminates
+ and gives rise to a result @{text "r"}
+*}
+
+inductive rec_calc_rel :: "recf \<Rightarrow> nat list \<Rightarrow> nat \<Rightarrow> bool"
+where
+ calc_z: "rec_calc_rel z [n] 0" |
+ calc_s: "rec_calc_rel s [n] (Suc n)" |
+ calc_id: "\<lbrakk>length args = i; j < i; args!j = r\<rbrakk> \<Longrightarrow> rec_calc_rel (id i j) args r" |
+ calc_cn: "\<lbrakk>length args = n;
+ \<forall> k < length gs. rec_calc_rel (gs ! k) args (rs ! k);
+ length rs = length gs;
+ rec_calc_rel f rs r\<rbrakk>
+ \<Longrightarrow> rec_calc_rel (Cn n f gs) args r" |
+ calc_pr_zero:
+ "\<lbrakk>length args = n;
+ rec_calc_rel f args r0 \<rbrakk>
+ \<Longrightarrow> rec_calc_rel (Pr n f g) (args @ [0]) r0" |
+ calc_pr_ind: "
+ \<lbrakk> length args = n;
+ rec_calc_rel (Pr n f g) (args @ [k]) rk;
+ rec_calc_rel g (args @ [k] @ [rk]) rk'\<rbrakk>
+ \<Longrightarrow> rec_calc_rel (Pr n f g) (args @ [Suc k]) rk'" |
+ calc_mn: "\<lbrakk>length args = n;
+ rec_calc_rel f (args@[r]) 0;
+ \<forall> i < r. (\<exists> ri. rec_calc_rel f (args@[i]) ri \<and> ri \<noteq> 0)\<rbrakk>
+ \<Longrightarrow> rec_calc_rel (Mn n f) args r"
+
+inductive_cases calc_pr_reverse:
+ "rec_calc_rel (Pr n f g) (lm) rSucy"
+
+inductive_cases calc_z_reverse: "rec_calc_rel z lm x"
+
+inductive_cases calc_s_reverse: "rec_calc_rel s lm x"
+
+inductive_cases calc_id_reverse: "rec_calc_rel (id m n) lm x"
+
+inductive_cases calc_cn_reverse: "rec_calc_rel (Cn n f gs) lm x"
+
+inductive_cases calc_mn_reverse:"rec_calc_rel (Mn n f) lm x"
+end
\ No newline at end of file