--- a/thys/uncomputable.thy Wed Jan 23 08:01:35 2013 +0100
+++ b/thys/uncomputable.thy Wed Jan 23 12:25:24 2013 +0100
@@ -1337,84 +1337,86 @@
apply(erule_tac x = 0 in allE, simp)
done
qed
-
-
+lemma dither_loops:
+ shows "{(\<lambda>(l, r). (\<exists>nd. l = Bk \<up> nd) \<and> r = [Oc])} dither \<up>"
+apply(rule Hoare_unhaltI)
+apply(auto intro!: dither_unhalt_rs)
+done
+
lemma h_uh:
assumes "haltP (tcontra H, 0) [code (tcontra H)]"
shows "\<not> haltP (tcontra H, 0) [code (tcontra H)]"
-proof(simp only: tcontra_def)
- let ?tcontr = "(tcopy |+| H) |+| dither"
- let ?cn = "Suc (code ?tcontr)"
- let ?P1 = "\<lambda> (l, r). (l = [] \<and> (r::cell list) = Oc\<up>(?cn))"
- let ?Q1 = "\<lambda> (l, r). (l = [Bk] \<and> r = Oc\<up>?cn @ Bk # Oc\<up>?cn)"
- let ?P2 = "\<lambda> (l, r). (l = [Bk] \<and> r = Oc\<up>?cn @ Bk # Oc\<up>?cn)"
- let ?Q2 = "\<lambda>(l, r). (\<exists>nd. l = Bk \<up> nd) \<and> r = [Oc]"
- let ?P3 = ?Q2
- have "{?P1} ?tcontr \<up>"
- proof(rule_tac Hoare_plus_unhalt, auto)
- show "?Q2 \<mapsto> ?P3"
- apply(simp add: assert_imp_def)
- done
+proof -
+ (* code of tcontra *)
+ def code_tcontra \<equiv> "(code (tcontra H))"
+
+ (* invariants *)
+ def P1 \<equiv> "\<lambda>(l::cell list, r::cell list). (l = [] \<and> r = <[code_tcontra]>)"
+ def P2 \<equiv> "\<lambda>(l::cell list, r::cell list). (l = [Bk] \<and> r = <[code_tcontra, code_tcontra]>)"
+ def P3 \<equiv> "\<lambda>(l::cell list, r::cell list). (\<exists>nd. l = Bk \<up> nd) \<and> r = [Oc]"
+
+ (*
+ {P1} tcopy {P2} {P2} H {P3}
+ ----------------------------
+ {P1} (tcopy |+| H) {P3} {P3} dither loops
+ ------------------------------------------------
+ {P1} (tcontra H) loops
+ *)
+
+ have tm1_wf: "tm_wf0 tcopy" by auto
+ have tm2_wf: "tm_wf0 (tcopy |+| H)" by auto
+
+ (* {P1} (tcopy |+| H) {P3} *)
+ have first: "{P1} (tcopy |+| H) {P3}"
+ proof (induct rule: Hoare_plus_halt_simple)
+ case A_halt (* of tcopy *)
+ have "{inv_init1 (Suc code_tcontra)} tcopy {inv_end0 (Suc code_tcontra)}"
+ unfolding code_tcontra_def
+ by (rule tcopy_correct1) (simp)
+ moreover
+ have "P1 \<mapsto> inv_init1 (Suc code_tcontra)" unfolding P1_def
+ by (simp add: assert_imp_def tape_of_nl_abv)
+ moreover
+ have "inv_end0 (Suc code_tcontra) \<mapsto> P2" unfolding P2_def code_tcontra_def
+ by (simp add: assert_imp_def inv_end0.simps tape_of_nl_abv)
+ ultimately
+ show "{P1} tcopy {P2}" by (rule Hoare_weak)
next
- show "{?P1} (tcopy |+| H) {?Q2}"
- proof(rule_tac Hoare_plus_halt, auto)
- show "?Q1 \<mapsto> ?P2"
- apply(simp add: assert_imp_def)
- done
- next
- show "{?P1} tcopy {?Q1}"
- proof -
- have g: "{inv_init1 ?cn} tcopy {inv_end0 ?cn}"
- by(rule_tac tcopy_correct1, simp)
- thus "?thesis"
- proof(rule_tac Hoare_weak)
- show "{inv_init1 ?cn} tcopy
- {inv_end0 ?cn} " using g by simp
- next
- show "?P1 \<mapsto> inv_init1 (?cn)"
- apply(simp add: inv_init1.simps assert_imp_def)
- done
- next
- show "inv_end0 ?cn \<mapsto> ?Q1"
- apply(simp add: assert_imp_def inv_end0.simps)
- done
- qed
- qed
- next
- show "{?P2} H {?Q2}"
- using Hoare_def h_newcase[of ?tcontr "[code ?tcontr]" 1] assms
- unfolding tcontra_def
- apply(auto)
- apply(rule_tac x = na in exI)
- apply(simp add: replicate_Suc tape_of_nl_abv)
- done
- qed
- next
- show "{?P3} dither \<up>"
- using Hoare_unhalt_def
- proof(auto)
- fix nd n
- assume "is_final (steps (Suc 0, Bk \<up> nd, [Oc]) (dither, 0) n)"
- thus "False"
- using dither_unhalt_rs[of nd n]
- by simp
- qed
- qed
- thus "\<not> haltP ((tcopy |+| H) |+| dither, 0) [code ((tcopy |+| H) |+| dither)]"
+ case B_halt
+ show "{P2} H {P3}"
+ using Hoare_def h_newcase[of "tcontra H" "[code_tcontra]" 1] assms
+ unfolding tcontra_def P2_def P3_def code_tcontra_def
+ apply(auto)
+ apply(rule_tac x = na in exI)
+ apply(simp add: replicate_Suc tape_of_nl_abv)
+ done
+ qed (simp add: tm1_wf)
+
+ (* {P3} dither loops *)
+ have second: "{P3} dither \<up>" unfolding P3_def
+ by (rule dither_loops)
+
+ (* {P1} tcontra loops *)
+ have "{P1} (tcontra H) \<up>" unfolding tcontra_def
+ by (rule Hoare_plus_unhalt_simple[OF first second tm2_wf])
+
+ then show "\<not> haltP (tcontra H, 0) [code_tcontra]"
using assms
- unfolding tcontra_def
- apply(auto simp: haltP_def Hoare_unhalt_def)
+ unfolding tcontra_def code_tcontra_def
+ apply(auto simp: haltP_def Hoare_unhalt_def P1_def)
apply(erule_tac x = n in allE)
- apply(case_tac "steps (Suc 0, [], Oc \<up> ?cn) (?tcontr, 0) n")
- apply(simp add: tape_of_nl_abv)
+ apply(case_tac "steps (Suc 0, [], <[code ((tcopy |+| H) |+| dither)]>) (tcontra H, 0) n")
+ apply(simp add: tape_of_nl_abv tcontra_def code_tcontra_def tape_of_nat_abv)
done
qed
-
+
+
+
text {*
- @{text "False"} is finally derived.
+ @{text "False"} can finally derived.
*}
lemma false: "False"