Tests/abacus.thy
changeset 230 49dcc0b9b0b3
parent 224 68324a8566c1
--- a/Tests/abacus.thy	Wed Mar 27 09:47:02 2013 +0000
+++ b/Tests/abacus.thy	Wed Mar 27 13:16:37 2013 +0000
@@ -3,7 +3,7 @@
 *}
 
 theory abacus
-imports Main
+imports Main (*StateMonad*)
 begin
 
 text {*
@@ -26,38 +26,48 @@
   *}
    | Goto nat
 
-definition "stimes p q = {s . \<exists> u v. u \<in> p \<and> v \<in> q \<and> (u \<union> v = s) \<and> (u \<inter> v = {})}"
+
+fun splits :: "'a set \<Rightarrow> ('a set \<times> 'a set) \<Rightarrow> bool"
+where "splits s (u, v) = (u \<union> v = s \<and> u \<inter> v = {})"
 
-no_notation times (infixl "*" 70)
+declare splits.simps [simp del]
 
-notation stimes (infixl "*" 70)
+definition "stimes p q = {s . \<exists> u v. u \<in> p \<and> v \<in> q \<and> splits s (u, v)}"
+lemmas st_def = stimes_def[unfolded splits.simps]
 
-lemma stimes_comm: "p * q = q * p"
-  by (unfold stimes_def, auto)
+notation stimes (infixr "*" 70)
+
+lemma stimes_comm: "(p::('a set set)) * q = q * p"
+  by (unfold st_def, auto)
 
-lemma stimes_assoc: "(p * q) * r = p * (q * r)"
-  by (unfold stimes_def, blast)
+lemma splits_simp: "splits s (u, v) = (v = (s - u) \<and> v \<subseteq> s \<and> u \<subseteq> s)"
+  by (unfold splits.simps, auto)
+
+lemma stimes_assoc: "p * q * r = (p * q) * (r::'a set set)"
+  by (unfold st_def, blast)
 
 definition
   "emp = {{}}"
 
 lemma emp_unit_r [simp]: "p * emp = p"
-  by (unfold stimes_def emp_def, auto)
+  by (unfold st_def emp_def, auto)
 
 lemma emp_unit_l [simp]: "emp * p = p"
   by (metis emp_unit_r stimes_comm)
 
 lemma stimes_mono: "p \<subseteq> q \<Longrightarrow> p * r \<subseteq> q * r"
-  by (unfold stimes_def, auto)
-
-thm mult_cancel_left
+  by (unfold st_def, auto)
 
 lemma stimes_left_commute:
-  "(p * (q * r)) = (q * (p * r))"
+  "(q * (p * r)) = ((p::'a set set) * (q * r))"
 by (metis stimes_assoc stimes_comm)
 
 lemmas stimes_ac = stimes_comm stimes_assoc stimes_left_commute
 
+lemma "x * y * z = z * y * (x::'a set set)"
+by (metis stimes_ac)
+
+
 definition pasrt :: "bool \<Rightarrow> ('a set set)" ("<_>" [71] 71)
 where "pasrt b = {s . s = {} \<and> b}"
 
@@ -67,6 +77,12 @@
  | Seq apg apg
  | Local "(nat \<Rightarrow> apg)"
 
+notation Local (binder "LOCAL " 10)
+
+term "LOCAL a b. Seq (Label a) (Label b)"
+
+
+
 abbreviation prog_instr :: "abc_inst \<Rightarrow> apg" ("\<guillemotright>_" [61] 61)
 where "\<guillemotright>i \<equiv> Instr i"
 
@@ -98,10 +114,24 @@
   | At nat
   | Faults nat
 
+definition "prog_set prog = {C i inst | i inst. prog i = Some inst}"
+definition "pc_set pc = {At pc}"
+definition "mem_set m = {M i n | i n. m (i) = Some n} "
+definition "faults_set faults = {Faults faults}"
+
+lemmas cpn_set_def = prog_set_def pc_set_def mem_set_def faults_set_def
+
 fun rset_of :: "aconf \<Rightarrow> aresource set"
   where "rset_of (prog, pc, m, faults) = 
-               {M i n | i n. m (i) = Some n} \<union> {At pc} \<union>
-               {C i inst | i inst. prog i = Some inst} \<union> {Faults faults}"
+               prog_set prog \<union> pc_set pc \<union> mem_set m \<union> faults_set faults"
+
+definition "pc l = {pc_set l}"
+
+
+definition "m a v = {{M a v}}"
+
+
+declare rset_of.simps[simp del]
 
 type_synonym assert = "aresource set set"
 
@@ -113,34 +143,328 @@
   "assemble_to (Label l) i j = <(i = j \<and> j = l)>"
 
 abbreviation asmb_to :: "nat \<Rightarrow> apg \<Rightarrow> nat \<Rightarrow> assert" ("_ :[ _ ]: _" [60, 60, 60] 60)
-where "i :[ apg ]: j \<equiv> assemble_to apg i j"
+  where "i :[ apg ]: j \<equiv> assemble_to apg i j"
+
+lemma stimes_sgD: "s \<in> {x} * q \<Longrightarrow> (s - x) \<in> q \<and> x \<subseteq> s"
+  apply (unfold st_def, auto)
+by (smt Diff_disjoint Un_Diff_cancel2 Un_Int_distrib 
+     Un_commute Un_empty_right Un_left_absorb)
+
+lemma pcD: "rset_of (prog, i', mem, fault) \<in> pc i * r
+       \<Longrightarrow> i' = i"
+proof -
+  assume "rset_of (prog, i', mem, fault) \<in> pc i * r"
+  from stimes_sgD [OF this[unfolded pc_def], unfolded rset_of.simps]
+  have "pc_set i \<subseteq> prog_set prog \<union> pc_set i' \<union> mem_set mem \<union> faults_set fault" by auto
+  thus ?thesis 
+    by (unfold cpn_set_def, auto)
+qed
+
+lemma codeD: "rset_of (prog, pos, mem, fault) \<in>  pc i * {{C i inst}} * r
+       \<Longrightarrow> prog pos = Some inst"
+proof -
+  assume h: "rset_of (prog, pos, mem, fault) \<in>  pc i * {{C i inst}} * r" (is "?c \<in> ?X")
+  from pcD[OF this] have "i = pos" by simp
+  with h show ?thesis
+    by (unfold rset_of.simps st_def pc_def prog_set_def 
+      pc_set_def mem_set_def faults_set_def, auto)
+qed
+
+lemma memD: "rset_of (prog, pos, mem, fault) \<in>  (m a v)  * r \<Longrightarrow> mem a = Some v"
+proof -
+  assume "rset_of (prog, pos, mem, fault) \<in>  (m a v)  * r"
+  from stimes_sgD[OF this[unfolded rset_of.simps cpn_set_def m_def]]
+  have "{M a v} \<subseteq> {C i inst |i inst. prog i = Some inst} \<union> 
+            {At pos} \<union> {M i n |i n. mem i = Some n} \<union> {Faults fault}" by auto
+  thus ?thesis by auto
+qed
 
 definition
   Hoare_abc :: "assert \<Rightarrow> assert  \<Rightarrow> assert \<Rightarrow> bool" ("({(1_)}/ (_)/ {(1_)})" 50)
 where
-  "{p} c {q} \<equiv> (\<forall> s r. (rset_of s) \<in> (p*c*r) \<longrightarrow> (\<exists> k. ((rset_of (run k s)) \<in> (q*c*r))))" 
+  "{p} c {q} \<equiv> (\<forall> s r. (rset_of s) \<in> (p*c*r) \<longrightarrow>
+    (\<exists> k. ((rset_of (run k s)) \<in> (q*c*r))))" 
+
+definition "dec_fun v j e = (if (v = 0) then (e, v) else (j, v - 1))"
+
+lemma disj_Diff: "a \<inter> b = {} \<Longrightarrow> a \<union> b - b = a"
+by (metis (lifting) Diff_cancel Un_Diff Un_Diff_Int)
 
-definition "pc l = {{At l}}"
+lemma diff_pc_set: "prog_set aa \<union> pc_set i \<union> mem_set ab \<union> faults_set b - pc_set i = 
+         prog_set aa \<union> mem_set ab \<union> faults_set b"  (is "?L = ?R")
+proof -
+  have "?L = (prog_set aa \<union> mem_set ab \<union> faults_set b \<union> pc_set i)  - pc_set i"
+    by auto
+  also have "\<dots> = ?R"
+  proof(rule disj_Diff)
+    show " (prog_set aa \<union> mem_set ab \<union> faults_set b) \<inter> pc_set i = {}"
+      by (unfold cpn_set_def, auto)
+  qed
+  finally show ?thesis .
+qed
+
+lemma M_in_simp: "({M a v} \<subseteq> prog_set x \<union> pc_set y \<union> mem_set mem \<union> faults_set f) = 
+        ({M a v} \<subseteq> mem_set mem)"
+  by (unfold cpn_set_def, auto)
+
+lemma mem_set_upd: 
+  "{M a v} \<subseteq> mem_set mem \<Longrightarrow> mem_set (mem(a:=Some v')) = ((mem_set mem) - {M a v}) \<union> {M a v'}"
+  by (unfold cpn_set_def, auto)
+
+lemma mem_set_disj: "{M a v} \<subseteq> mem_set mem \<Longrightarrow> {M a v'} \<inter>  (mem_set mem - {M a v}) = {}"
+  by (unfold cpn_set_def, auto)
+
+lemma stimesE:
+  assumes h: "s \<in> x * y"
+  obtains s1 s2 where "s = s1 \<union> s2" and "s1 \<inter> s2 = {}" and "s1 \<in> x" and "s2 \<in> y"
+  by (insert h, auto simp:st_def)
+
+lemma stimesI: 
+  "\<lbrakk>s = s1 \<union> s2; s1 \<inter> s2 = {}; s1 \<in> x; s2 \<in> y\<rbrakk> \<Longrightarrow> s \<in> x * y"
+  by (auto simp:st_def)
 
-definition "m a v = {{M a v}}"
+lemma smem_upd: "(rset_of (x, y, mem, f)) \<in> (m a v)*r \<Longrightarrow> 
+                    (rset_of (x, y, mem(a := Some v'), f) \<in> (m a v')*r)"
+proof -
+  assume h: " rset_of (x, y, mem, f) \<in> m a v * r"
+  from h[unfolded rset_of.simps m_def]
+  have "prog_set x \<union> pc_set y \<union> mem_set mem \<union> faults_set f \<in> {{M a v}} * r" .
+  from stimes_sgD [OF this]
+  have h1: "prog_set x \<union> pc_set y \<union> mem_set mem \<union> faults_set f - {M a v} \<in> r"
+           "{M a v} \<subseteq> prog_set x \<union> pc_set y \<union> mem_set mem \<union> faults_set f" by auto
+  moreover have "prog_set x \<union> pc_set y \<union> mem_set mem \<union> faults_set f - {M a v} = 
+                 prog_set x \<union> pc_set y \<union> (mem_set mem  - {M a v}) \<union> faults_set f"
+    by (unfold cpn_set_def, auto)
+  ultimately have h0: "prog_set x \<union> pc_set y \<union> (mem_set mem - {M a v}) \<union> faults_set f \<in> r" 
+    by simp
+  from h1(2) and M_in_simp have "{M a v} \<subseteq> mem_set mem" by simp
+  from mem_set_upd [OF this] mem_set_disj[OF this]
+  have h2: "mem_set (mem(a \<mapsto> v')) = {M a v'} \<union> (mem_set mem - {M a v})" 
+           "{M a v'} \<inter> (mem_set mem - {M a v}) = {}" by auto
+  show ?thesis
+  proof -
+    have "mem_set (mem(a \<mapsto> v')) \<union>  prog_set x \<union> pc_set y \<union> faults_set f \<in> m a v' * r"
+    proof(rule stimesI[OF _ _ _ h0])
+      show "{M a v'} \<in> m a v'" by (unfold m_def, auto)
+    next
+      show "mem_set (mem(a \<mapsto> v')) \<union> prog_set x \<union> pc_set y \<union> faults_set f =
+             {M a v'} \<union> (prog_set x \<union> pc_set y \<union> (mem_set mem - {M a v}) \<union> faults_set f)"
+        apply (unfold h2(1))
+        by (smt Un_commute Un_insert_left Un_insert_right 
+             Un_left_commute 
+                  `prog_set x \<union> pc_set y \<union> mem_set mem \<union> 
+                  faults_set f - {M a v} =prog_set x \<union> pc_set y 
+                  \<union> (mem_set mem - {M a v}) \<union> faults_set f`)
+    next
+      from h2(2)
+      show "{M a v'} \<inter> (prog_set x \<union> pc_set y \<union> (mem_set mem - {M a v}) \<union> faults_set f) = {}"
+        by (unfold cpn_set_def, auto)
+    qed
+    thus ?thesis 
+      apply (unfold rset_of.simps)
+      by (metis `mem_set (mem(a \<mapsto> v')) 
+            \<union> prog_set x \<union> pc_set y \<union> faults_set f \<in> m a v' * r` 
+         stimes_comm sup_commute sup_left_commute)
+  qed
+qed
 
-lemma hoare_dec_suc: "{pc i * m a v * <(v > 0)>} 
-                          i:[ \<guillemotright>(Dec a e) ]:j  
-                      {pc (i+1) * m a (v - 1)}"
-  sorry
+lemma spc_upd: "rset_of (x, i, y, z) \<in> pc i' * r \<Longrightarrow> 
+                rset_of (x, i'', y, z) \<in> pc i'' * r"
+proof -
+  assume h: "rset_of (x, i, y, z) \<in> pc i' * r"
+  from stimes_sgD [OF h[unfolded rset_of.simps pc_set_def pc_def]]
+  have h1: "prog_set x \<union> {At i} \<union> mem_set y \<union> faults_set z - {At i'} \<in> r" 
+           "{At i'} \<subseteq> prog_set x \<union> {At i} \<union> mem_set y \<union> faults_set z" by auto
+  from h1(2) have eq_i: "i' = i" by (unfold cpn_set_def, auto)
+  have "prog_set x \<union> {At i} \<union> mem_set y \<union> faults_set z - {At i'} =
+        prog_set x  \<union> mem_set y \<union> faults_set z "
+    apply (unfold eq_i)
+    by (metis (full_types) Un_insert_left Un_insert_right 
+         diff_pc_set faults_set_def insert_commute insert_is_Un 
+          pc_set_def sup_assoc sup_bot_left sup_commute)
+  with h1(1) have in_r: "prog_set x \<union>  mem_set y \<union> faults_set z \<in> r" by auto
+  show ?thesis
+  proof(unfold rset_of.simps, rule stimesI[OF _ _ _ in_r])
+    show "{At i''} \<in> pc i''" by (unfold pc_def pc_set_def, simp)
+  next
+    show "prog_set x \<union> pc_set i'' \<union> mem_set y \<union> faults_set z =
+    {At i''} \<union> (prog_set x \<union> mem_set y \<union> faults_set z)"
+      by (unfold pc_set_def, auto)
+  next
+    show "{At i''} \<inter> (prog_set x \<union> mem_set y \<union> faults_set z) = {}"
+      by (auto simp:cpn_set_def)
+  qed
+qed
+
+lemma condD: "s \<in> <b>*r \<Longrightarrow> b"
+  by (unfold st_def pasrt_def, auto)
+
+lemma condD1: "s \<in> <b>*r \<Longrightarrow> s \<in> r"
+  by (unfold st_def pasrt_def, auto)
+
+lemma hoare_dec_suc: "{(pc i * m a v) * <(v > 0)>} 
+                          i:[\<guillemotright>(Dec a e) ]:j  
+                      {pc j * m a (v - 1)}"
+proof(unfold Hoare_abc_def, clarify)
+  fix prog i' ab b r 
+  assume h: "rset_of (prog, i', ab, b) \<in> ((pc i * m a v) * <(0 < v)>) * (i :[ \<guillemotright>Dec a e ]: j) * r"
+                           (is "?r \<in> ?S")
+  show "\<exists>k. rset_of (run k (prog, i', ab, b)) \<in> (pc j * m a (v - 1)) * (i :[ \<guillemotright>Dec a e ]: j) * r"
+  proof -
+    from h [unfolded assemble_to.simps]
+    have h1: "?r \<in> pc i * {{C i (Dec a e)}} * m a v * <(0 < v)> *  <(j = i + 1)> * r"
+             "?r \<in>  m a v * pc i * {{C i (Dec a e)}} * <(0 < v)> *  <(j = i + 1)> * r"
+             "?r \<in>   <(0 < v)> *  <(j = i + 1)> * m a v * pc i * {{C i (Dec a e)}} * r"
+             "?r \<in>   <(j = i + 1)> * <(0 < v)> *   m a v * pc i * {{C i (Dec a e)}} * r"
+      by ((metis stimes_ac)+)
+    note h2 =  condD [OF h1(3)] condD[OF h1(4)] pcD[OF h1(1)] codeD[OF h1(1)] memD[OF h1(2)]
+    hence stp: "run 1 (prog, i', ab, b) = (prog, Suc i, ab(a \<mapsto> v - Suc 0), b)" (is "?x = ?y")
+      by (unfold run_def, auto)
+    have "rset_of ?x \<in> (pc j * m a (v - 1)) * (i :[ \<guillemotright>Dec a e ]: j) * r"
+    proof -
+      have "rset_of ?y \<in> (pc j * m a (v - 1)) * (i :[ \<guillemotright>Dec a e ]: j) * r"
+      proof -
+        from spc_upd[OF h1(1), of "Suc i"]
+        have "rset_of (prog, (Suc i), ab, b) \<in> 
+                m a v * pc (Suc i) * {{C i (Dec a e)}} * <(0 < v)> * <(j = i + 1)> * r" 
+          by (metis stimes_ac)
+        from smem_upd[OF this, of "v - (Suc 0)"]
+        have "rset_of ?y \<in> 
+           m a (v - Suc 0) * pc (Suc i) * {{C i (Dec a e)}} * <(0 < v)> * <(j = i + 1)> * r" .
+        hence "rset_of ?y \<in> <(0 < v)> *
+                (pc (Suc i) * m a (v - Suc 0)) * ({{C i (Dec a e)}} * <(j = i + 1)>) * r"
+          by (metis stimes_ac)
+        from condD1[OF this] 
+        have "rset_of ?y \<in> (pc (Suc i) * m a (v - Suc 0)) * ({{C i (Dec a e)}} * <(j = i + 1)>) * r" .
+        thus ?thesis
+          by (unfold h2(2) assemble_to.simps, simp)
+      qed
+      with stp show ?thesis by simp
+    qed
+    thus ?thesis by blast
+  qed
+qed
 
 lemma hoare_dec_fail: "{pc i * m a 0} 
                           i:[ \<guillemotright>(Dec a e) ]:j   
                        {pc e * m a 0}"
-  sorry
+proof(unfold Hoare_abc_def, clarify)
+  fix prog i' ab b r 
+  assume h: "rset_of (prog, i', ab, b) \<in> (pc i * m a 0) * (i :[ \<guillemotright>Dec a e ]: j) * r"
+                           (is "?r \<in> ?S")
+  show "\<exists>k. rset_of (run k (prog, i', ab, b)) \<in> (pc e * m a 0) * (i :[ \<guillemotright>Dec a e ]: j) * r"
+  proof -
+    from h [unfolded assemble_to.simps]
+    have h1: "?r \<in> pc i * {{C i (Dec a e)}} * m a 0  *  <(j = i + 1)> * r"
+             "?r \<in>  m a 0 * pc i * {{C i (Dec a e)}} *  <(j = i + 1)> * r"
+             "?r \<in> <(j = i + 1)> * m a 0 * pc i * {{C i (Dec a e)}} * r"
+      by ((metis stimes_ac)+)
+    note h2 =  condD [OF h1(3)]  pcD[OF h1(1)] codeD[OF h1(1)] memD[OF h1(2)]
+    hence stp: "run 1 (prog, i', ab, b) = (prog, e, ab, b)" (is "?x = ?y")
+      by (unfold run_def, auto)
+    have "rset_of ?x \<in> (pc e * m a 0) * (i :[ \<guillemotright>Dec a e ]: j) * r"
+    proof -
+      have "rset_of ?y \<in> (pc e * m a 0) * (i :[ \<guillemotright>Dec a e ]: j) * r"
+      proof -
+        from spc_upd[OF h1(1), of "e"]
+        have "rset_of ?y \<in> pc e * {{C i (Dec a e)}} * m a 0 * <(j = i + 1)> * r" .
+        thus ?thesis
+          by (unfold assemble_to.simps, metis stimes_ac)
+      qed
+      with stp show ?thesis by simp
+    qed
+    thus ?thesis by blast
+  qed
+qed
+
+lemma pasrtD_p: "\<lbrakk>{p*<b>} c {q}\<rbrakk> \<Longrightarrow> (b \<longrightarrow> {p} c {q})"
+  apply (unfold Hoare_abc_def pasrt_def, auto)
+  by (fold emp_def, simp add:emp_unit_r)
+
+lemma hoare_dec: "dec_fun v j e = (pc', v') \<Longrightarrow> 
+                    {pc i * m a v} 
+                       i:[ \<guillemotright>(Dec a e) ]:j   
+                    {pc pc' * m a v'}"
+proof -
+  assume "dec_fun v j e = (pc', v')"
+  thus  "{pc i * m a v} 
+                       i:[ \<guillemotright>(Dec a e) ]:j   
+                    {pc pc' * m a v'}"
+    apply (auto split:if_splits simp:dec_fun_def)
+    apply (insert hoare_dec_fail, auto)[1]
+    apply (insert hoare_dec_suc, auto)
+    apply (atomize)
+    apply (erule_tac x = i in allE, erule_tac x = a in allE,
+           erule_tac x = v in allE, erule_tac x = e in allE, erule_tac x = pc' in allE)
+    by (drule_tac pasrtD_p, clarify)
+qed
 
 lemma hoare_inc: "{pc i * m a v} 
                       i:[ \<guillemotright>(Inc a) ]:j   
-                  {pc (i+1) * m a (v + 1)}"
-  sorry
+                  {pc j * m a (v + 1)}"
+proof(unfold Hoare_abc_def, clarify)
+  fix prog i' ab b r 
+  assume h: "rset_of (prog, i', ab, b) \<in> (pc i * m a v) * (i :[ \<guillemotright>Inc a ]: j) * r"
+                           (is "?r \<in> ?S")
+  show "\<exists>k. rset_of (run k (prog, i', ab, b)) \<in> (pc j * m a (v + 1)) * (i :[ \<guillemotright>Inc a ]: j) * r"
+  proof -
+    from h [unfolded assemble_to.simps]
+    have h1: "?r \<in> pc i * {{C i (Inc a)}} * m a v *  <(j = i + 1)> * r"
+             "?r \<in>  m a v * pc i * {{C i (Inc a)}} * <(j = i + 1)> * r"
+             "?r \<in>   <(j = i + 1)> * m a v * pc i * {{C i (Inc a)}} * r"
+      by ((metis stimes_ac)+)
+    note h2 =  condD [OF h1(3)] pcD[OF h1(1)] codeD[OF h1(1)] memD[OF h1(2)]
+    hence stp: "run 1 (prog, i', ab, b) = (prog, Suc i, ab(a \<mapsto> Suc v), b)" (is "?x = ?y")
+      by (unfold run_def, auto)
+    have "rset_of ?x \<in> (pc j * m a (v + 1)) * (i :[ \<guillemotright>Inc a]: j) * r"
+    proof -
+      have "rset_of ?y \<in> (pc j * m a (v + 1)) * (i :[ \<guillemotright>Inc a ]: j) * r"
+      proof -
+        from spc_upd[OF h1(1), of "Suc i"]
+        have "rset_of (prog, (Suc i), ab, b) \<in> 
+                m a v * pc (Suc i) * {{C i (Inc a)}} * <(j = i + 1)> * r" 
+          by (metis stimes_ac)
+        from smem_upd[OF this, of "Suc v"]
+        have "rset_of ?y \<in> 
+           m a (v + 1) * pc (i + 1) * {{C i (Inc a)}} * <(j = i + 1)> * r" by simp
+        thus ?thesis
+          by (unfold h2(1) assemble_to.simps, metis stimes_ac)
+      qed
+      with stp show ?thesis by simp
+    qed
+    thus ?thesis by blast
+  qed
+qed
 
+lemma hoare_goto: "{pc i} 
+                      i:[ \<guillemotright>(Goto e) ]:j   
+                   {pc e}"
+proof(unfold Hoare_abc_def, clarify)
+  fix prog i' ab b r 
+  assume h: "rset_of (prog, i', ab, b) \<in> pc i * (i :[ \<guillemotright>Goto e ]: j) * r"
+                           (is "?r \<in> ?S")
+  show "\<exists>k. rset_of (run k (prog, i', ab, b)) \<in> pc e * (i :[ \<guillemotright>Goto e ]: j) * r"
+  proof -
+    from h [unfolded assemble_to.simps]
+    have h1: "?r \<in> pc i * {{C i (Goto e)}} *  <(j = i + 1)> * r"
+      by ((metis stimes_ac)+)
+    note h2 = pcD[OF h1(1)] codeD[OF h1(1)] 
+    hence stp: "run 1 (prog, i', ab, b) = (prog, e, ab, b)" (is "?x = ?y")
+      by (unfold run_def, auto)
+    have "rset_of ?x \<in> pc e * (i :[ \<guillemotright>Goto e]: j) * r"
+    proof -
+      from spc_upd[OF h1(1), of "e"] 
+      show ?thesis
+        by (unfold stp assemble_to.simps, metis stimes_ac)
+    qed
+    thus ?thesis by blast
+  qed
+qed
 
-interpretation foo: comm_monoid_mult "op * :: 'a set set => 'a set set => 'a set set" "{{}}::'a set set"
+no_notation stimes (infixr "*" 70)
+
+interpretation foo: comm_monoid_mult 
+  "stimes :: 'a set set => 'a set set => 'a set set" "emp::'a set set"
 apply(default)
 apply(simp add: stimes_assoc)
 apply(simp add: stimes_comm)
@@ -148,6 +472,8 @@
 done
 
 
+notation stimes (infixr "*" 70)
+
 (*used by simplifier for numbers *)
 thm mult_cancel_left
 
@@ -156,18 +482,18 @@
 apply(default)
 *)
 
-lemma frame: "{p} c {q} \<Longrightarrow> \<forall> r. {p * r} c {q * r}"
+lemma frame: "{p} c {q} \<Longrightarrow>  \<forall> r. {p * r} c {q * r}"
 apply (unfold Hoare_abc_def, clarify)
 apply (erule_tac x = "(a, aa, ab, b)" in allE)
 apply (erule_tac x = "r * ra" in allE) 
-apply(simp add: stimes_ac)
+apply(metis stimes_ac)
 done
 
 lemma code_extension: "\<lbrakk>{p} c {q}\<rbrakk> \<Longrightarrow> (\<forall> e. {p} c * e {q})"
   apply (unfold Hoare_abc_def, clarify)
   apply (erule_tac x = "(a, aa, ab, b)" in allE)
   apply (erule_tac x = "e * r" in allE)
-  apply(simp add: stimes_ac)
+  apply(metis stimes_ac)
   done
 
 lemma run_add: "run (n1 + n2) s = run n1 (run n2 s)"
@@ -202,39 +528,173 @@
     qed
 qed
 
-lemma asm_end_unique: "\<lbrakk>s \<in> (i:[c]:j1); s' \<in> (i:[c]:j2)\<rbrakk> \<Longrightarrow> j1 = j2"
-(* proof(induct c arbitrary:i j1 j2 s s') *) sorry
-
-lemma union_unique: "(\<forall> j. j \<noteq> i \<longrightarrow> c(j) = {}) \<Longrightarrow> (\<Union> j. c(j)) = (c i)"
-  by auto
+lemma stimes_simp: "s \<in> x * y = (\<exists> s1 s2. (s = s1 \<union> s2 \<and> s1 \<inter> s2 = {} \<and> s1 \<in> x \<and> s2 \<in> y))"
+by (metis (lifting) stimesE stimesI)
 
-lemma asm_consist: "i:[c1]:j \<noteq> {}"
-  sorry
-
-lemma seq_comp: "\<lbrakk>{p} i:[c1]:j {q}; 
-                  {q} j:[c2]:k {r}\<rbrakk> \<Longrightarrow> {p} i:[(c1 ; c2)]:k {r}"
-apply (unfold assemble_to.simps)
+lemma hoare_seq: 
+  "\<lbrakk>\<forall> i j. {pc i * p} i:[c1]:j {pc j * q}; 
+    \<forall> j k. {pc j * q} j:[c2]:k {pc k * r}\<rbrakk> \<Longrightarrow>  {pc i * p} i:[(c1 ; c2)]:k {pc k *r}"
 proof -
-  assume h: "{p} i :[ c1 ]: j {q}" "{q} j :[ c2 ]: k {r}"
-  have " (\<Union>j'. (i :[ c1 ]: j') * (j' :[ c2 ]: k)) = 
-             (i :[ c1 ]: j) * (j :[ c2 ]: k)"
-  proof -
-    { fix j' 
-      assume "j' \<noteq> j"
-      have "(i :[ c1 ]: j') * (j' :[ c2 ]: k) = {}" (is "?X * ?Y = {}")
+  assume h: "\<forall>i j. {pc i * p} i :[ c1 ]: j {pc j * q}" "\<forall> j k. {pc j * q} j:[c2]:k {pc k * r}"
+  show "{pc i * p} i:[(c1 ; c2)]:k {pc k *r}"
+  proof(subst Hoare_abc_def, clarify)
+    fix a aa ab b ra
+    assume "rset_of (a, aa, ab, b) \<in> (pc i * p) * (i :[ (c1 ; c2) ]: k) * ra"
+    hence "rset_of (a, aa, ab, b) \<in> (i :[ (c1 ; c2) ]: k) * (pc i * p * ra)" (is "?s \<in> ?X * ?Y")
+      by (metis stimes_ac)
+    from stimesE[OF this] obtain s1 s2 where
+      sp: "rset_of(a, aa, ab, b) = s1 \<union> s2" "s1 \<inter> s2 = {}" "s1 \<in> ?X" "s2 \<in> ?Y" by blast
+    from sp (3) obtain j' where 
+      "s1 \<in> (i:[c1]:j') * (j':[c2]:k)" (is "s1 \<in> ?Z")
+      by (auto simp:assemble_to.simps)
+    from stimesI[OF sp(1, 2) this sp(4)]
+    have "?s \<in>  (pc i * p) * (i :[ c1 ]: j') * (j' :[ c2 ]: k) * ra" by (metis stimes_ac)
+    from h(1)[unfolded Hoare_abc_def, rule_format, OF this]
+    obtain ka where 
+      "rset_of (run ka (a, aa, ab, b)) \<in> (pc j' * q) * (j' :[ c2 ]: k) * ((i :[ c1 ]: j') * ra)" 
+      sorry
+    from h(2)[unfolded Hoare_abc_def, rule_format, OF this]
+    obtain kb where 
+      "rset_of (run kb (run ka (a, aa, ab, b)))
+      \<in>  (pc k * r) * (j' :[ c2 ]: k) * (i :[ c1 ]: j') * ra" by blast
+    hence h3: "rset_of (run (kb + ka) (a, aa, ab, b))
+      \<in> pc k * r * (j' :[ c2 ]: k) * ((i :[ c1 ]: j') * ra)" 
+      sorry
+    hence "rset_of (run (kb + ka) (a, aa, ab, b)) \<in> pc k * r * (i :[ (c1 ; c2) ]: k) * ra"
+    proof -
+      have "rset_of (run (kb + ka) (a, aa, ab, b)) \<in> (i :[ (c1 ; c2) ]: k) * (pc k * r * ra)"
       proof -
-        { fix s 
-          assume "s \<in> ?X*?Y"
-          then obtain s1 s2 where h1: "s1 \<in> ?X" by (unfold stimes_def, auto)
-          
-        }
+        from h3 have "rset_of (run (kb + ka) (a, aa, ab, b))
+          \<in> ((j' :[ c2 ]: k) * ((i :[ c1 ]: j'))) * (pc k * r *  ra)"
+          by (metis stimes_ac)
+        then obtain 
+          s1 s2 where h4: "rset_of (run (kb + ka) (a, aa, ab, b)) = s1 \<union> s2"
+          " s1 \<inter> s2 = {}" "s1 \<in> (j' :[ c2 ]: k) * (i :[ c1 ]: j')"
+          "s2 \<in>  pc k * r * ra" by (rule stimesE, blast)
+        from h4(3) have "s1 \<in> (i :[ (c1 ; c2) ]: k)"
+          sorry
+        from stimesI [OF h4(1, 2) this h4(4)]
+        show ?thesis .
       qed
-    } thus ?thesis by (auto intro!:union_unique)
+      thus ?thesis by (metis stimes_ac)
+    qed
+    thus "\<exists>ka. rset_of (run ka (a, aa, ab, b)) \<in> (pc k * r) * (i :[ (c1 ; c2) ]: k) * ra"
+      by (metis stimes_ac)
   qed
-  moreover have "{p} \<dots> {r}" by (rule composition [OF h])
-  ultimately show "{p} \<Union>j'. (i :[ c1 ]: j') * (j' :[ c2 ]: k) {r}" by metis
 qed
   
+lemma hoare_local: 
+  "\<forall> l i j. {pc i*p} i:[c(l)]:j {pc j * q} 
+  \<Longrightarrow> {pc i * p} i:[Local c]:j {pc j * q}"
+proof -
+  assume h: "\<forall> l i j. {pc i*p} i:[c(l)]:j {pc j * q} "
+  show "{pc i * p} i:[Local c]:j {pc j * q}"
+  proof(unfold assemble_to.simps Hoare_abc_def, clarify)
+    fix a aa ab b r
+    assume h1: "rset_of (a, aa, ab, b) \<in> (pc i * p) * (\<Union>l. i :[ c l ]: j) * r"
+    hence "rset_of (a, aa, ab, b) \<in> (\<Union>l. i :[ c l ]: j) * (pc i * p * r)" 
+      by (metis stimes_ac)
+    then obtain s1 s2 l 
+      where "rset_of (a, aa, ab, b) = s1 \<union> s2"
+                "s1 \<inter> s2 = {}"
+                "s1 \<in> (i :[ c l ]: j)"
+                "s2 \<in> pc i * p * r"
+      by (rule stimesE, auto)
+    from stimesI[OF this]
+    have "rset_of (a, aa, ab, b) \<in> (pc i * p) * (i :[ c l ]: j) * r" 
+      by (metis stimes_ac)
+    from h[unfolded Hoare_abc_def, rule_format, OF this]
+    obtain k where "rset_of (run k (a, aa, ab, b)) \<in> (i :[ c l ]: j) * (pc j * q * r)" 
+      sorry
+    then obtain s1 s2
+      where h3: "rset_of (run k (a, aa, ab, b)) = s1 \<union> s2"
+                " s1 \<inter> s2 = {}" "s1 \<in> (\<Union> l. (i :[ c l ]: j))" "s2 \<in> pc j * q * r" 
+      by(rule stimesE, auto)
+    from stimesI[OF this]
+    show "\<exists>k. rset_of (run k (a, aa, ab, b)) \<in> (pc j * q) * (\<Union>l. i :[ c l ]: j) * r"
+      by (metis stimes_ac)
+  qed
+qed
 
- 
+lemma move_pure: "{p*<b>} c {q} = (b \<longrightarrow> {p} c {q})"
+proof(unfold Hoare_abc_def, default, clarify)
+  fix prog i' mem ft r
+  assume h: "\<forall>s r. rset_of s \<in> (p * <b>) * c * r \<longrightarrow> (\<exists>k. rset_of (run k s) \<in> q * c * r)"
+            "b" "rset_of (prog, i', mem, ft) \<in> p * c * r"
+  show "\<exists>k. rset_of (run k (prog, i', mem, ft)) \<in> q * c * r"
+  proof(rule h(1)[rule_format])
+    have "(p * <b>) * c * r = <b> * p * c * r" by (metis stimes_ac)
+    moreover have "rset_of (prog, i', mem, ft) \<in> \<dots>"
+    proof(rule stimesI[OF _ _ _ h(3)])
+      from h(2) show "{} \<in> <b>" by (auto simp:pasrt_def)
+    qed auto
+    ultimately show "rset_of (prog, i', mem, ft) \<in> (p * <b>) * c * r"
+      by (simp)
+  qed
+next
+  assume h: "b \<longrightarrow> (\<forall>s r. rset_of s \<in> p * c * r \<longrightarrow> (\<exists>k. rset_of (run k s) \<in> q * c * r))"
+  show "\<forall>s r. rset_of s \<in> (p * <b>) * c * r \<longrightarrow> (\<exists>k. rset_of (run k s) \<in> q * c * r)"
+  proof -
+    { fix s r 
+      assume "rset_of s \<in> (p * <b>) * c * r"
+      hence h1: "rset_of s \<in> <b> * p * c * r" by (metis stimes_ac)
+      have "(\<exists>k. rset_of (run k s) \<in> q * c * r)"
+      proof(rule h[rule_format])
+        from condD[OF h1] show b .
+      next
+        from condD1[OF h1] show "rset_of s \<in> p * c * r" .
+      qed
+    } thus ?thesis by blast
+  qed
+qed
+
+lemma precond_ex: "{\<Union> x. p x} c {q} = (\<forall> x. {p x} c {q})"
+proof(unfold Hoare_abc_def, default, clarify)
+  fix x prog i' mem ft r
+  assume h: "\<forall>s r. rset_of s \<in> UNION UNIV p * c * r \<longrightarrow> (\<exists>k. rset_of (run k s) \<in> q * c * r)"
+            "rset_of (prog, i', mem, ft) \<in> p x * c * r"
+  show "\<exists>k. rset_of (run k (prog, i', mem, ft)) \<in> q * c * r"
+  proof(rule h[rule_format])
+    from h(2) show "rset_of (prog, i', mem, ft) \<in> UNION UNIV p * c * r" by (auto simp:stimes_def)
+  qed
+next
+  assume h: "\<forall>x s r. rset_of s \<in> p x * c * r \<longrightarrow> (\<exists>k. rset_of (run k s) \<in> q * c * r)"
+  show "\<forall>s r. rset_of s \<in> UNION UNIV p * c * r \<longrightarrow> (\<exists>k. rset_of (run k s) \<in> q * c * r)"
+  proof -
+    { fix s r
+      assume "rset_of s \<in> UNION UNIV p * c * r"
+      then obtain x where "rset_of s \<in> p x * c * r" 
+        by (unfold st_def, auto, metis)
+      hence "(\<exists>k. rset_of (run k s) \<in> q * c * r)"
+        by(rule h[rule_format])
+    } thus ?thesis by blast
+  qed
+qed
+
+lemma pre_stren: "\<lbrakk>{p} c {q}; r \<subseteq> p\<rbrakk> \<Longrightarrow> {r} c {q}"
+proof(unfold Hoare_abc_def, clarify)
+  fix prog i' mem ft r'
+  assume h: "\<forall>s r. rset_of s \<in> p * c * r \<longrightarrow> (\<exists>k. rset_of (run k s) \<in> q * c * r)"
+            " r \<subseteq> p" " rset_of (prog, i', mem, ft) \<in> r * c * r'"
+  show "\<exists>k. rset_of (run k (prog, i', mem, ft)) \<in> q * c * r'"
+  proof(rule h(1)[rule_format])
+    from stimes_mono[OF h(2), of "c * r'"] h(3)
+    show "rset_of (prog, i', mem, ft) \<in> p * c * r'" by auto
+  qed
+qed
+
+lemma post_weaken: "\<lbrakk>{p} c {q}; q \<subseteq> r\<rbrakk> \<Longrightarrow> {p} c {r}"
+proof(unfold Hoare_abc_def, clarify)
+  fix prog i' mem ft r'
+  assume h: "\<forall>s r. rset_of s \<in> p * c * r \<longrightarrow> (\<exists>k. rset_of (run k s) \<in> q * c * r)"
+            " q \<subseteq> r" "rset_of (prog, i', mem, ft) \<in> p * c * r'"
+  show "\<exists>k. rset_of (run k (prog, i', mem, ft)) \<in> r * c * r'"
+  proof -
+    from h(1)[rule_format, OF h(3)]
+    obtain k where "rset_of (run k (prog, i', mem, ft)) \<in> q * c * r'" by auto
+    moreover from h(2) have "\<dots> \<subseteq> r * c * r'" by (metis stimes_mono)
+    ultimately show ?thesis by auto
+  qed
+qed
+
 end