thys/Recs.thy
changeset 246 e113420a2fce
parent 245 af60d84e0677
child 247 89ed51d72e4a
equal deleted inserted replaced
245:af60d84e0677 246:e113420a2fce
   634 lemma lo_lemma [simp]:
   634 lemma lo_lemma [simp]:
   635   "rec_eval rec_lo [x, y] = Lo x y"
   635   "rec_eval rec_lo [x, y] = Lo x y"
   636 by (simp add: rec_lo_def Lo_def Let_def)
   636 by (simp add: rec_lo_def Lo_def Let_def)
   637 
   637 
   638 
   638 
   639 section {* Universal Function *}
       
   640 
   639 
   641 text {* @{text "NextPrime x"} returns the first prime number after @{text "x"}. *}
   640 text {* @{text "NextPrime x"} returns the first prime number after @{text "x"}. *}
   642 
   641 
   643 fun NextPrime ::"nat \<Rightarrow> nat"
   642 fun NextPrime ::"nat \<Rightarrow> nat"
   644   where
   643   where
   667 
   666 
   668 lemma pi_lemma [simp]:
   667 lemma pi_lemma [simp]:
   669   "rec_eval rec_pi [x] = Pi x"
   668   "rec_eval rec_pi [x] = Pi x"
   670 by (induct x) (simp_all add: rec_pi_def)
   669 by (induct x) (simp_all add: rec_pi_def)
   671 
   670 
   672 
       
   673 fun Left where
       
   674   "Left c = Lo c (Pi 0)"
       
   675 
       
   676 definition
       
   677   "rec_left = CN rec_lo [Id 1 0, constn (Pi 0)]"
       
   678 
       
   679 lemma left_lemma [simp]:
       
   680   "rec_eval rec_left [c] = Left c" 
       
   681 by(simp add: rec_left_def)
       
   682 
       
   683 fun Right where
       
   684   "Right c = Lo c (Pi 2)"
       
   685 
       
   686 definition 
       
   687   "rec_right = CN rec_lo [Id 1 0, constn (Pi 2)]"
       
   688 
       
   689 lemma right_lemma [simp]:
       
   690   "rec_eval rec_right [c] = Right c" 
       
   691 by(simp add: rec_right_def)
       
   692 
       
   693 fun Stat where
       
   694   "Stat c = Lo c (Pi 1)"
       
   695 
       
   696 definition 
       
   697   "rec_stat = CN rec_lo [Id 1 0, constn (Pi 1)]"
       
   698 
       
   699 lemma stat_lemma [simp]:
       
   700   "rec_eval rec_stat [c] = Stat c" 
       
   701 by(simp add: rec_stat_def)
       
   702 
       
   703 
       
   704 
       
   705 text{* coding of the configuration *}
       
   706 
       
   707 text {*
       
   708   @{text "Entry sr i"} returns the @{text "i"}-th entry of a list of natural 
       
   709   numbers encoded by number @{text "sr"} using Godel's coding.
       
   710   *}
       
   711 fun Entry where
       
   712   "Entry sr i = Lo sr (Pi (Suc i))"
       
   713 
       
   714 definition 
       
   715   "rec_entry = CN rec_lo [Id 2 0, CN rec_pi [CN S [Id 2 1]]]"
       
   716 
       
   717 lemma entry_lemma [simp]:
       
   718   "rec_eval rec_entry [sr, i] = Entry sr i"
       
   719 by(simp add: rec_entry_def)
       
   720 
       
   721 
       
   722 fun Listsum2 :: "nat list \<Rightarrow> nat \<Rightarrow> nat"
       
   723   where
       
   724   "Listsum2 xs 0 = 0"
       
   725 | "Listsum2 xs (Suc n) = Listsum2 xs n + xs ! n"
       
   726 
       
   727 fun rec_listsum2 :: "nat \<Rightarrow> nat \<Rightarrow> recf"
       
   728   where
       
   729   "rec_listsum2 vl 0 = CN Z [Id vl 0]"
       
   730 | "rec_listsum2 vl (Suc n) = CN rec_add [rec_listsum2 vl n, Id vl n]"
       
   731 
       
   732 lemma listsum2_lemma [simp]: 
       
   733   "length xs = vl \<Longrightarrow> rec_eval (rec_listsum2 vl n) xs = Listsum2 xs n"
       
   734 by (induct n) (simp_all)
       
   735 
       
   736 text {*
       
   737   @{text "Strt"} corresponds to the @{text "strt"} function on page 90 of the 
       
   738   B book, but this definition generalises the original one to deal with multiple 
       
   739   input arguments.
       
   740   *}
       
   741 fun Strt' :: "nat list \<Rightarrow> nat \<Rightarrow> nat"
       
   742   where
       
   743   "Strt' xs 0 = 0"
       
   744 | "Strt' xs (Suc n) = (let dbound = Listsum2 xs n + n 
       
   745                        in Strt' xs n + (2 ^ (xs ! n + dbound) - 2 ^ dbound))"
       
   746 
       
   747 fun Strt :: "nat list \<Rightarrow> nat"
       
   748   where
       
   749   "Strt xs = (let ys = map Suc xs in Strt' ys (length ys))"
       
   750 
       
   751 fun rec_strt' :: "nat \<Rightarrow> nat \<Rightarrow> recf"
       
   752   where
       
   753   "rec_strt' xs 0 = Z"
       
   754 | "rec_strt' xs (Suc n) = 
       
   755       (let dbound = CN rec_add [rec_listsum2 xs n, constn n] in
       
   756        let t1 = CN rec_power [constn 2, dbound] in
       
   757        let t2 = CN rec_power [constn 2, CN rec_add [Id xs n, dbound]] in
       
   758        CN rec_add [rec_strt' xs n, CN rec_minus [t2, t1]])"
       
   759 
       
   760 fun rec_map :: "recf \<Rightarrow> nat \<Rightarrow> recf list"
       
   761   where
       
   762   "rec_map rf vl = map (\<lambda>i. CN rf [Id vl i]) [0..<vl]"
       
   763 
       
   764 fun rec_strt :: "nat \<Rightarrow> recf"
       
   765   where
       
   766   "rec_strt xs = CN (rec_strt' xs xs) (rec_map S xs)"
       
   767 
       
   768 lemma strt'_lemma [simp]:
       
   769   "length xs = vl \<Longrightarrow> rec_eval (rec_strt' vl n) xs = Strt' xs n"
       
   770 by (induct n) (simp_all add: Let_def)
       
   771 
       
   772 
       
   773 lemma map_suc:
       
   774   "map (\<lambda>x. Suc (xs ! x)) [0..<length xs] = map Suc xs"
       
   775 proof -
       
   776   have "Suc \<circ> (\<lambda>x. xs ! x) = (\<lambda>x. Suc (xs ! x))" by (simp add: comp_def)
       
   777   then have "map (\<lambda>x. Suc (xs ! x)) [0..<length xs] = map (Suc \<circ> (\<lambda>x. xs ! x)) [0..<length xs]" by simp
       
   778   also have "... = map Suc (map (\<lambda>x. xs ! x) [0..<length xs])" by simp
       
   779   also have "... = map Suc xs" by (simp add: map_nth)
       
   780   finally show "map (\<lambda>x. Suc (xs ! x)) [0..<length xs] = map Suc xs" .
       
   781 qed
       
   782 
       
   783 lemma strt_lemma [simp]: 
       
   784   "length xs = vl \<Longrightarrow> rec_eval (rec_strt vl) xs = Strt xs"
       
   785 by (simp add: comp_def map_suc[symmetric])
       
   786 
       
   787 
       
   788 text {* The @{text "Scan"} function on page 90 of B book. *}
       
   789 fun Scan :: "nat \<Rightarrow> nat"
       
   790   where
       
   791   "Scan r = r mod 2"
       
   792 
       
   793 definition 
       
   794   "rec_scan = CN rec_rem [Id 1 0, constn 2]"
       
   795 
       
   796 lemma scan_lemma [simp]: 
       
   797   "rec_eval rec_scan [r] = r mod 2"
       
   798 by(simp add: rec_scan_def)
       
   799 
       
   800 
       
   801 text {* The specifation of the mutli-way branching statement on
       
   802   page 79 of Boolos's book. *}
       
   803 
       
   804 type_synonym ftype = "nat list \<Rightarrow> nat"
       
   805 type_synonym rtype = "nat list \<Rightarrow> bool"
       
   806 
       
   807 fun Embranch :: "(ftype * rtype) list \<Rightarrow> nat list \<Rightarrow> nat"
       
   808   where
       
   809   "Embranch [] xs = 0" |
       
   810   "Embranch ((g, c) # gcs) xs = (if c xs then g xs else Embranch gcs xs)"
       
   811 
       
   812 fun rec_embranch' :: "(recf * recf) list \<Rightarrow> nat \<Rightarrow> recf"
       
   813   where
       
   814   "rec_embranch' [] xs = Z" |
       
   815   "rec_embranch' ((g, c) # gcs) xs = 
       
   816       CN rec_add [CN rec_mult [g, c], rec_embranch' gcs xs]"
       
   817 
       
   818 fun rec_embranch :: "(recf * recf) list \<Rightarrow> recf"
       
   819   where
       
   820   "rec_embranch [] = Z"
       
   821 | "rec_embranch ((rg, rc) # rgcs) = (let vl = arity rg in 
       
   822                                      rec_embranch' ((rg, rc) # rgcs) vl)"
       
   823 
       
   824 (*
       
   825 lemma embranch_lemma [simp]:
       
   826   shows "rec_eval (rec_embranch (zip rgs rcs)) xs =
       
   827            Embranch (zip (map rec_eval rgs) (map (\<lambda>r args. 0 < rec_eval r args) rcs)) xs"
       
   828 apply(induct rcs arbitrary: rgs)
       
   829 apply(simp)
       
   830 apply(simp)
       
   831 apply(case_tac rgs)
       
   832 apply(simp)
       
   833 apply(simp)
       
   834 apply(case_tac rcs)
       
   835 apply(simp_all)
       
   836 apply(rule conjI)
       
   837 *)
       
   838 
       
   839 fun Newleft0 :: "nat list \<Rightarrow> nat"
       
   840   where
       
   841   "Newleft0 [p, r] = p"
       
   842 
       
   843 definition rec_newleft0 :: "recf"
       
   844   where
       
   845   "rec_newleft0 = Id 2 0"
       
   846 
       
   847 fun Newrgt0 :: "nat list \<Rightarrow> nat"
       
   848   where
       
   849   "Newrgt0 [p, r] = r - Scan r"
       
   850 
       
   851 definition rec_newrgt0 :: "recf"
       
   852   where
       
   853   "rec_newrgt0 = CN rec_minus [Id 2 1, CN rec_scan [Id 2 1]]"
       
   854 
       
   855 (*newleft1, newrgt1: left rgt number after execute on step*)
       
   856 fun Newleft1 :: "nat list \<Rightarrow> nat"
       
   857   where
       
   858   "Newleft1 [p, r] = p"
       
   859 
       
   860 definition rec_newleft1 :: "recf"
       
   861   where
       
   862   "rec_newleft1 = Id 2 0"
       
   863 
       
   864 fun Newrgt1 :: "nat list \<Rightarrow> nat"
       
   865   where
       
   866   "Newrgt1 [p, r] = r + 1 - Scan r"
       
   867 
       
   868 definition 
       
   869   "rec_newrgt1 = CN rec_minus [CN rec_add [Id 2 1, constn 1], CN rec_scan [Id 2 1]]"
       
   870 
       
   871 fun Newleft2 :: "nat list \<Rightarrow> nat"
       
   872   where
       
   873   "Newleft2 [p, r] = p div 2"
       
   874 
       
   875 definition 
       
   876   "rec_newleft2 = CN rec_quo [Id 2 0, constn 2]"
       
   877 
       
   878 fun Newrgt2 :: "nat list \<Rightarrow> nat"
       
   879   where
       
   880   "Newrgt2 [p, r] = 2 * r + p mod 2"
       
   881 
       
   882 definition 
       
   883   "rec_newrgt2 = CN rec_add [CN rec_mult [constn 2, Id 2 1],                     
       
   884                              CN rec_rem [Id 2 0, constn 2]]"
       
   885 
       
   886 fun Newleft3 :: "nat list \<Rightarrow> nat"
       
   887   where
       
   888   "Newleft3 [p, r] = 2 * p + r mod 2"
       
   889 
       
   890 definition rec_newleft3 :: "recf"
       
   891   where
       
   892   "rec_newleft3 = CN rec_add [CN rec_mult [constn 2, Id 2 0], 
       
   893                               CN rec_rem [Id 2 1, constn 2]]"
       
   894 
       
   895 fun Newrgt3 :: "nat list \<Rightarrow> nat"
       
   896   where
       
   897   "Newrgt3 [p, r] = r div 2"
       
   898 
       
   899 definition 
       
   900   "rec_newrgt3 = CN rec_quo [Id 2 1, constn 2]"
       
   901 
       
   902 text {* The @{text "new_left"} function on page 91 of B book. *}
       
   903 
       
   904 fun Newleft :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
       
   905   where
       
   906   "Newleft p r a = (if a = 0 \<or> a = 1 then Newleft0 [p, r] 
       
   907                     else if a = 2 then Newleft2 [p, r]
       
   908                     else if a = 3 then Newleft3 [p, r]
       
   909                     else p)"
       
   910 
       
   911 definition
       
   912     "rec_newleft =
       
   913        (let g0 = CN rec_newleft0 [Id 3 0, Id 3 1] in 
       
   914         let g1 = CN rec_newleft2 [Id 3 0, Id 3 1] in 
       
   915         let g2 = CN rec_newleft3 [Id 3 0, Id 3 1] in 
       
   916         let g3 = Id 3 0 in
       
   917         let r0 = CN rec_disj [CN rec_eq [Id 3 2, constn 0],
       
   918                               CN rec_eq [Id 3 2, constn 1]] in 
       
   919         let r1 = CN rec_eq [Id 3 2, constn 2] in 
       
   920         let r2 = CN rec_eq [Id 3 2, constn 3] in
       
   921         let r3 = CN rec_less [constn 3, Id 3 2] in 
       
   922         let gs = [g0, g1, g2, g3] in 
       
   923         let rs = [r0, r1, r2, r3] in 
       
   924         rec_embranch (zip gs rs))"
       
   925 
       
   926 
       
   927 fun Trpl :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
       
   928   where
       
   929   "Trpl p q r = (Pi 0) ^ p * (Pi 1) ^ q * (Pi 2) ^ r"
       
   930 
       
   931 
       
   932 
       
   933 text {*
       
   934   @{text "Nstd c"} returns true if the configuration coded 
       
   935   by @{text "c"} is not a stardard final configuration.
       
   936   *}
       
   937 fun Nstd :: "nat \<Rightarrow> bool"
       
   938   where
       
   939   "Nstd c = (Stat c \<noteq> 0 \<or> Left c \<noteq> 0 \<or> 
       
   940              Right c \<noteq> 2 ^ (Lg (Suc (Right c)) 2) - 1 \<or> 
       
   941              Right c = 0)"
       
   942 
       
   943 text {*
       
   944   @{text "Conf m r k"} computes the TM configuration after 
       
   945   @{text "k"} steps of execution of the TM coded as @{text "m"} 
       
   946   starting from the initial configuration where the left number 
       
   947   equals @{text "0"} and the right number equals @{text "r"}. 
       
   948   *}
       
   949 fun Conf 
       
   950   where
       
   951   "Conf m r 0 = Trpl 0 (Suc 0) r"
       
   952 | "Conf m r (Suc t) = Newconf m (Conf m r t)"
       
   953 
       
   954 
       
   955 text{* 
       
   956   @{text "Nonstop m r t"} means that afer @{text "t"} steps of 
       
   957   execution, the TM coded by @{text "m"} is not at a stardard 
       
   958   final configuration.
       
   959   *}
       
   960 fun Nostop 
       
   961   where
       
   962   "Nostop m r t = Nstd (Conf m r t)"
       
   963 
       
   964 fun Value where
       
   965   "Value x = (Lg (Suc x) 2) - 1"
       
   966 
       
   967 definition 
       
   968   "rec_value = CN rec_pred [CN rec_lg [S, constn 2]]"
       
   969 
       
   970 lemma value_lemma [simp]:
       
   971   "rec_eval rec_value [x] = Value x"
       
   972 by (simp add: rec_value_def)
       
   973 
       
   974 definition 
       
   975   "rec_UF = CN rec_value [CN rec_right [CN rec_conf [Id 2 0, Id 2 1, rec_halt]]]"
       
   976 
   671 
   977 end
   672 end
   978 
   673 
   979 
   674 
   980 (*
   675 (*