Tests/abacus.thy
changeset 223 db6ba2232945
child 224 68324a8566c1
equal deleted inserted replaced
222:d682591c63e1 223:db6ba2232945
       
     1 header {* 
       
     2  {\em abacus} a kind of register machine
       
     3 *}
       
     4 
       
     5 theory abacus
       
     6 imports Main "~~/src/HOL/Algebra/IntRing" 
       
     7 begin
       
     8 
       
     9 text {*
       
    10   {\em Abacus} instructions:
       
    11 *}
       
    12 
       
    13 datatype abc_inst =
       
    14   -- {* @{text "Inc n"} increments the memory cell (or register) 
       
    15          with address @{text "n"} by one.
       
    16      *}
       
    17      Inc nat
       
    18   -- {*
       
    19      @{text "Dec n label"} decrements the memory cell with address @{text "n"} by one. 
       
    20       If cell @{text "n"} is already zero, no decrements happens and the executio jumps to
       
    21       the instruction labeled by @{text "label"}.
       
    22      *}
       
    23    | Dec nat nat
       
    24   -- {*
       
    25   @{text "Goto label"} unconditionally jumps to the instruction labeled by @{text "label"}.
       
    26   *}
       
    27    | Goto nat
       
    28 
       
    29 definition "stimes p q = {s . \<exists> u v. u \<in> p \<and> v \<in> q \<and> (u \<union> v = s) \<and> (u \<inter> v = {})}"
       
    30 
       
    31 no_notation times (infixl "*" 70)
       
    32 
       
    33 notation stimes (infixl "*" 70)
       
    34 
       
    35 lemma stimes_comm: "p * q = q * p"
       
    36   by (unfold stimes_def, auto)
       
    37 
       
    38 lemma stimes_assoc: "(p * q) * r = p * (q * r)"
       
    39   by (unfold stimes_def, blast)
       
    40 
       
    41 definition
       
    42   "emp = {{}}"
       
    43 
       
    44 lemma emp_unit_r [simp]: "p * emp = p"
       
    45   by (unfold stimes_def emp_def, auto)
       
    46 
       
    47 lemma emp_unit_l [simp]: "emp * p = p"
       
    48   by (metis emp_unit_r stimes_comm)
       
    49 
       
    50 lemma stimes_mono: "p \<subseteq> q \<Longrightarrow> p * r \<subseteq> q * r"
       
    51   by (unfold stimes_def, auto)
       
    52 
       
    53 thm mult_cancel_left
       
    54 
       
    55 lemma stimes_left_commute:
       
    56   "(p * (q * r)) = (q * (p * r))"
       
    57 by (metis stimes_assoc stimes_comm)
       
    58 
       
    59 lemmas stimes_ac = stimes_comm stimes_assoc stimes_left_commute
       
    60 
       
    61 definition pasrt :: "bool \<Rightarrow> ('a set set)" ("<_>" [71] 71)
       
    62 where "pasrt b = {s . s = {} \<and> b}"
       
    63 
       
    64 datatype apg = 
       
    65    Instr abc_inst
       
    66  | Label nat
       
    67  | Seq apg apg
       
    68  | Local "(nat \<Rightarrow> apg)"
       
    69 
       
    70 abbreviation prog_instr :: "abc_inst \<Rightarrow> apg" ("\<guillemotright>_" [61] 61)
       
    71 where "\<guillemotright>i \<equiv> Instr i"
       
    72 
       
    73 abbreviation prog_seq :: "apg \<Rightarrow> apg \<Rightarrow> apg" (infixl ";" 52)
       
    74 where "c1 ; c2 \<equiv> Seq c1 c2"
       
    75 
       
    76 type_synonym aconf = "((nat \<rightharpoonup> abc_inst) \<times> nat \<times> (nat \<rightharpoonup> nat) \<times> nat)"
       
    77 
       
    78 fun astep :: "aconf \<Rightarrow> aconf"
       
    79   where "astep (prog, pc, m, faults) = 
       
    80               (case (prog pc) of
       
    81                   Some (Inc i) \<Rightarrow> 
       
    82                          case m(i) of
       
    83                            Some n \<Rightarrow> (prog, pc + 1, m(i:= Some (n + 1)), faults)
       
    84                          | None \<Rightarrow> (prog, pc, m, faults + 1)
       
    85                 | Some (Dec i e) \<Rightarrow> 
       
    86                          case m(i) of
       
    87                            Some n \<Rightarrow> if (n = 0) then (prog, e, m, faults)
       
    88                                      else (prog, pc + 1, m(i:= Some (n - 1)), faults)
       
    89                          | None \<Rightarrow> (prog, pc, m, faults + 1)
       
    90                 | Some (Goto pc') \<Rightarrow> (prog, pc', m, faults)
       
    91                 | None \<Rightarrow> (prog, pc, m, faults + 1))"
       
    92 
       
    93 definition "run n = astep ^^ n"
       
    94 
       
    95 datatype aresource = 
       
    96     M nat nat
       
    97   | C nat abc_inst
       
    98   | At nat
       
    99   | Faults nat
       
   100 
       
   101 fun rset_of :: "aconf \<Rightarrow> aresource set"
       
   102   where "rset_of (prog, pc, m, faults) = 
       
   103                {M i n | i n. m (i) = Some n} \<union> {At pc} \<union>
       
   104                {C i inst | i inst. prog i = Some inst} \<union> {Faults faults}"
       
   105 
       
   106 type_synonym assert = "aresource set set"
       
   107 
       
   108 primrec assemble_to :: "apg \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> assert" 
       
   109   where 
       
   110   "assemble_to (Instr ai) i j = ({{C i ai}} * <(j = i + 1)>)" |
       
   111   "assemble_to (Seq p1 p2) i j = (\<Union> j'. (assemble_to p1 i j') * (assemble_to p2 j' j))" |
       
   112   "assemble_to (Local fp) i j  = (\<Union> l. (assemble_to (fp l) i j))" |
       
   113   "assemble_to (Label l) i j = <(i = j \<and> j = l)>"
       
   114 
       
   115 abbreviation asmb_to :: "nat \<Rightarrow> apg \<Rightarrow> nat \<Rightarrow> assert" ("_ :[ _ ]: _" [60, 60, 60] 60)
       
   116 where "i :[ apg ]: j \<equiv> assemble_to apg i j"
       
   117 
       
   118 definition
       
   119   Hoare_abc :: "assert \<Rightarrow> assert  \<Rightarrow> assert \<Rightarrow> bool" ("({(1_)}/ (_)/ {(1_)})" 50)
       
   120 where
       
   121   "{p} c {q} \<equiv> (\<forall> s r. (rset_of s) \<in> (p*c*r) \<longrightarrow> (\<exists> k. ((rset_of (run k s)) \<in> (q*c*r))))" 
       
   122 
       
   123 definition "pc l = {{At l}}"
       
   124 
       
   125 definition "m a v = {{M a v}}"
       
   126 
       
   127 lemma hoare_dec_suc: "{pc i * m a v * <(v > 0)>} 
       
   128                           i:[ \<guillemotright>(Dec a e) ]:j  
       
   129                       {pc (i+1) * m a (v - 1)}"
       
   130   sorry
       
   131 
       
   132 lemma hoare_dec_fail: "{pc i * m a 0} 
       
   133                           i:[ \<guillemotright>(Dec a e) ]:j   
       
   134                        {pc e * m a 0}"
       
   135   sorry
       
   136 
       
   137 lemma hoare_inc: "{pc i * m a v} 
       
   138                       i:[ \<guillemotright>(Inc a) ]:j   
       
   139                   {pc (i+1) * m a (v + 1)}"
       
   140   sorry
       
   141 
       
   142 
       
   143 interpretation foo: comm_monoid_mult "op * :: 'a set set => 'a set set => 'a set set" "{{}}::'a set set"
       
   144 apply(default)
       
   145 apply(simp add: stimes_assoc)
       
   146 apply(simp add: stimes_comm)
       
   147 apply(simp add: emp_def[symmetric])
       
   148 done
       
   149 
       
   150 
       
   151 (*used by simplifier for numbers *)
       
   152 thm mult_cancel_left
       
   153 
       
   154 (*
       
   155 interpretation foo: comm_ring_1 "op * :: 'a set set => 'a set set => 'a set set" "{{}}::'a set set" 
       
   156 apply(default)
       
   157 *)
       
   158 
       
   159 lemma frame: "{p} c {q} \<Longrightarrow> \<forall> r. {p * r} c {q * r}"
       
   160 apply (unfold Hoare_abc_def, clarify)
       
   161 apply (erule_tac x = "(a, aa, ab, b)" in allE)
       
   162 apply (erule_tac x = "r*ra" in allE) 
       
   163 apply(simp add: stimes_ac)
       
   164 done
       
   165 
       
   166 lemma code_extension: "\<lbrakk>{p} c {q}\<rbrakk> \<Longrightarrow> (\<forall> e. {p} c * e {q})"
       
   167   apply (unfold Hoare_abc_def, clarify)
       
   168   apply (erule_tac x = "(a, aa, ab, b)" in allE)
       
   169   apply (erule_tac x = "e * r" in allE)
       
   170   apply(simp add: stimes_ac)
       
   171   done
       
   172 
       
   173 lemma run_add: "run (n1 + n2) s = run n1 (run n2 s)"
       
   174 apply (unfold run_def)
       
   175 by (metis funpow_add o_apply)
       
   176 
       
   177 lemma composition: "\<lbrakk>{p} c1 {q}; {q} c2 {r}\<rbrakk> \<Longrightarrow> {p} c1 * c2 {r}"
       
   178 proof -
       
   179   assume h: "{p} c1 {q}" "{q} c2 {r}"
       
   180   from code_extension [OF h(1), rule_format, of "c2"] 
       
   181   have "{p} c1 * c2 {q}" .
       
   182   moreover from code_extension [OF h(2), rule_format, of "c1"] and stimes_comm
       
   183   have "{q} c1 * c2 {r}" by metis
       
   184   ultimately show "{p} c1 * c2 {r}"
       
   185     apply (unfold Hoare_abc_def, clarify)
       
   186     proof -
       
   187       fix a aa ab b ra
       
   188       assume h1: "\<forall>s r. rset_of s \<in> p * (c1 * c2) * r \<longrightarrow>
       
   189                        (\<exists>k. rset_of (run k s) \<in> q * (c1 * c2) * r)"
       
   190         and h2: "\<forall>s ra. rset_of s \<in> q * (c1 * c2) * ra \<longrightarrow>
       
   191                        (\<exists>k. rset_of (run k s) \<in> r * (c1 * c2) * ra)"
       
   192         and h3: "rset_of (a, aa, ab, b) \<in> p * (c1 * c2) * ra"
       
   193       show "\<exists>k. rset_of (run k (a, aa, ab, b)) \<in> r * (c1 * c2) * ra"
       
   194       proof -
       
   195         let ?s = "(a, aa, ab, b)"
       
   196         from h1 [rule_format, of ?s, OF h3]
       
   197         obtain n1 where "rset_of (run n1 ?s) \<in> q * (c1 * c2) * ra" by blast
       
   198         from h2 [rule_format, OF this]
       
   199         obtain n2 where "rset_of (run n2 (run n1 ?s)) \<in> r * (c1 * c2) * ra" by blast
       
   200         with run_add show ?thesis by metis
       
   201       qed
       
   202     qed
       
   203 qed
       
   204 
       
   205 lemma asm_end_unique: "\<lbrakk>s \<in> (i:[c]:j1); s' \<in> (i:[c]:j2)\<rbrakk> \<Longrightarrow> j1 = j2"
       
   206 (* proof(induct c arbitrary:i j1 j2 s s') *) sorry
       
   207 
       
   208 lemma union_unique: "(\<forall> j. j \<noteq> i \<longrightarrow> c(j) = {}) \<Longrightarrow> (\<Union> j. c(j)) = (c i)"
       
   209   by auto
       
   210 
       
   211 lemma asm_consist: "i:[c1]:j \<noteq> {}"
       
   212   sorry
       
   213 
       
   214 lemma seq_comp: "\<lbrakk>{p} i:[c1]:j {q}; 
       
   215                   {q} j:[c2]:k {r}\<rbrakk> \<Longrightarrow> {p} i:[(c1 ; c2)]:k {r}"
       
   216 apply (unfold assemble_to.simps)
       
   217 proof -
       
   218   assume h: "{p} i :[ c1 ]: j {q}" "{q} j :[ c2 ]: k {r}"
       
   219   have " (\<Union>j'. (i :[ c1 ]: j') * (j' :[ c2 ]: k)) = 
       
   220              (i :[ c1 ]: j) * (j :[ c2 ]: k)"
       
   221   proof -
       
   222     { fix j' 
       
   223       assume "j' \<noteq> j"
       
   224       have "(i :[ c1 ]: j') * (j' :[ c2 ]: k) = {}" (is "?X * ?Y = {}")
       
   225       proof -
       
   226         { fix s 
       
   227           assume "s \<in> ?X*?Y"
       
   228           then obtain s1 s2 where h1: "s1 \<in> ?X" by (unfold stimes_def, auto)
       
   229           
       
   230         }
       
   231       qed
       
   232     } thus ?thesis by (auto intro!:union_unique)
       
   233   qed
       
   234   moreover have "{p} \<dots> {r}" by (rule composition [OF h])
       
   235   ultimately show "{p} \<Union>j'. (i :[ c1 ]: j') * (j' :[ c2 ]: k) {r}" by metis
       
   236 qed
       
   237   
       
   238 
       
   239  
       
   240 end