|
1 theory UTM |
|
2 imports Main uncomputable recursive abacus UF GCD |
|
3 begin |
|
4 |
|
5 section {* Wang coding of input arguments *} |
|
6 |
|
7 text {* |
|
8 The direct compilation of the universal function @{text "rec_F"} can not give us UTM, because @{text "rec_F"} is of arity 2, |
|
9 where the first argument represents the Godel coding of the TM being simulated and the second argument represents the right number (in Wang's coding) of the TM tape. |
|
10 (Notice, left number is always @{text "0"} at the very beginning). However, UTM needs to simulate the execution of any TM which may |
|
11 very well take many input arguments. Therefore, a initialization TM needs to run before the TM compiled from @{text "rec_F"}, and the sequential |
|
12 composition of these two TMs will give rise to the UTM we are seeking. The purpose of this initialization TM is to transform the multiple |
|
13 input arguments of the TM being simulated into Wang's coding, so that it can be consumed by the TM compiled from @{text "rec_F"} as the second |
|
14 argument. |
|
15 |
|
16 However, this initialization TM (named @{text "t_wcode"}) can not be constructed by compiling from any resurve function, because every recursive |
|
17 function takes a fixed number of input arguments, while @{text "t_wcode"} needs to take varying number of arguments and tranform them into |
|
18 Wang's coding. Therefore, this section give a direct construction of @{text "t_wcode"} with just some parts being obtained from recursive functions. |
|
19 |
|
20 \newlength{\basewidth} |
|
21 \settowidth{\basewidth}{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx} |
|
22 \newlength{\baseheight} |
|
23 \settoheight{\baseheight}{$B:R$} |
|
24 \newcommand{\vsep}{5\baseheight} |
|
25 |
|
26 The TM used to generate the Wang's code of input arguments is divided into three TMs |
|
27 executed sequentially, namely $prepare$, $mainwork$ and $adjust$¡£According to the |
|
28 convention, start state of ever TM is fixed to state $1$ while the final state is |
|
29 fixed to $0$. |
|
30 |
|
31 The input and output of $prepare$ are illustrated respectively by Figure |
|
32 \ref{prepare_input} and \ref{prepare_output}. |
|
33 |
|
34 |
|
35 \begin{figure}[h!] |
|
36 \centering |
|
37 \scalebox{1.2}{ |
|
38 \begin{tikzpicture} |
|
39 [tbox/.style = {draw, thick, inner sep = 5pt}] |
|
40 \node (0) {}; |
|
41 \node (1) [tbox, text height = 3.5pt, right = -0.9pt of 0] {\wuhao $m$}; |
|
42 \node (2) [tbox, right = -0.9pt of 1] {\wuhao $0$}; |
|
43 \node (3) [tbox, right = -0.9pt of 2] {\wuhao $a_1$}; |
|
44 \node (4) [tbox, right = -0.9pt of 3] {\wuhao $0$}; |
|
45 \node (5) [tbox, right = -0.9pt of 4] {\wuhao $a_2$}; |
|
46 \node (6) [right = -0.9pt of 5] {\ldots \ldots}; |
|
47 \node (7) [tbox, right = -0.9pt of 6] {\wuhao $a_n$}; |
|
48 \draw [->, >=latex, thick] (1)+(0, -4\baseheight) -- (1); |
|
49 \end{tikzpicture}} |
|
50 \caption{The input of TM $prepare$} \label{prepare_input} |
|
51 \end{figure} |
|
52 |
|
53 \begin{figure}[h!] |
|
54 \centering |
|
55 \scalebox{1.2}{ |
|
56 \begin{tikzpicture} |
|
57 \node (0) {}; |
|
58 \node (1) [draw, text height = 3.5pt, right = -0.9pt of 0, thick, inner sep = 5pt] {\wuhao $m$}; |
|
59 \node (2) [draw, right = -0.9pt of 1, thick, inner sep = 5pt] {\wuhao $0$}; |
|
60 \node (3) [draw, right = -0.9pt of 2, thick, inner sep = 5pt] {\wuhao $0$}; |
|
61 \node (4) [draw, right = -0.9pt of 3, thick, inner sep = 5pt] {\wuhao $a_1$}; |
|
62 \node (5) [draw, right = -0.9pt of 4, thick, inner sep = 5pt] {\wuhao $0$}; |
|
63 \node (6) [draw, right = -0.9pt of 5, thick, inner sep = 5pt] {\wuhao $a_2$}; |
|
64 \node (7) [right = -0.9pt of 6] {\ldots \ldots}; |
|
65 \node (8) [draw, right = -0.9pt of 7, thick, inner sep = 5pt] {\wuhao $a_n$}; |
|
66 \node (9) [draw, right = -0.9pt of 8, thick, inner sep = 5pt] {\wuhao $0$}; |
|
67 \node (10) [draw, right = -0.9pt of 9, thick, inner sep = 5pt] {\wuhao $0$}; |
|
68 \node (11) [draw, right = -0.9pt of 10, thick, inner sep = 5pt] {\wuhao $1$}; |
|
69 \draw [->, >=latex, thick] (10)+(0, -4\baseheight) -- (10); |
|
70 \end{tikzpicture}} |
|
71 \caption{The output of TM $prepare$} \label{prepare_output} |
|
72 \end{figure} |
|
73 |
|
74 As shown in Figure \ref{prepare_input}, the input of $prepare$ is the same as the the input |
|
75 of UTM, where $m$ is the Godel coding of the TM being interpreted and $a_1$ through $a_n$ are the $n$ input arguments of the TM under interpretation. The purpose of $purpose$ is to transform this initial tape layout to the one shown in Figure \ref{prepare_output}, |
|
76 which is convenient for the generation of Wang's codding of $a_1, \ldots, a_n$. The coding procedure starts from $a_n$ and ends after $a_1$ is encoded. The coding result is stored in an accumulator at the end of the tape (initially represented by the $1$ two blanks right to $a_n$ in Figure \ref{prepare_output}). In Figure \ref{prepare_output}, arguments $a_1, \ldots, a_n$ are separated by two blanks on both ends with the rest so that movement conditions can be implemented conveniently in subsequent TMs, because, by convention, |
|
77 two consecutive blanks are usually used to signal the end or start of a large chunk of data. The diagram of $prepare$ is given in Figure \ref{prepare_diag}. |
|
78 |
|
79 |
|
80 \begin{figure}[h!] |
|
81 \centering |
|
82 \scalebox{0.9}{ |
|
83 \begin{tikzpicture} |
|
84 \node[circle,draw] (1) {$1$}; |
|
85 \node[circle,draw] (2) at ($(1)+(0.3\basewidth, 0)$) {$2$}; |
|
86 \node[circle,draw] (3) at ($(2)+(0.3\basewidth, 0)$) {$3$}; |
|
87 \node[circle,draw] (4) at ($(3)+(0.3\basewidth, 0)$) {$4$}; |
|
88 \node[circle,draw] (5) at ($(4)+(0.3\basewidth, 0)$) {$5$}; |
|
89 \node[circle,draw] (6) at ($(5)+(0.3\basewidth, 0)$) {$6$}; |
|
90 \node[circle,draw] (7) at ($(6)+(0.3\basewidth, 0)$) {$7$}; |
|
91 \node[circle,draw] (8) at ($(7)+(0.3\basewidth, 0)$) {$0$}; |
|
92 |
|
93 |
|
94 \draw [->, >=latex] (1) edge [loop above] node[above] {$S_1:L$} (1) |
|
95 ; |
|
96 \draw [->, >=latex] (1) -- node[above] {$S_0:S_1$} (2) |
|
97 ; |
|
98 \draw [->, >=latex] (2) edge [loop above] node[above] {$S_1:R$} (2) |
|
99 ; |
|
100 \draw [->, >=latex] (2) -- node[above] {$S_0:L$} (3) |
|
101 ; |
|
102 \draw [->, >=latex] (3) edge[loop above] node[above] {$S_1:S_0$} (3) |
|
103 ; |
|
104 \draw [->, >=latex] (3) -- node[above] {$S_0:R$} (4) |
|
105 ; |
|
106 \draw [->, >=latex] (4) edge[loop above] node[above] {$S_0:R$} (4) |
|
107 ; |
|
108 \draw [->, >=latex] (4) -- node[above] {$S_0:R$} (5) |
|
109 ; |
|
110 \draw [->, >=latex] (5) edge[loop above] node[above] {$S_1:R$} (5) |
|
111 ; |
|
112 \draw [->, >=latex] (5) -- node[above] {$S_0:R$} (6) |
|
113 ; |
|
114 \draw [->, >=latex] (6) edge[bend left = 50] node[below] {$S_1:R$} (5) |
|
115 ; |
|
116 \draw [->, >=latex] (6) -- node[above] {$S_0:R$} (7) |
|
117 ; |
|
118 \draw [->, >=latex] (7) edge[loop above] node[above] {$S_0:S_1$} (7) |
|
119 ; |
|
120 \draw [->, >=latex] (7) -- node[above] {$S_1:L$} (8) |
|
121 ; |
|
122 \end{tikzpicture}} |
|
123 \caption{The diagram of TM $prepare$} \label{prepare_diag} |
|
124 \end{figure} |
|
125 |
|
126 The purpose of TM $mainwork$ is to compute the Wang's encoding of $a_1, \ldots, a_n$. Every bit of $a_1, \ldots, a_n$, including the separating bits, is processed from left to right. |
|
127 In order to detect the termination condition when the left most bit of $a_1$ is reached, |
|
128 TM $mainwork$ needs to look ahead and consider three different situations at the start of |
|
129 every iteration: |
|
130 \begin{enumerate} |
|
131 \item The TM configuration for the first situation is shown in Figure \ref{mainwork_case_one_input}, |
|
132 where the accumulator is stored in $r$, both of the next two bits |
|
133 to be encoded are $1$. The configuration at the end of the iteration |
|
134 is shown in Figure \ref{mainwork_case_one_output}, where the first 1-bit has been |
|
135 encoded and cleared. Notice that the accumulator has been changed to |
|
136 $(r+1) \times 2$ to reflect the encoded bit. |
|
137 \item The TM configuration for the second situation is shown in Figure |
|
138 \ref{mainwork_case_two_input}, |
|
139 where the accumulator is stored in $r$, the next two bits |
|
140 to be encoded are $1$ and $0$. After the first |
|
141 $1$-bit was encoded and cleared, the second $0$-bit is difficult to detect |
|
142 and process. To solve this problem, these two consecutive bits are |
|
143 encoded in one iteration. In this situation, only the first $1$-bit needs |
|
144 to be cleared since the second one is cleared by definition. |
|
145 The configuration at the end of the iteration |
|
146 is shown in Figure \ref{mainwork_case_two_output}. |
|
147 Notice that the accumulator has been changed to |
|
148 $(r+1) \times 4$ to reflect the two encoded bits. |
|
149 \item The third situation corresponds to the case when the last bit of $a_1$ is reached. |
|
150 The TM configurations at the start and end of the iteration are shown in |
|
151 Figure \ref{mainwork_case_three_input} and \ref{mainwork_case_three_output} |
|
152 respectively. For this situation, only the read write head needs to be moved to |
|
153 the left to prepare a initial configuration for TM $adjust$ to start with. |
|
154 \end{enumerate} |
|
155 The diagram of $mainwork$ is given in Figure \ref{mainwork_diag}. The two rectangular nodes |
|
156 labeled with $2 \times x$ and $4 \times x$ are two TMs compiling from recursive functions |
|
157 so that we do not have to design and verify two quite complicated TMs. |
|
158 |
|
159 |
|
160 \begin{figure}[h!] |
|
161 \centering |
|
162 \scalebox{1.2}{ |
|
163 \begin{tikzpicture} |
|
164 \node (0) {}; |
|
165 \node (1) [draw, text height = 3.9pt, right = -0.9pt of 0, thick, inner sep = 5pt] {\wuhao $m$}; |
|
166 \node (2) [draw, right = -0.9pt of 1, thick, inner sep = 5pt] {\wuhao $0$}; |
|
167 \node (3) [draw, right = -0.9pt of 2, thick, inner sep = 5pt] {\wuhao $0$}; |
|
168 \node (4) [draw, right = -0.9pt of 3, thick, inner sep = 5pt] {\wuhao $a_1$}; |
|
169 \node (5) [draw, right = -0.9pt of 4, thick, inner sep = 5pt] {\wuhao $0$}; |
|
170 \node (6) [draw, right = -0.9pt of 5, thick, inner sep = 5pt] {\wuhao $a_2$}; |
|
171 \node (7) [right = -0.9pt of 6] {\ldots \ldots}; |
|
172 \node (8) [draw, right = -0.9pt of 7, thick, inner sep = 5pt] {\wuhao $a_i$}; |
|
173 \node (9) [draw, right = -0.9pt of 8, thick, inner sep = 5pt] {\wuhao $1$}; |
|
174 \node (10) [draw, right = -0.9pt of 9, thick, inner sep = 5pt] {\wuhao $1$}; |
|
175 \node (11) [draw, right = -0.9pt of 10, thick, inner sep = 5pt] {\wuhao $0$}; |
|
176 \node (12) [right = -0.9pt of 11] {\ldots \ldots}; |
|
177 \node (13) [draw, right = -0.9pt of 12, thick, inner sep = 5pt] {\wuhao $0$}; |
|
178 \node (14) [draw, text height = 3.9pt, right = -0.9pt of 13, thick, inner sep = 5pt] {\wuhao $r$}; |
|
179 \draw [->, >=latex, thick] (13)+(0, -4\baseheight) -- (13); |
|
180 \end{tikzpicture}} |
|
181 \caption{The first situation for TM $mainwork$ to consider} \label{mainwork_case_one_input} |
|
182 \end{figure} |
|
183 |
|
184 |
|
185 \begin{figure}[h!] |
|
186 \centering |
|
187 \scalebox{1.2}{ |
|
188 \begin{tikzpicture} |
|
189 \node (0) {}; |
|
190 \node (1) [draw, text height = 3.9pt, right = -0.9pt of 0, thick, inner sep = 5pt] {\wuhao $m$}; |
|
191 \node (2) [draw, right = -0.9pt of 1, thick, inner sep = 5pt] {\wuhao $0$}; |
|
192 \node (3) [draw, right = -0.9pt of 2, thick, inner sep = 5pt] {\wuhao $0$}; |
|
193 \node (4) [draw, right = -0.9pt of 3, thick, inner sep = 5pt] {\wuhao $a_1$}; |
|
194 \node (5) [draw, right = -0.9pt of 4, thick, inner sep = 5pt] {\wuhao $0$}; |
|
195 \node (6) [draw, right = -0.9pt of 5, thick, inner sep = 5pt] {\wuhao $a_2$}; |
|
196 \node (7) [right = -0.9pt of 6] {\ldots \ldots}; |
|
197 \node (8) [draw, right = -0.9pt of 7, thick, inner sep = 5pt] {\wuhao $a_i$}; |
|
198 \node (9) [draw, right = -0.9pt of 8, thick, inner sep = 5pt] {\wuhao $1$}; |
|
199 \node (10) [draw, right = -0.9pt of 9, thick, inner sep = 5pt] {\wuhao $0$}; |
|
200 \node (11) [draw, right = -0.9pt of 10, thick, inner sep = 5pt] {\wuhao $0$}; |
|
201 \node (12) [right = -0.9pt of 11] {\ldots \ldots}; |
|
202 \node (13) [draw, right = -0.9pt of 12, thick, inner sep = 5pt] {\wuhao $0$}; |
|
203 \node (14) [draw, text height = 2.7pt, right = -0.9pt of 13, thick, inner sep = 5pt] {\wuhao $(r+1) \times 2$}; |
|
204 \draw [->, >=latex, thick] (13)+(0, -4\baseheight) -- (13); |
|
205 \end{tikzpicture}} |
|
206 \caption{The output for the first case of TM $mainwork$'s processing} |
|
207 \label{mainwork_case_one_output} |
|
208 \end{figure} |
|
209 |
|
210 \begin{figure}[h!] |
|
211 \centering |
|
212 \scalebox{1.2}{ |
|
213 \begin{tikzpicture} |
|
214 \node (0) {}; |
|
215 \node (1) [draw, text height = 3.9pt, right = -0.9pt of 0, thick, inner sep = 5pt] {\wuhao $m$}; |
|
216 \node (2) [draw, right = -0.9pt of 1, thick, inner sep = 5pt] {\wuhao $0$}; |
|
217 \node (3) [draw, right = -0.9pt of 2, thick, inner sep = 5pt] {\wuhao $0$}; |
|
218 \node (4) [draw, right = -0.9pt of 3, thick, inner sep = 5pt] {\wuhao $a_1$}; |
|
219 \node (5) [draw, right = -0.9pt of 4, thick, inner sep = 5pt] {\wuhao $0$}; |
|
220 \node (6) [draw, right = -0.9pt of 5, thick, inner sep = 5pt] {\wuhao $a_2$}; |
|
221 \node (7) [right = -0.9pt of 6] {\ldots \ldots}; |
|
222 \node (8) [draw, right = -0.9pt of 7, thick, inner sep = 5pt] {\wuhao $a_i$}; |
|
223 \node (9) [draw, right = -0.9pt of 8, thick, inner sep = 5pt] {\wuhao $1$}; |
|
224 \node (10) [draw, right = -0.9pt of 9, thick, inner sep = 5pt] {\wuhao $0$}; |
|
225 \node (11) [draw, right = -0.9pt of 10, thick, inner sep = 5pt] {\wuhao $1$}; |
|
226 \node (12) [draw, right = -0.9pt of 11, thick, inner sep = 5pt] {\wuhao $0$}; |
|
227 \node (13) [right = -0.9pt of 12] {\ldots \ldots}; |
|
228 \node (14) [draw, right = -0.9pt of 13, thick, inner sep = 5pt] {\wuhao $0$}; |
|
229 \node (15) [draw, text height = 3.9pt, right = -0.9pt of 14, thick, inner sep = 5pt] {\wuhao $r$}; |
|
230 \draw [->, >=latex, thick] (14)+(0, -4\baseheight) -- (14); |
|
231 \end{tikzpicture}} |
|
232 \caption{The second situation for TM $mainwork$ to consider} \label{mainwork_case_two_input} |
|
233 \end{figure} |
|
234 |
|
235 \begin{figure}[h!] |
|
236 \centering |
|
237 \scalebox{1.2}{ |
|
238 \begin{tikzpicture} |
|
239 \node (0) {}; |
|
240 \node (1) [draw, text height = 3.9pt, right = -0.9pt of 0, thick, inner sep = 5pt] {\wuhao $m$}; |
|
241 \node (2) [draw, right = -0.9pt of 1, thick, inner sep = 5pt] {\wuhao $0$}; |
|
242 \node (3) [draw, right = -0.9pt of 2, thick, inner sep = 5pt] {\wuhao $0$}; |
|
243 \node (4) [draw, right = -0.9pt of 3, thick, inner sep = 5pt] {\wuhao $a_1$}; |
|
244 \node (5) [draw, right = -0.9pt of 4, thick, inner sep = 5pt] {\wuhao $0$}; |
|
245 \node (6) [draw, right = -0.9pt of 5, thick, inner sep = 5pt] {\wuhao $a_2$}; |
|
246 \node (7) [right = -0.9pt of 6] {\ldots \ldots}; |
|
247 \node (8) [draw, right = -0.9pt of 7, thick, inner sep = 5pt] {\wuhao $a_i$}; |
|
248 \node (9) [draw, right = -0.9pt of 8, thick, inner sep = 5pt] {\wuhao $1$}; |
|
249 \node (10) [draw, right = -0.9pt of 9, thick, inner sep = 5pt] {\wuhao $0$}; |
|
250 \node (11) [draw, right = -0.9pt of 10, thick, inner sep = 5pt] {\wuhao $0$}; |
|
251 \node (12) [draw, right = -0.9pt of 11, thick, inner sep = 5pt] {\wuhao $0$}; |
|
252 \node (13) [right = -0.9pt of 12] {\ldots \ldots}; |
|
253 \node (14) [draw, right = -0.9pt of 13, thick, inner sep = 5pt] {\wuhao $0$}; |
|
254 \node (15) [draw, text height = 2.7pt, right = -0.9pt of 14, thick, inner sep = 5pt] {\wuhao $(r+1) \times 4$}; |
|
255 \draw [->, >=latex, thick] (14)+(0, -4\baseheight) -- (14); |
|
256 \end{tikzpicture}} |
|
257 \caption{The output for the second case of TM $mainwork$'s processing} |
|
258 \label{mainwork_case_two_output} |
|
259 \end{figure} |
|
260 |
|
261 \begin{figure}[h!] |
|
262 \centering |
|
263 \scalebox{1.2}{ |
|
264 \begin{tikzpicture} |
|
265 \node (0) {}; |
|
266 \node (1) [draw, text height = 3.9pt, right = -0.9pt of 0, thick, inner sep = 5pt] {\wuhao $m$}; |
|
267 \node (2) [draw, right = -0.9pt of 1, thick, inner sep = 5pt] {\wuhao $0$}; |
|
268 \node (3) [draw, right = -0.9pt of 2, thick, inner sep = 5pt] {\wuhao $0$}; |
|
269 \node (4) [draw, right = -0.9pt of 3, thick, inner sep = 5pt] {\wuhao $1$}; |
|
270 \node (5) [draw, right = -0.9pt of 4, thick, inner sep = 5pt] {\wuhao $0$}; |
|
271 \node (6) [right = -0.9pt of 5] {\ldots \ldots}; |
|
272 \node (7) [draw, right = -0.9pt of 6, thick, inner sep = 5pt] {\wuhao $0$}; |
|
273 \node (8) [draw, text height = 3.9pt, right = -0.9pt of 7, thick, inner sep = 5pt] {\wuhao $r$}; |
|
274 \draw [->, >=latex, thick] (7)+(0, -4\baseheight) -- (7); |
|
275 \end{tikzpicture}} |
|
276 \caption{The third situation for TM $mainwork$ to consider} \label{mainwork_case_three_input} |
|
277 \end{figure} |
|
278 |
|
279 \begin{figure}[h!] |
|
280 \centering |
|
281 \scalebox{1.2}{ |
|
282 \begin{tikzpicture} |
|
283 \node (0) {}; |
|
284 \node (1) [draw, text height = 3.9pt, right = -0.9pt of 0, thick, inner sep = 5pt] {\wuhao $m$}; |
|
285 \node (2) [draw, right = -0.9pt of 1, thick, inner sep = 5pt] {\wuhao $0$}; |
|
286 \node (3) [draw, right = -0.9pt of 2, thick, inner sep = 5pt] {\wuhao $0$}; |
|
287 \node (4) [draw, right = -0.9pt of 3, thick, inner sep = 5pt] {\wuhao $1$}; |
|
288 \node (5) [draw, right = -0.9pt of 4, thick, inner sep = 5pt] {\wuhao $0$}; |
|
289 \node (6) [right = -0.9pt of 5] {\ldots \ldots}; |
|
290 \node (7) [draw, right = -0.9pt of 6, thick, inner sep = 5pt] {\wuhao $0$}; |
|
291 \node (8) [draw, text height = 3.9pt, right = -0.9pt of 7, thick, inner sep = 5pt] {\wuhao $r$}; |
|
292 \draw [->, >=latex, thick] (3)+(0, -4\baseheight) -- (3); |
|
293 \end{tikzpicture}} |
|
294 \caption{The output for the third case of TM $mainwork$'s processing} |
|
295 \label{mainwork_case_three_output} |
|
296 \end{figure} |
|
297 |
|
298 \begin{figure}[h!] |
|
299 \centering |
|
300 \scalebox{0.9}{ |
|
301 \begin{tikzpicture} |
|
302 \node[circle,draw] (1) {$1$}; |
|
303 \node[circle,draw] (2) at ($(1)+(0.3\basewidth, 0)$) {$2$}; |
|
304 \node[circle,draw] (3) at ($(2)+(0.3\basewidth, 0)$) {$3$}; |
|
305 \node[circle,draw] (4) at ($(3)+(0.3\basewidth, 0)$) {$4$}; |
|
306 \node[circle,draw] (5) at ($(4)+(0.3\basewidth, 0)$) {$5$}; |
|
307 \node[circle,draw] (6) at ($(5)+(0.3\basewidth, 0)$) {$6$}; |
|
308 \node[circle,draw] (7) at ($(2)+(0, -7\baseheight)$) {$7$}; |
|
309 \node[circle,draw] (8) at ($(7)+(0, -7\baseheight)$) {$8$}; |
|
310 \node[circle,draw] (9) at ($(8)+(0.3\basewidth, 0)$) {$9$}; |
|
311 \node[circle,draw] (10) at ($(9)+(0.3\basewidth, 0)$) {$10$}; |
|
312 \node[circle,draw] (11) at ($(10)+(0.3\basewidth, 0)$) {$11$}; |
|
313 \node[circle,draw] (12) at ($(11)+(0.3\basewidth, 0)$) {$12$}; |
|
314 \node[draw] (13) at ($(6)+(0.3\basewidth, 0)$) {$2 \times x$}; |
|
315 \node[circle,draw] (14) at ($(13)+(0.3\basewidth, 0)$) {$j_1$}; |
|
316 \node[draw] (15) at ($(12)+(0.3\basewidth, 0)$) {$4 \times x$}; |
|
317 \node[draw] (16) at ($(15)+(0.3\basewidth, 0)$) {$j_2$}; |
|
318 \node[draw] (17) at ($(7)+(0.3\basewidth, 0)$) {$0$}; |
|
319 |
|
320 \draw [->, >=latex] (1) edge[loop left] node[above] {$S_0:L$} (1) |
|
321 ; |
|
322 \draw [->, >=latex] (1) -- node[above] {$S_1:L$} (2) |
|
323 ; |
|
324 \draw [->, >=latex] (2) -- node[above] {$S_1:R$} (3) |
|
325 ; |
|
326 \draw [->, >=latex] (2) -- node[left] {$S_1:L$} (7) |
|
327 ; |
|
328 \draw [->, >=latex] (3) edge[loop above] node[above] {$S_1:S_0$} (3) |
|
329 ; |
|
330 \draw [->, >=latex] (3) -- node[above] {$S_0:R$} (4) |
|
331 ; |
|
332 \draw [->, >=latex] (4) edge[loop above] node[above] {$S_0:R$} (4) |
|
333 ; |
|
334 \draw [->, >=latex] (4) -- node[above] {$S_1:R$} (5) |
|
335 ; |
|
336 \draw [->, >=latex] (5) edge[loop above] node[above] {$S_1:R$} (5) |
|
337 ; |
|
338 \draw [->, >=latex] (5) -- node[above] {$S_0:S_1$} (6) |
|
339 ; |
|
340 \draw [->, >=latex] (6) edge[loop above] node[above] {$S_1:L$} (6) |
|
341 ; |
|
342 \draw [->, >=latex] (6) -- node[above] {$S_0:R$} (13) |
|
343 ; |
|
344 \draw [->, >=latex] (13) -- (14) |
|
345 ; |
|
346 \draw (14) -- ($(14)+(0, 6\baseheight)$) -- ($(1) + (0, 6\baseheight)$) node [above,midway] {$S_1:L$} |
|
347 ; |
|
348 \draw [->, >=latex] ($(1) + (0, 6\baseheight)$) -- (1) |
|
349 ; |
|
350 \draw [->, >=latex] (7) -- node[above] {$S_0:R$} (17) |
|
351 ; |
|
352 \draw [->, >=latex] (7) -- node[left] {$S_1:R$} (8) |
|
353 ; |
|
354 \draw [->, >=latex] (8) -- node[above] {$S_0:R$} (9) |
|
355 ; |
|
356 \draw [->, >=latex] (9) -- node[above] {$S_0:R$} (10) |
|
357 ; |
|
358 \draw [->, >=latex] (10) -- node[above] {$S_1:R$} (11) |
|
359 ; |
|
360 \draw [->, >=latex] (10) edge[loop above] node[above] {$S_0:R$} (10) |
|
361 ; |
|
362 \draw [->, >=latex] (11) edge[loop above] node[above] {$S_1:R$} (11) |
|
363 ; |
|
364 \draw [->, >=latex] (11) -- node[above] {$S_0:S_1$} (12) |
|
365 ; |
|
366 \draw [->, >=latex] (12) -- node[above] {$S_0:R$} (15) |
|
367 ; |
|
368 \draw [->, >=latex] (12) edge[loop above] node[above] {$S_1:L$} (12) |
|
369 ; |
|
370 \draw [->, >=latex] (15) -- (16) |
|
371 ; |
|
372 \draw (16) -- ($(16)+(0, -4\baseheight)$) -- ($(1) + (0, -18\baseheight)$) node [below,midway] {$S_1:L$} |
|
373 ; |
|
374 \draw [->, >=latex] ($(1) + (0, -18\baseheight)$) -- (1) |
|
375 ; |
|
376 \end{tikzpicture}} |
|
377 \caption{The diagram of TM $mainwork$} \label{mainwork_diag} |
|
378 \end{figure} |
|
379 |
|
380 The purpose of TM $adjust$ is to encode the last bit of $a_1$. The initial and final configuration |
|
381 of this TM are shown in Figure \ref{adjust_initial} and \ref{adjust_final} respectively. |
|
382 The diagram of TM $adjust$ is shown in Figure \ref{adjust_diag}. |
|
383 |
|
384 |
|
385 \begin{figure}[h!] |
|
386 \centering |
|
387 \scalebox{1.2}{ |
|
388 \begin{tikzpicture} |
|
389 \node (0) {}; |
|
390 \node (1) [draw, text height = 3.9pt, right = -0.9pt of 0, thick, inner sep = 5pt] {\wuhao $m$}; |
|
391 \node (2) [draw, right = -0.9pt of 1, thick, inner sep = 5pt] {\wuhao $0$}; |
|
392 \node (3) [draw, right = -0.9pt of 2, thick, inner sep = 5pt] {\wuhao $0$}; |
|
393 \node (4) [draw, right = -0.9pt of 3, thick, inner sep = 5pt] {\wuhao $1$}; |
|
394 \node (5) [draw, right = -0.9pt of 4, thick, inner sep = 5pt] {\wuhao $0$}; |
|
395 \node (6) [right = -0.9pt of 5] {\ldots \ldots}; |
|
396 \node (7) [draw, right = -0.9pt of 6, thick, inner sep = 5pt] {\wuhao $0$}; |
|
397 \node (8) [draw, text height = 3.9pt, right = -0.9pt of 7, thick, inner sep = 5pt] {\wuhao $r$}; |
|
398 \draw [->, >=latex, thick] (3)+(0, -4\baseheight) -- (3); |
|
399 \end{tikzpicture}} |
|
400 \caption{Initial configuration of TM $adjust$} \label{adjust_initial} |
|
401 \end{figure} |
|
402 |
|
403 \begin{figure}[h!] |
|
404 \centering |
|
405 \scalebox{1.2}{ |
|
406 \begin{tikzpicture} |
|
407 \node (0) {}; |
|
408 \node (1) [draw, text height = 3.9pt, right = -0.9pt of 0, thick, inner sep = 5pt] {\wuhao $m$}; |
|
409 \node (2) [draw, right = -0.9pt of 1, thick, inner sep = 5pt] {\wuhao $0$}; |
|
410 \node (3) [draw, text height = 2.9pt, right = -0.9pt of 2, thick, inner sep = 5pt] {\wuhao $r+1$}; |
|
411 \node (4) [draw, right = -0.9pt of 3, thick, inner sep = 5pt] {\wuhao $0$}; |
|
412 \node (5) [draw, right = -0.9pt of 4, thick, inner sep = 5pt] {\wuhao $0$}; |
|
413 \node (6) [right = -0.9pt of 5] {\ldots \ldots}; |
|
414 \draw [->, >=latex, thick] (1)+(0, -4\baseheight) -- (1); |
|
415 \end{tikzpicture}} |
|
416 \caption{Final configuration of TM $adjust$} \label{adjust_final} |
|
417 \end{figure} |
|
418 |
|
419 |
|
420 \begin{figure}[h!] |
|
421 \centering |
|
422 \scalebox{0.9}{ |
|
423 \begin{tikzpicture} |
|
424 \node[circle,draw] (1) {$1$}; |
|
425 \node[circle,draw] (2) at ($(1)+(0.3\basewidth, 0)$) {$2$}; |
|
426 \node[circle,draw] (3) at ($(2)+(0.3\basewidth, 0)$) {$3$}; |
|
427 \node[circle,draw] (4) at ($(3)+(0.3\basewidth, 0)$) {$4$}; |
|
428 \node[circle,draw] (5) at ($(4)+(0.3\basewidth, 0)$) {$5$}; |
|
429 \node[circle,draw] (6) at ($(5)+(0.3\basewidth, 0)$) {$6$}; |
|
430 \node[circle,draw] (7) at ($(6)+(0.3\basewidth, 0)$) {$7$}; |
|
431 \node[circle,draw] (8) at ($(4)+(0, -7\baseheight)$) {$8$}; |
|
432 \node[circle,draw] (9) at ($(8)+(0.3\basewidth, 0)$) {$9$}; |
|
433 \node[circle,draw] (10) at ($(9)+(0.3\basewidth, 0)$) {$10$}; |
|
434 \node[circle,draw] (11) at ($(10)+(0.3\basewidth, 0)$) {$11$}; |
|
435 \node[circle,draw] (12) at ($(11)+(0.3\basewidth, 0)$) {$0$}; |
|
436 |
|
437 |
|
438 \draw [->, >=latex] (1) -- node[above] {$S_1:R$} (2) |
|
439 ; |
|
440 \draw [->, >=latex] (1) edge[loop above] node[above] {$S_0:S_1$} (1) |
|
441 ; |
|
442 \draw [->, >=latex] (2) -- node[above] {$S_1:R$} (3) |
|
443 ; |
|
444 \draw [->, >=latex] (3) edge[loop above] node[above] {$S_0:R$} (3) |
|
445 ; |
|
446 \draw [->, >=latex] (3) -- node[above] {$S_1:R$} (4) |
|
447 ; |
|
448 \draw [->, >=latex] (4) -- node[above] {$S_1:L$} (5) |
|
449 ; |
|
450 \draw [->, >=latex] (4) -- node[right] {$S_0:L$} (8) |
|
451 ; |
|
452 \draw [->, >=latex] (5) -- node[above] {$S_0:L$} (6) |
|
453 ; |
|
454 \draw [->, >=latex] (5) edge[loop above] node[above] {$S_1:S_0$} (5) |
|
455 ; |
|
456 \draw [->, >=latex] (6) -- node[above] {$S_1:R$} (7) |
|
457 ; |
|
458 \draw [->, >=latex] (6) edge[loop above] node[above] {$S_0:L$} (6) |
|
459 ; |
|
460 \draw (7) -- ($(7)+(0, 6\baseheight)$) -- ($(2) + (0, 6\baseheight)$) node [above,midway] {$S_0:S_1$} |
|
461 ; |
|
462 \draw [->, >=latex] ($(2) + (0, 6\baseheight)$) -- (2) |
|
463 ; |
|
464 \draw [->, >=latex] (8) edge[loop left] node[left] {$S_1:S_0$} (8) |
|
465 ; |
|
466 \draw [->, >=latex] (8) -- node[above] {$S_0:L$} (9) |
|
467 ; |
|
468 \draw [->, >=latex] (9) edge[loop above] node[above] {$S_0:L$} (9) |
|
469 ; |
|
470 \draw [->, >=latex] (9) -- node[above] {$S_1:L$} (10) |
|
471 ; |
|
472 \draw [->, >=latex] (10) edge[loop above] node[above] {$S_0:L$} (10) |
|
473 ; |
|
474 \draw [->, >=latex] (10) -- node[above] {$S_0:L$} (11) |
|
475 ; |
|
476 \draw [->, >=latex] (11) edge[loop above] node[above] {$S_1:L$} (11) |
|
477 ; |
|
478 \draw [->, >=latex] (11) -- node[above] {$S_0:R$} (12) |
|
479 ; |
|
480 \end{tikzpicture}} |
|
481 \caption{Diagram of TM $adjust$} \label{adjust_diag} |
|
482 \end{figure} |
|
483 *} |
|
484 |
|
485 |
|
486 definition rec_twice :: "recf" |
|
487 where |
|
488 "rec_twice = Cn 1 rec_mult [id 1 0, constn 2]" |
|
489 |
|
490 definition rec_fourtimes :: "recf" |
|
491 where |
|
492 "rec_fourtimes = Cn 1 rec_mult [id 1 0, constn 4]" |
|
493 |
|
494 definition abc_twice :: "abc_prog" |
|
495 where |
|
496 "abc_twice = (let (aprog, ary, fp) = rec_ci rec_twice in |
|
497 aprog [+] dummy_abc ((Suc 0)))" |
|
498 |
|
499 definition abc_fourtimes :: "abc_prog" |
|
500 where |
|
501 "abc_fourtimes = (let (aprog, ary, fp) = rec_ci rec_fourtimes in |
|
502 aprog [+] dummy_abc ((Suc 0)))" |
|
503 |
|
504 definition twice_ly :: "nat list" |
|
505 where |
|
506 "twice_ly = layout_of abc_twice" |
|
507 |
|
508 definition fourtimes_ly :: "nat list" |
|
509 where |
|
510 "fourtimes_ly = layout_of abc_fourtimes" |
|
511 |
|
512 definition t_twice :: "tprog" |
|
513 where |
|
514 "t_twice = change_termi_state (tm_of (abc_twice) @ (tMp 1 (start_of twice_ly (length abc_twice) - Suc 0)))" |
|
515 |
|
516 definition t_fourtimes :: "tprog" |
|
517 where |
|
518 "t_fourtimes = change_termi_state (tm_of (abc_fourtimes) @ |
|
519 (tMp 1 (start_of fourtimes_ly (length abc_fourtimes) - Suc 0)))" |
|
520 |
|
521 |
|
522 definition t_twice_len :: "nat" |
|
523 where |
|
524 "t_twice_len = length t_twice div 2" |
|
525 |
|
526 definition t_wcode_main_first_part:: "tprog" |
|
527 where |
|
528 "t_wcode_main_first_part \<equiv> |
|
529 [(L, 1), (L, 2), (L, 7), (R, 3), |
|
530 (R, 4), (W0, 3), (R, 4), (R, 5), |
|
531 (W1, 6), (R, 5), (R, 13), (L, 6), |
|
532 (R, 0), (R, 8), (R, 9), (Nop, 8), |
|
533 (R, 10), (W0, 9), (R, 10), (R, 11), |
|
534 (W1, 12), (R, 11), (R, t_twice_len + 14), (L, 12)]" |
|
535 |
|
536 definition t_wcode_main :: "tprog" |
|
537 where |
|
538 "t_wcode_main = (t_wcode_main_first_part @ tshift t_twice 12 @ [(L, 1), (L, 1)] |
|
539 @ tshift t_fourtimes (t_twice_len + 13) @ [(L, 1), (L, 1)])" |
|
540 |
|
541 fun bl_bin :: "block list \<Rightarrow> nat" |
|
542 where |
|
543 "bl_bin [] = 0" |
|
544 | "bl_bin (Bk # xs) = 2 * bl_bin xs" |
|
545 | "bl_bin (Oc # xs) = Suc (2 * bl_bin xs)" |
|
546 |
|
547 declare bl_bin.simps[simp del] |
|
548 |
|
549 type_synonym bin_inv_t = "block list \<Rightarrow> nat \<Rightarrow> tape \<Rightarrow> bool" |
|
550 |
|
551 fun wcode_before_double :: "bin_inv_t" |
|
552 where |
|
553 "wcode_before_double ires rs (l, r) = |
|
554 (\<exists> ln rn. l = Bk # Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires \<and> |
|
555 r = Oc\<^bsup>(Suc (Suc rs))\<^esup> @ Bk\<^bsup>rn \<^esup>)" |
|
556 |
|
557 declare wcode_before_double.simps[simp del] |
|
558 |
|
559 fun wcode_after_double :: "bin_inv_t" |
|
560 where |
|
561 "wcode_after_double ires rs (l, r) = |
|
562 (\<exists> ln rn. l = Bk # Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires \<and> |
|
563 r = Oc\<^bsup>Suc (Suc (Suc 2*rs))\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
564 |
|
565 declare wcode_after_double.simps[simp del] |
|
566 |
|
567 fun wcode_on_left_moving_1_B :: "bin_inv_t" |
|
568 where |
|
569 "wcode_on_left_moving_1_B ires rs (l, r) = |
|
570 (\<exists> ml mr rn. l = Bk\<^bsup>ml\<^esup> @ Oc # Oc # ires \<and> |
|
571 r = Bk\<^bsup>mr\<^esup> @ Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup> \<and> |
|
572 ml + mr > Suc 0 \<and> mr > 0)" |
|
573 |
|
574 declare wcode_on_left_moving_1_B.simps[simp del] |
|
575 |
|
576 fun wcode_on_left_moving_1_O :: "bin_inv_t" |
|
577 where |
|
578 "wcode_on_left_moving_1_O ires rs (l, r) = |
|
579 (\<exists> ln rn. |
|
580 l = Oc # ires \<and> |
|
581 r = Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
582 |
|
583 declare wcode_on_left_moving_1_O.simps[simp del] |
|
584 |
|
585 fun wcode_on_left_moving_1 :: "bin_inv_t" |
|
586 where |
|
587 "wcode_on_left_moving_1 ires rs (l, r) = |
|
588 (wcode_on_left_moving_1_B ires rs (l, r) \<or> wcode_on_left_moving_1_O ires rs (l, r))" |
|
589 |
|
590 declare wcode_on_left_moving_1.simps[simp del] |
|
591 |
|
592 fun wcode_on_checking_1 :: "bin_inv_t" |
|
593 where |
|
594 "wcode_on_checking_1 ires rs (l, r) = |
|
595 (\<exists> ln rn. l = ires \<and> |
|
596 r = Oc # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
597 |
|
598 fun wcode_erase1 :: "bin_inv_t" |
|
599 where |
|
600 "wcode_erase1 ires rs (l, r) = |
|
601 (\<exists> ln rn. l = Oc # ires \<and> |
|
602 tl r = Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
603 |
|
604 declare wcode_erase1.simps [simp del] |
|
605 |
|
606 fun wcode_on_right_moving_1 :: "bin_inv_t" |
|
607 where |
|
608 "wcode_on_right_moving_1 ires rs (l, r) = |
|
609 (\<exists> ml mr rn. |
|
610 l = Bk\<^bsup>ml\<^esup> @ Oc # ires \<and> |
|
611 r = Bk\<^bsup>mr\<^esup> @ Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup> \<and> |
|
612 ml + mr > Suc 0)" |
|
613 |
|
614 declare wcode_on_right_moving_1.simps [simp del] |
|
615 |
|
616 declare wcode_on_right_moving_1.simps[simp del] |
|
617 |
|
618 fun wcode_goon_right_moving_1 :: "bin_inv_t" |
|
619 where |
|
620 "wcode_goon_right_moving_1 ires rs (l, r) = |
|
621 (\<exists> ml mr ln rn. |
|
622 l = Oc\<^bsup>ml\<^esup> @ Bk # Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires \<and> |
|
623 r = Oc\<^bsup>mr\<^esup> @ Bk\<^bsup>rn\<^esup> \<and> |
|
624 ml + mr = Suc rs)" |
|
625 |
|
626 declare wcode_goon_right_moving_1.simps[simp del] |
|
627 |
|
628 fun wcode_backto_standard_pos_B :: "bin_inv_t" |
|
629 where |
|
630 "wcode_backto_standard_pos_B ires rs (l, r) = |
|
631 (\<exists> ln rn. l = Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires \<and> |
|
632 r = Bk # Oc\<^bsup>(Suc (Suc rs))\<^esup> @ Bk\<^bsup>rn \<^esup>)" |
|
633 |
|
634 declare wcode_backto_standard_pos_B.simps[simp del] |
|
635 |
|
636 fun wcode_backto_standard_pos_O :: "bin_inv_t" |
|
637 where |
|
638 "wcode_backto_standard_pos_O ires rs (l, r) = |
|
639 (\<exists> ml mr ln rn. |
|
640 l = Oc\<^bsup>ml\<^esup> @ Bk # Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires \<and> |
|
641 r = Oc\<^bsup>mr\<^esup> @ Bk\<^bsup>rn\<^esup> \<and> |
|
642 ml + mr = Suc (Suc rs) \<and> mr > 0)" |
|
643 |
|
644 declare wcode_backto_standard_pos_O.simps[simp del] |
|
645 |
|
646 fun wcode_backto_standard_pos :: "bin_inv_t" |
|
647 where |
|
648 "wcode_backto_standard_pos ires rs (l, r) = (wcode_backto_standard_pos_B ires rs (l, r) \<or> |
|
649 wcode_backto_standard_pos_O ires rs (l, r))" |
|
650 |
|
651 declare wcode_backto_standard_pos.simps[simp del] |
|
652 |
|
653 lemma [simp]: "<0::nat> = [Oc]" |
|
654 apply(simp add: tape_of_nat_abv exponent_def tape_of_nat_list.simps) |
|
655 done |
|
656 |
|
657 lemma tape_of_Suc_nat: "<Suc (a ::nat)> = replicate a Oc @ [Oc, Oc]" |
|
658 apply(simp add: tape_of_nat_abv exp_ind tape_of_nat_list.simps) |
|
659 apply(simp only: exp_ind_def[THEN sym]) |
|
660 apply(simp only: exp_ind, simp, simp add: exponent_def) |
|
661 done |
|
662 |
|
663 lemma [simp]: "length (<a::nat>) = Suc a" |
|
664 apply(simp add: tape_of_nat_abv tape_of_nat_list.simps) |
|
665 done |
|
666 |
|
667 lemma [simp]: "<[a::nat]> = <a>" |
|
668 apply(simp add: tape_of_nat_abv tape_of_nl_abv exponent_def |
|
669 tape_of_nat_list.simps) |
|
670 done |
|
671 |
|
672 lemma bin_wc_eq: "bl_bin xs = bl2wc xs" |
|
673 proof(induct xs) |
|
674 show " bl_bin [] = bl2wc []" |
|
675 apply(simp add: bl_bin.simps) |
|
676 done |
|
677 next |
|
678 fix a xs |
|
679 assume "bl_bin xs = bl2wc xs" |
|
680 thus " bl_bin (a # xs) = bl2wc (a # xs)" |
|
681 apply(case_tac a, simp_all add: bl_bin.simps bl2wc.simps) |
|
682 apply(simp_all add: bl2nat.simps bl2nat_double) |
|
683 done |
|
684 qed |
|
685 |
|
686 declare exp_def[simp del] |
|
687 |
|
688 lemma bl_bin_nat_Suc: |
|
689 "bl_bin (<Suc a>) = bl_bin (<a>) + 2^(Suc a)" |
|
690 apply(simp add: tape_of_nat_abv bin_wc_eq) |
|
691 apply(simp add: bl2wc.simps) |
|
692 done |
|
693 lemma [simp]: " rev (a\<^bsup>aa\<^esup>) = a\<^bsup>aa\<^esup>" |
|
694 apply(simp add: exponent_def) |
|
695 done |
|
696 |
|
697 declare tape_of_nl_abv_cons[simp del] |
|
698 |
|
699 lemma tape_of_nl_rev: "rev (<lm::nat list>) = (<rev lm>)" |
|
700 apply(induct lm rule: list_tl_induct, simp) |
|
701 apply(case_tac "list = []", simp add: tape_of_nl_abv tape_of_nat_list.simps) |
|
702 apply(simp add: tape_of_nat_list_butlast_last tape_of_nl_abv_cons) |
|
703 done |
|
704 lemma [simp]: "a\<^bsup>Suc 0\<^esup> = [a]" |
|
705 by(simp add: exp_def) |
|
706 lemma tape_of_nl_cons_app1: "(<a # xs @ [b]>) = (Oc\<^bsup>Suc a\<^esup> @ Bk # (<xs@ [b]>))" |
|
707 apply(case_tac xs, simp add: tape_of_nl_abv tape_of_nat_list.simps) |
|
708 apply(simp add: tape_of_nl_abv tape_of_nat_list.simps) |
|
709 done |
|
710 |
|
711 lemma bl_bin_bk_oc[simp]: |
|
712 "bl_bin (xs @ [Bk, Oc]) = |
|
713 bl_bin xs + 2*2^(length xs)" |
|
714 apply(simp add: bin_wc_eq) |
|
715 using bl2nat_cons_oc[of "xs @ [Bk]"] |
|
716 apply(simp add: bl2nat_cons_bk bl2wc.simps) |
|
717 done |
|
718 |
|
719 lemma tape_of_nat[simp]: "(<a::nat>) = Oc\<^bsup>Suc a\<^esup>" |
|
720 apply(simp add: tape_of_nat_abv) |
|
721 done |
|
722 lemma tape_of_nl_cons_app2: "(<c # xs @ [b]>) = (<c # xs> @ Bk # Oc\<^bsup>Suc b\<^esup>)" |
|
723 proof(induct "length xs" arbitrary: xs c, |
|
724 simp add: tape_of_nl_abv tape_of_nat_list.simps) |
|
725 fix x xs c |
|
726 assume ind: "\<And>xs c. x = length xs \<Longrightarrow> <c # xs @ [b]> = |
|
727 <c # xs> @ Bk # Oc\<^bsup>Suc b\<^esup>" |
|
728 and h: "Suc x = length (xs::nat list)" |
|
729 show "<c # xs @ [b]> = <c # xs> @ Bk # Oc\<^bsup>Suc b\<^esup>" |
|
730 proof(case_tac xs, simp add: tape_of_nl_abv tape_of_nat_list.simps) |
|
731 fix a list |
|
732 assume g: "xs = a # list" |
|
733 hence k: "<a # list @ [b]> = <a # list> @ Bk # Oc\<^bsup>Suc b\<^esup>" |
|
734 apply(rule_tac ind) |
|
735 using h |
|
736 apply(simp) |
|
737 done |
|
738 from g and k show "<c # xs @ [b]> = <c # xs> @ Bk # Oc\<^bsup>Suc b\<^esup>" |
|
739 apply(simp add: tape_of_nl_abv tape_of_nat_list.simps) |
|
740 done |
|
741 qed |
|
742 qed |
|
743 |
|
744 lemma [simp]: "length (<aa # a # list>) = Suc (Suc aa) + length (<a # list>)" |
|
745 apply(simp add: tape_of_nl_abv tape_of_nat_list.simps) |
|
746 done |
|
747 |
|
748 lemma [simp]: "bl_bin (Oc\<^bsup>Suc aa\<^esup> @ Bk # tape_of_nat_list (a # lista) @ [Bk, Oc]) = |
|
749 bl_bin (Oc\<^bsup>Suc aa\<^esup> @ Bk # tape_of_nat_list (a # lista)) + |
|
750 2* 2^(length (Oc\<^bsup>Suc aa\<^esup> @ Bk # tape_of_nat_list (a # lista)))" |
|
751 using bl_bin_bk_oc[of "Oc\<^bsup>Suc aa\<^esup> @ Bk # tape_of_nat_list (a # lista)"] |
|
752 apply(simp) |
|
753 done |
|
754 |
|
755 lemma [simp]: |
|
756 "bl_bin (<aa # list>) + (4 * rs + 4) * 2 ^ (length (<aa # list>) - Suc 0) |
|
757 = bl_bin (Oc\<^bsup>Suc aa\<^esup> @ Bk # <list @ [0]>) + rs * (2 * 2 ^ (aa + length (<list @ [0]>)))" |
|
758 apply(case_tac "list", simp add: add_mult_distrib, simp) |
|
759 apply(simp add: tape_of_nl_cons_app2 add_mult_distrib) |
|
760 apply(simp add: tape_of_nl_abv tape_of_nat_list.simps) |
|
761 done |
|
762 |
|
763 lemma tape_of_nl_app_Suc: "((<list @ [Suc ab]>)) = (<list @ [ab]>) @ [Oc]" |
|
764 apply(induct list) |
|
765 apply(simp add: tape_of_nl_abv tape_of_nat_list.simps exp_ind) |
|
766 apply(case_tac list) |
|
767 apply(simp_all add:tape_of_nl_abv tape_of_nat_list.simps exp_ind) |
|
768 done |
|
769 |
|
770 lemma [simp]: "bl_bin (Oc # Oc\<^bsup>aa\<^esup> @ Bk # <list @ [ab]> @ [Oc]) |
|
771 = bl_bin (Oc # Oc\<^bsup>aa\<^esup> @ Bk # <list @ [ab]>) + |
|
772 2^(length (Oc # Oc\<^bsup>aa\<^esup> @ Bk # <list @ [ab]>))" |
|
773 apply(simp add: bin_wc_eq) |
|
774 apply(simp add: bl2nat_cons_oc bl2wc.simps) |
|
775 using bl2nat_cons_oc[of "Oc # Oc\<^bsup>aa\<^esup> @ Bk # <list @ [ab]>"] |
|
776 apply(simp) |
|
777 done |
|
778 lemma [simp]: "bl_bin (Oc # Oc\<^bsup>aa\<^esup> @ Bk # <list @ [ab]>) + (4 * 2 ^ (aa + length (<list @ [ab]>)) + |
|
779 4 * (rs * 2 ^ (aa + length (<list @ [ab]>)))) = |
|
780 bl_bin (Oc # Oc\<^bsup>aa\<^esup> @ Bk # <list @ [Suc ab]>) + |
|
781 rs * (2 * 2 ^ (aa + length (<list @ [Suc ab]>)))" |
|
782 apply(simp add: tape_of_nl_app_Suc) |
|
783 done |
|
784 |
|
785 declare tape_of_nat[simp del] |
|
786 |
|
787 fun wcode_double_case_inv :: "nat \<Rightarrow> bin_inv_t" |
|
788 where |
|
789 "wcode_double_case_inv st ires rs (l, r) = |
|
790 (if st = Suc 0 then wcode_on_left_moving_1 ires rs (l, r) |
|
791 else if st = Suc (Suc 0) then wcode_on_checking_1 ires rs (l, r) |
|
792 else if st = 3 then wcode_erase1 ires rs (l, r) |
|
793 else if st = 4 then wcode_on_right_moving_1 ires rs (l, r) |
|
794 else if st = 5 then wcode_goon_right_moving_1 ires rs (l, r) |
|
795 else if st = 6 then wcode_backto_standard_pos ires rs (l, r) |
|
796 else if st = 13 then wcode_before_double ires rs (l, r) |
|
797 else False)" |
|
798 |
|
799 declare wcode_double_case_inv.simps[simp del] |
|
800 |
|
801 fun wcode_double_case_state :: "t_conf \<Rightarrow> nat" |
|
802 where |
|
803 "wcode_double_case_state (st, l, r) = |
|
804 13 - st" |
|
805 |
|
806 fun wcode_double_case_step :: "t_conf \<Rightarrow> nat" |
|
807 where |
|
808 "wcode_double_case_step (st, l, r) = |
|
809 (if st = Suc 0 then (length l) |
|
810 else if st = Suc (Suc 0) then (length r) |
|
811 else if st = 3 then |
|
812 if hd r = Oc then 1 else 0 |
|
813 else if st = 4 then (length r) |
|
814 else if st = 5 then (length r) |
|
815 else if st = 6 then (length l) |
|
816 else 0)" |
|
817 |
|
818 fun wcode_double_case_measure :: "t_conf \<Rightarrow> nat \<times> nat" |
|
819 where |
|
820 "wcode_double_case_measure (st, l, r) = |
|
821 (wcode_double_case_state (st, l, r), |
|
822 wcode_double_case_step (st, l, r))" |
|
823 |
|
824 definition wcode_double_case_le :: "(t_conf \<times> t_conf) set" |
|
825 where "wcode_double_case_le \<equiv> (inv_image lex_pair wcode_double_case_measure)" |
|
826 |
|
827 lemma [intro]: "wf lex_pair" |
|
828 by(auto intro:wf_lex_prod simp:lex_pair_def) |
|
829 |
|
830 lemma wf_wcode_double_case_le[intro]: "wf wcode_double_case_le" |
|
831 by(auto intro:wf_inv_image simp: wcode_double_case_le_def ) |
|
832 term fetch |
|
833 |
|
834 lemma [simp]: "fetch t_wcode_main (Suc 0) Bk = (L, Suc 0)" |
|
835 apply(simp add: t_wcode_main_def t_wcode_main_first_part_def |
|
836 fetch.simps nth_of.simps) |
|
837 done |
|
838 |
|
839 lemma [simp]: "fetch t_wcode_main (Suc 0) Oc = (L, Suc (Suc 0))" |
|
840 apply(simp add: t_wcode_main_def t_wcode_main_first_part_def |
|
841 fetch.simps nth_of.simps) |
|
842 done |
|
843 |
|
844 lemma [simp]: "fetch t_wcode_main (Suc (Suc 0)) Oc = (R, 3)" |
|
845 apply(simp add: t_wcode_main_def t_wcode_main_first_part_def |
|
846 fetch.simps nth_of.simps) |
|
847 done |
|
848 |
|
849 lemma [simp]: "fetch t_wcode_main (Suc (Suc (Suc 0))) Bk = (R, 4)" |
|
850 apply(simp add: t_wcode_main_def t_wcode_main_first_part_def |
|
851 fetch.simps nth_of.simps) |
|
852 done |
|
853 |
|
854 lemma [simp]: "fetch t_wcode_main (Suc (Suc (Suc 0))) Oc = (W0, 3)" |
|
855 apply(simp add: t_wcode_main_def t_wcode_main_first_part_def |
|
856 fetch.simps nth_of.simps) |
|
857 done |
|
858 |
|
859 lemma [simp]: "fetch t_wcode_main 4 Bk = (R, 4)" |
|
860 apply(simp add: t_wcode_main_def t_wcode_main_first_part_def |
|
861 fetch.simps nth_of.simps) |
|
862 done |
|
863 |
|
864 lemma [simp]: "fetch t_wcode_main 4 Oc = (R, 5)" |
|
865 apply(simp add: t_wcode_main_def t_wcode_main_first_part_def |
|
866 fetch.simps nth_of.simps) |
|
867 done |
|
868 |
|
869 lemma [simp]: "fetch t_wcode_main 5 Oc = (R, 5)" |
|
870 apply(simp add: t_wcode_main_def t_wcode_main_first_part_def |
|
871 fetch.simps nth_of.simps) |
|
872 done |
|
873 |
|
874 lemma [simp]: "fetch t_wcode_main 5 Bk = (W1, 6)" |
|
875 apply(simp add: t_wcode_main_def t_wcode_main_first_part_def |
|
876 fetch.simps nth_of.simps) |
|
877 done |
|
878 |
|
879 lemma [simp]: "fetch t_wcode_main 6 Bk = (R, 13)" |
|
880 apply(simp add: t_wcode_main_def t_wcode_main_first_part_def |
|
881 fetch.simps nth_of.simps) |
|
882 done |
|
883 |
|
884 lemma [simp]: "fetch t_wcode_main 6 Oc = (L, 6)" |
|
885 apply(simp add: t_wcode_main_def t_wcode_main_first_part_def |
|
886 fetch.simps nth_of.simps) |
|
887 done |
|
888 lemma [elim]: "Bk\<^bsup>mr\<^esup> = [] \<Longrightarrow> mr = 0" |
|
889 apply(case_tac mr, auto simp: exponent_def) |
|
890 done |
|
891 |
|
892 lemma [simp]: "wcode_on_left_moving_1 ires rs (b, []) = False" |
|
893 apply(simp add: wcode_on_left_moving_1.simps wcode_on_left_moving_1_B.simps |
|
894 wcode_on_left_moving_1_O.simps, auto) |
|
895 done |
|
896 |
|
897 |
|
898 declare wcode_on_checking_1.simps[simp del] |
|
899 |
|
900 lemmas wcode_double_case_inv_simps = |
|
901 wcode_on_left_moving_1.simps wcode_on_left_moving_1_O.simps |
|
902 wcode_on_left_moving_1_B.simps wcode_on_checking_1.simps |
|
903 wcode_erase1.simps wcode_on_right_moving_1.simps |
|
904 wcode_goon_right_moving_1.simps wcode_backto_standard_pos.simps |
|
905 |
|
906 |
|
907 lemma [simp]: "wcode_on_left_moving_1 ires rs (b, r) \<Longrightarrow> b \<noteq> []" |
|
908 apply(simp add: wcode_double_case_inv_simps, auto) |
|
909 done |
|
910 |
|
911 |
|
912 lemma [elim]: "\<lbrakk>wcode_on_left_moving_1 ires rs (b, Bk # list); |
|
913 tl b = aa \<and> hd b # Bk # list = ba\<rbrakk> \<Longrightarrow> |
|
914 wcode_on_left_moving_1 ires rs (aa, ba)" |
|
915 apply(simp only: wcode_on_left_moving_1.simps wcode_on_left_moving_1_O.simps |
|
916 wcode_on_left_moving_1_B.simps) |
|
917 apply(erule_tac disjE) |
|
918 apply(erule_tac exE)+ |
|
919 apply(case_tac ml, simp) |
|
920 apply(rule_tac x = "mr - Suc (Suc 0)" in exI, rule_tac x = rn in exI) |
|
921 apply(case_tac mr, simp, case_tac nat, simp, simp add: exp_ind) |
|
922 apply(rule_tac disjI1) |
|
923 apply(rule_tac x = nat in exI, rule_tac x = "Suc mr" in exI, rule_tac x = rn in exI, |
|
924 simp add: exp_ind_def) |
|
925 apply(erule_tac exE)+ |
|
926 apply(simp) |
|
927 done |
|
928 |
|
929 |
|
930 lemma [elim]: |
|
931 "\<lbrakk>wcode_on_left_moving_1 ires rs (b, Oc # list); tl b = aa \<and> hd b # Oc # list = ba\<rbrakk> |
|
932 \<Longrightarrow> wcode_on_checking_1 ires rs (aa, ba)" |
|
933 apply(simp only: wcode_double_case_inv_simps) |
|
934 apply(erule_tac disjE) |
|
935 apply(erule_tac [!] exE)+ |
|
936 apply(case_tac mr, simp, simp add: exp_ind_def) |
|
937 apply(rule_tac x = ln in exI, rule_tac x = rn in exI, simp) |
|
938 done |
|
939 |
|
940 |
|
941 lemma [simp]: "wcode_on_checking_1 ires rs (b, []) = False" |
|
942 apply(auto simp: wcode_double_case_inv_simps) |
|
943 done |
|
944 |
|
945 lemma [simp]: "wcode_on_checking_1 ires rs (b, Bk # list) = False" |
|
946 apply(auto simp: wcode_double_case_inv_simps) |
|
947 done |
|
948 |
|
949 lemma [elim]: "\<lbrakk>wcode_on_checking_1 ires rs (b, Oc # ba);Oc # b = aa \<and> list = ba\<rbrakk> |
|
950 \<Longrightarrow> wcode_erase1 ires rs (aa, ba)" |
|
951 apply(simp only: wcode_double_case_inv_simps) |
|
952 apply(erule_tac exE)+ |
|
953 apply(rule_tac x = ln in exI, rule_tac x = rn in exI, simp) |
|
954 done |
|
955 |
|
956 |
|
957 lemma [simp]: "wcode_on_checking_1 ires rs (b, []) = False" |
|
958 apply(simp add: wcode_double_case_inv_simps) |
|
959 done |
|
960 |
|
961 lemma [simp]: "wcode_on_checking_1 ires rs ([], Bk # list) = False" |
|
962 apply(simp add: wcode_double_case_inv_simps) |
|
963 done |
|
964 |
|
965 lemma [simp]: "wcode_erase1 ires rs (b, []) = False" |
|
966 apply(simp add: wcode_double_case_inv_simps) |
|
967 done |
|
968 |
|
969 lemma [simp]: "wcode_on_right_moving_1 ires rs (b, []) = False" |
|
970 apply(simp add: wcode_double_case_inv_simps exp_ind_def) |
|
971 done |
|
972 |
|
973 lemma [simp]: "wcode_on_right_moving_1 ires rs (b, []) = False" |
|
974 apply(simp add: wcode_double_case_inv_simps exp_ind_def) |
|
975 done |
|
976 |
|
977 lemma [elim]: "\<lbrakk>wcode_on_right_moving_1 ires rs (b, Bk # ba); Bk # b = aa \<and> list = b\<rbrakk> \<Longrightarrow> |
|
978 wcode_on_right_moving_1 ires rs (aa, ba)" |
|
979 apply(simp only: wcode_double_case_inv_simps) |
|
980 apply(erule_tac exE)+ |
|
981 apply(rule_tac x = "Suc ml" in exI, rule_tac x = "mr - Suc 0" in exI, |
|
982 rule_tac x = rn in exI) |
|
983 apply(simp add: exp_ind_def) |
|
984 apply(case_tac mr, simp, simp add: exp_ind_def) |
|
985 done |
|
986 |
|
987 lemma [elim]: |
|
988 "\<lbrakk>wcode_on_right_moving_1 ires rs (b, Oc # ba); Oc # b = aa \<and> list = ba\<rbrakk> |
|
989 \<Longrightarrow> wcode_goon_right_moving_1 ires rs (aa, ba)" |
|
990 apply(simp only: wcode_double_case_inv_simps) |
|
991 apply(erule_tac exE)+ |
|
992 apply(rule_tac x = "Suc 0" in exI, rule_tac x = "rs" in exI, |
|
993 rule_tac x = "ml - Suc (Suc 0)" in exI, rule_tac x = rn in exI) |
|
994 apply(case_tac mr, simp_all add: exp_ind_def) |
|
995 apply(case_tac ml, simp, case_tac nat, simp, simp) |
|
996 apply(simp add: exp_ind_def) |
|
997 done |
|
998 |
|
999 lemma [simp]: |
|
1000 "wcode_on_right_moving_1 ires rs (b, []) \<Longrightarrow> False" |
|
1001 apply(simp add: wcode_double_case_inv_simps exponent_def) |
|
1002 done |
|
1003 |
|
1004 lemma [elim]: "\<lbrakk>wcode_erase1 ires rs (b, Bk # ba); Bk # b = aa \<and> list = ba; c = Bk # ba\<rbrakk> |
|
1005 \<Longrightarrow> wcode_on_right_moving_1 ires rs (aa, ba)" |
|
1006 apply(simp only: wcode_double_case_inv_simps) |
|
1007 apply(erule_tac exE)+ |
|
1008 apply(rule_tac x = "Suc 0" in exI, rule_tac x = "Suc (Suc ln)" in exI, |
|
1009 rule_tac x = rn in exI, simp add: exp_ind) |
|
1010 done |
|
1011 |
|
1012 lemma [elim]: "\<lbrakk>wcode_erase1 ires rs (aa, Oc # list); b = aa \<and> Bk # list = ba\<rbrakk> \<Longrightarrow> |
|
1013 wcode_erase1 ires rs (aa, ba)" |
|
1014 apply(simp only: wcode_double_case_inv_simps) |
|
1015 apply(erule_tac exE)+ |
|
1016 apply(rule_tac x = ln in exI, rule_tac x = rn in exI, auto) |
|
1017 done |
|
1018 |
|
1019 lemma [elim]: "\<lbrakk>wcode_goon_right_moving_1 ires rs (aa, []); b = aa \<and> [Oc] = ba\<rbrakk> |
|
1020 \<Longrightarrow> wcode_backto_standard_pos ires rs (aa, ba)" |
|
1021 apply(simp only: wcode_double_case_inv_simps) |
|
1022 apply(erule_tac exE)+ |
|
1023 apply(rule_tac disjI2) |
|
1024 apply(simp only:wcode_backto_standard_pos_O.simps) |
|
1025 apply(rule_tac x = ml in exI, rule_tac x = "Suc 0" in exI, rule_tac x = ln in exI, |
|
1026 rule_tac x = rn in exI, simp) |
|
1027 apply(case_tac mr, simp_all add: exponent_def) |
|
1028 done |
|
1029 |
|
1030 lemma [elim]: |
|
1031 "\<lbrakk>wcode_goon_right_moving_1 ires rs (aa, Bk # list); b = aa \<and> Oc # list = ba\<rbrakk> |
|
1032 \<Longrightarrow> wcode_backto_standard_pos ires rs (aa, ba)" |
|
1033 apply(simp only: wcode_double_case_inv_simps) |
|
1034 apply(erule_tac exE)+ |
|
1035 apply(rule_tac disjI2) |
|
1036 apply(simp only:wcode_backto_standard_pos_O.simps) |
|
1037 apply(rule_tac x = ml in exI, rule_tac x = "Suc 0" in exI, rule_tac x = ln in exI, |
|
1038 rule_tac x = "rn - Suc 0" in exI, simp) |
|
1039 apply(case_tac mr, simp, case_tac rn, simp, simp_all add: exp_ind_def) |
|
1040 done |
|
1041 |
|
1042 lemma [elim]: "\<lbrakk>wcode_goon_right_moving_1 ires rs (b, Oc # ba); Oc # b = aa \<and> list = ba\<rbrakk> |
|
1043 \<Longrightarrow> wcode_goon_right_moving_1 ires rs (aa, ba)" |
|
1044 apply(simp only: wcode_double_case_inv_simps) |
|
1045 apply(erule_tac exE)+ |
|
1046 apply(rule_tac x = "Suc ml" in exI, rule_tac x = "mr - Suc 0" in exI, |
|
1047 rule_tac x = ln in exI, rule_tac x = rn in exI) |
|
1048 apply(simp add: exp_ind_def) |
|
1049 apply(case_tac mr, simp, case_tac rn, simp_all add: exp_ind_def) |
|
1050 done |
|
1051 |
|
1052 lemma [elim]: "\<lbrakk>wcode_backto_standard_pos ires rs (b, []); Bk # b = aa\<rbrakk> \<Longrightarrow> False" |
|
1053 apply(auto simp: wcode_double_case_inv_simps wcode_backto_standard_pos_O.simps |
|
1054 wcode_backto_standard_pos_B.simps) |
|
1055 apply(case_tac mr, simp_all add: exp_ind_def) |
|
1056 done |
|
1057 |
|
1058 lemma [elim]: "\<lbrakk>wcode_backto_standard_pos ires rs (b, Bk # ba); Bk # b = aa \<and> list = ba\<rbrakk> |
|
1059 \<Longrightarrow> wcode_before_double ires rs (aa, ba)" |
|
1060 apply(simp only: wcode_double_case_inv_simps wcode_backto_standard_pos_B.simps |
|
1061 wcode_backto_standard_pos_O.simps wcode_before_double.simps) |
|
1062 apply(erule_tac disjE) |
|
1063 apply(erule_tac exE)+ |
|
1064 apply(rule_tac x = ln in exI, rule_tac x = rn in exI, simp) |
|
1065 apply(auto) |
|
1066 apply(case_tac [!] mr, simp_all add: exp_ind_def) |
|
1067 done |
|
1068 |
|
1069 lemma [simp]: "wcode_backto_standard_pos ires rs ([], Oc # list) = False" |
|
1070 apply(auto simp: wcode_backto_standard_pos.simps wcode_backto_standard_pos_B.simps |
|
1071 wcode_backto_standard_pos_O.simps) |
|
1072 done |
|
1073 |
|
1074 lemma [simp]: "wcode_backto_standard_pos ires rs (b, []) = False" |
|
1075 apply(auto simp: wcode_backto_standard_pos.simps wcode_backto_standard_pos_B.simps |
|
1076 wcode_backto_standard_pos_O.simps) |
|
1077 apply(case_tac mr, simp, simp add: exp_ind_def) |
|
1078 done |
|
1079 |
|
1080 lemma [elim]: "\<lbrakk>wcode_backto_standard_pos ires rs (b, Oc # list); tl b = aa; hd b # Oc # list = ba\<rbrakk> |
|
1081 \<Longrightarrow> wcode_backto_standard_pos ires rs (aa, ba)" |
|
1082 apply(simp only: wcode_backto_standard_pos.simps wcode_backto_standard_pos_B.simps |
|
1083 wcode_backto_standard_pos_O.simps) |
|
1084 apply(erule_tac disjE) |
|
1085 apply(simp) |
|
1086 apply(erule_tac exE)+ |
|
1087 apply(case_tac ml, simp) |
|
1088 apply(rule_tac disjI1, rule_tac conjI) |
|
1089 apply(rule_tac x = ln in exI, simp, rule_tac x = rn in exI, simp) |
|
1090 apply(rule_tac disjI2) |
|
1091 apply(rule_tac x = nat in exI, rule_tac x = "Suc mr" in exI, rule_tac x = ln in exI, |
|
1092 rule_tac x = rn in exI, simp) |
|
1093 apply(simp add: exp_ind_def) |
|
1094 done |
|
1095 |
|
1096 declare new_tape.simps[simp del] nth_of.simps[simp del] fetch.simps[simp del] |
|
1097 lemma wcode_double_case_first_correctness: |
|
1098 "let P = (\<lambda> (st, l, r). st = 13) in |
|
1099 let Q = (\<lambda> (st, l, r). wcode_double_case_inv st ires rs (l, r)) in |
|
1100 let f = (\<lambda> stp. steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Oc # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp) in |
|
1101 \<exists> n .P (f n) \<and> Q (f (n::nat))" |
|
1102 proof - |
|
1103 let ?P = "(\<lambda> (st, l, r). st = 13)" |
|
1104 let ?Q = "(\<lambda> (st, l, r). wcode_double_case_inv st ires rs (l, r))" |
|
1105 let ?f = "(\<lambda> stp. steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Oc # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp)" |
|
1106 have "\<exists> n. ?P (?f n) \<and> ?Q (?f (n::nat))" |
|
1107 proof(rule_tac halt_lemma2) |
|
1108 show "wf wcode_double_case_le" |
|
1109 by auto |
|
1110 next |
|
1111 show "\<forall> na. \<not> ?P (?f na) \<and> ?Q (?f na) \<longrightarrow> |
|
1112 ?Q (?f (Suc na)) \<and> (?f (Suc na), ?f na) \<in> wcode_double_case_le" |
|
1113 proof(rule_tac allI, case_tac "?f na", simp add: tstep_red) |
|
1114 fix na a b c |
|
1115 show "a \<noteq> 13 \<and> wcode_double_case_inv a ires rs (b, c) \<longrightarrow> |
|
1116 (case tstep (a, b, c) t_wcode_main of (st, x) \<Rightarrow> |
|
1117 wcode_double_case_inv st ires rs x) \<and> |
|
1118 (tstep (a, b, c) t_wcode_main, a, b, c) \<in> wcode_double_case_le" |
|
1119 apply(rule_tac impI, simp add: wcode_double_case_inv.simps) |
|
1120 apply(auto split: if_splits simp: tstep.simps, |
|
1121 case_tac [!] c, simp_all, case_tac [!] "(c::block list)!0") |
|
1122 apply(simp_all add: new_tape.simps wcode_double_case_inv.simps wcode_double_case_le_def |
|
1123 lex_pair_def) |
|
1124 apply(auto split: if_splits) |
|
1125 done |
|
1126 qed |
|
1127 next |
|
1128 show "?Q (?f 0)" |
|
1129 apply(simp add: steps.simps wcode_double_case_inv.simps |
|
1130 wcode_on_left_moving_1.simps |
|
1131 wcode_on_left_moving_1_B.simps) |
|
1132 apply(rule_tac disjI1) |
|
1133 apply(rule_tac x = "Suc m" in exI, simp add: exp_ind_def) |
|
1134 apply(rule_tac x = "Suc 0" in exI, simp add: exp_ind_def) |
|
1135 apply(auto) |
|
1136 done |
|
1137 next |
|
1138 show "\<not> ?P (?f 0)" |
|
1139 apply(simp add: steps.simps) |
|
1140 done |
|
1141 qed |
|
1142 thus "let P = \<lambda>(st, l, r). st = 13; |
|
1143 Q = \<lambda>(st, l, r). wcode_double_case_inv st ires rs (l, r); |
|
1144 f = steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Oc # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main |
|
1145 in \<exists>n. P (f n) \<and> Q (f n)" |
|
1146 apply(simp add: Let_def) |
|
1147 done |
|
1148 qed |
|
1149 |
|
1150 lemma [elim]: "t_ncorrect tp |
|
1151 \<Longrightarrow> t_ncorrect (abacus.tshift tp a)" |
|
1152 apply(simp add: t_ncorrect.simps shift_length) |
|
1153 done |
|
1154 |
|
1155 lemma tshift_fetch: "\<lbrakk> fetch tp a b = (aa, st'); 0 < st'\<rbrakk> |
|
1156 \<Longrightarrow> fetch (abacus.tshift tp (length tp1 div 2)) a b |
|
1157 = (aa, st' + length tp1 div 2)" |
|
1158 apply(subgoal_tac "a > 0") |
|
1159 apply(auto simp: fetch.simps nth_of.simps shift_length nth_map |
|
1160 tshift.simps split: block.splits if_splits) |
|
1161 done |
|
1162 |
|
1163 lemma t_steps_steps_eq: "\<lbrakk>steps (st, l, r) tp stp = (st', l', r'); |
|
1164 0 < st'; |
|
1165 0 < st \<and> st \<le> length tp div 2; |
|
1166 t_ncorrect tp1; |
|
1167 t_ncorrect tp\<rbrakk> |
|
1168 \<Longrightarrow> t_steps (st + length tp1 div 2, l, r) (tshift tp (length tp1 div 2), |
|
1169 length tp1 div 2) stp |
|
1170 = (st' + length tp1 div 2, l', r')" |
|
1171 apply(induct stp arbitrary: st' l' r', simp add: steps.simps t_steps.simps, |
|
1172 simp add: tstep_red stepn) |
|
1173 apply(case_tac "(steps (st, l, r) tp stp)", simp) |
|
1174 proof - |
|
1175 fix stp st' l' r' a b c |
|
1176 assume ind: "\<And>st' l' r'. |
|
1177 \<lbrakk>a = st' \<and> b = l' \<and> c = r'; 0 < st'\<rbrakk> |
|
1178 \<Longrightarrow> t_steps (st + length tp1 div 2, l, r) |
|
1179 (abacus.tshift tp (length tp1 div 2), length tp1 div 2) stp = |
|
1180 (st' + length tp1 div 2, l', r')" |
|
1181 and h: "tstep (a, b, c) tp = (st', l', r')" "0 < st'" "t_ncorrect tp1" "t_ncorrect tp" |
|
1182 have k: "t_steps (st + length tp1 div 2, l, r) (abacus.tshift tp (length tp1 div 2), |
|
1183 length tp1 div 2) stp = (a + length tp1 div 2, b, c)" |
|
1184 apply(rule_tac ind, simp) |
|
1185 using h |
|
1186 apply(case_tac a, simp_all add: tstep.simps fetch.simps) |
|
1187 done |
|
1188 from h and this show "t_step (t_steps (st + length tp1 div 2, l, r) (abacus.tshift tp (length tp1 div 2), length tp1 div 2) stp) |
|
1189 (abacus.tshift tp (length tp1 div 2), length tp1 div 2) = |
|
1190 (st' + length tp1 div 2, l', r')" |
|
1191 apply(simp add: k) |
|
1192 apply(simp add: tstep.simps t_step.simps) |
|
1193 apply(case_tac "fetch tp a (case c of [] \<Rightarrow> Bk | x # xs \<Rightarrow> x)", simp) |
|
1194 apply(subgoal_tac "fetch (abacus.tshift tp (length tp1 div 2)) a |
|
1195 (case c of [] \<Rightarrow> Bk | x # xs \<Rightarrow> x) = (aa, st' + length tp1 div 2)", simp) |
|
1196 apply(simp add: tshift_fetch) |
|
1197 done |
|
1198 qed |
|
1199 |
|
1200 lemma t_tshift_lemma: "\<lbrakk> steps (st, l, r) tp stp = (st', l', r'); |
|
1201 st' \<noteq> 0; |
|
1202 stp > 0; |
|
1203 0 < st \<and> st \<le> length tp div 2; |
|
1204 t_ncorrect tp1; |
|
1205 t_ncorrect tp; |
|
1206 t_ncorrect tp2 |
|
1207 \<rbrakk> |
|
1208 \<Longrightarrow> \<exists> stp>0. steps (st + length tp1 div 2, l, r) (tp1 @ tshift tp (length tp1 div 2) @ tp2) stp |
|
1209 = (st' + length tp1 div 2, l', r')" |
|
1210 proof - |
|
1211 assume h: "steps (st, l, r) tp stp = (st', l', r')" |
|
1212 "st' \<noteq> 0" "stp > 0" |
|
1213 "0 < st \<and> st \<le> length tp div 2" |
|
1214 "t_ncorrect tp1" |
|
1215 "t_ncorrect tp" |
|
1216 "t_ncorrect tp2" |
|
1217 from h have |
|
1218 "\<exists>stp>0. t_steps (st + length tp1 div 2, l, r) (tp1 @ abacus.tshift tp (length tp1 div 2) @ tp2, 0) stp = |
|
1219 (st' + length tp1 div 2, l', r')" |
|
1220 apply(rule_tac stp = stp in turing_shift, simp_all add: shift_length) |
|
1221 apply(simp add: t_steps_steps_eq) |
|
1222 apply(simp add: t_ncorrect.simps shift_length) |
|
1223 done |
|
1224 thus "\<exists> stp>0. steps (st + length tp1 div 2, l, r) (tp1 @ tshift tp (length tp1 div 2) @ tp2) stp |
|
1225 = (st' + length tp1 div 2, l', r')" |
|
1226 apply(erule_tac exE) |
|
1227 apply(rule_tac x = stp in exI, simp) |
|
1228 apply(subgoal_tac "length (tp1 @ abacus.tshift tp (length tp1 div 2) @ tp2) mod 2 = 0") |
|
1229 apply(simp only: steps_eq) |
|
1230 using h |
|
1231 apply(auto simp: t_ncorrect.simps shift_length) |
|
1232 apply arith |
|
1233 done |
|
1234 qed |
|
1235 |
|
1236 |
|
1237 lemma t_twice_len_ge: "Suc 0 \<le> length t_twice div 2" |
|
1238 apply(simp add: t_twice_def tMp.simps shift_length) |
|
1239 done |
|
1240 |
|
1241 lemma [intro]: "rec_calc_rel (recf.id (Suc 0) 0) [rs] rs" |
|
1242 apply(rule_tac calc_id, simp_all) |
|
1243 done |
|
1244 |
|
1245 lemma [intro]: "rec_calc_rel (constn 2) [rs] 2" |
|
1246 using prime_rel_exec_eq[of "constn 2" "[rs]" 2] |
|
1247 apply(subgoal_tac "primerec (constn 2) 1", auto) |
|
1248 done |
|
1249 |
|
1250 lemma [intro]: "rec_calc_rel rec_mult [rs, 2] (2 * rs)" |
|
1251 using prime_rel_exec_eq[of "rec_mult" "[rs, 2]" "2*rs"] |
|
1252 apply(subgoal_tac "primerec rec_mult (Suc (Suc 0))", auto) |
|
1253 done |
|
1254 lemma t_twice_correct: "\<exists>stp ln rn. steps (Suc 0, Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) |
|
1255 (tm_of abc_twice @ tMp (Suc 0) (start_of twice_ly (length abc_twice) - Suc 0)) stp = |
|
1256 (0, Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (2 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1257 proof(case_tac "rec_ci rec_twice") |
|
1258 fix a b c |
|
1259 assume h: "rec_ci rec_twice = (a, b, c)" |
|
1260 have "\<exists>stp m l. steps (Suc 0, Bk # Bk # ires, <[rs]> @ Bk\<^bsup>n\<^esup>) (tm_of abc_twice @ tMp (Suc 0) |
|
1261 (start_of twice_ly (length abc_twice) - 1)) stp = (0, Bk\<^bsup>m\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (2*rs)\<^esup> @ Bk\<^bsup>l\<^esup>)" |
|
1262 proof(rule_tac t_compiled_by_rec) |
|
1263 show "rec_ci rec_twice = (a, b, c)" by (simp add: h) |
|
1264 next |
|
1265 show "rec_calc_rel rec_twice [rs] (2 * rs)" |
|
1266 apply(simp add: rec_twice_def) |
|
1267 apply(rule_tac rs = "[rs, 2]" in calc_cn, simp_all) |
|
1268 apply(rule_tac allI, case_tac k, auto) |
|
1269 done |
|
1270 next |
|
1271 show "length [rs] = Suc 0" by simp |
|
1272 next |
|
1273 show "layout_of (a [+] dummy_abc (Suc 0)) = layout_of (a [+] dummy_abc (Suc 0))" |
|
1274 by simp |
|
1275 next |
|
1276 show "start_of twice_ly (length abc_twice) = |
|
1277 start_of (layout_of (a [+] dummy_abc (Suc 0))) (length (a [+] dummy_abc (Suc 0)))" |
|
1278 using h |
|
1279 apply(simp add: twice_ly_def abc_twice_def) |
|
1280 done |
|
1281 next |
|
1282 show "tm_of abc_twice = tm_of (a [+] dummy_abc (Suc 0))" |
|
1283 using h |
|
1284 apply(simp add: abc_twice_def) |
|
1285 done |
|
1286 qed |
|
1287 thus "\<exists>stp ln rn. steps (Suc 0, Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) |
|
1288 (tm_of abc_twice @ tMp (Suc 0) (start_of twice_ly (length abc_twice) - Suc 0)) stp = |
|
1289 (0, Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (2 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1290 apply(simp add: tape_of_nl_abv tape_of_nat_list.simps) |
|
1291 done |
|
1292 qed |
|
1293 |
|
1294 lemma change_termi_state_fetch: "\<lbrakk>fetch ap a b = (aa, st); st > 0\<rbrakk> |
|
1295 \<Longrightarrow> fetch (change_termi_state ap) a b = (aa, st)" |
|
1296 apply(case_tac b, auto simp: fetch.simps nth_of.simps change_termi_state.simps nth_map |
|
1297 split: if_splits block.splits) |
|
1298 done |
|
1299 |
|
1300 lemma change_termi_state_exec_in_range: |
|
1301 "\<lbrakk>steps (st, l, r) ap stp = (st', l', r'); st' \<noteq> 0\<rbrakk> |
|
1302 \<Longrightarrow> steps (st, l, r) (change_termi_state ap) stp = (st', l', r')" |
|
1303 proof(induct stp arbitrary: st l r st' l' r', simp add: steps.simps) |
|
1304 fix stp st l r st' l' r' |
|
1305 assume ind: "\<And>st l r st' l' r'. |
|
1306 \<lbrakk>steps (st, l, r) ap stp = (st', l', r'); st' \<noteq> 0\<rbrakk> \<Longrightarrow> |
|
1307 steps (st, l, r) (change_termi_state ap) stp = (st', l', r')" |
|
1308 and h: "steps (st, l, r) ap (Suc stp) = (st', l', r')" "st' \<noteq> 0" |
|
1309 from h show "steps (st, l, r) (change_termi_state ap) (Suc stp) = (st', l', r')" |
|
1310 proof(simp add: tstep_red, case_tac "steps (st, l, r) ap stp", simp) |
|
1311 fix a b c |
|
1312 assume g: "steps (st, l, r) ap stp = (a, b, c)" |
|
1313 "tstep (a, b, c) ap = (st', l', r')" "0 < st'" |
|
1314 hence "steps (st, l, r) (change_termi_state ap) stp = (a, b, c)" |
|
1315 apply(rule_tac ind, simp) |
|
1316 apply(case_tac a, simp_all add: tstep_0) |
|
1317 done |
|
1318 from g and this show "tstep (steps (st, l, r) (change_termi_state ap) stp) |
|
1319 (change_termi_state ap) = (st', l', r')" |
|
1320 apply(simp add: tstep.simps) |
|
1321 apply(case_tac "fetch ap a (case c of [] \<Rightarrow> Bk | x # xs \<Rightarrow> x)", simp) |
|
1322 apply(subgoal_tac "fetch (change_termi_state ap) a (case c of [] \<Rightarrow> Bk | x # xs \<Rightarrow> x) |
|
1323 = (aa, st')", simp) |
|
1324 apply(simp add: change_termi_state_fetch) |
|
1325 done |
|
1326 qed |
|
1327 qed |
|
1328 |
|
1329 lemma change_termi_state_fetch0: |
|
1330 "\<lbrakk>0 < a; a \<le> length ap div 2; t_correct ap; fetch ap a b = (aa, 0)\<rbrakk> |
|
1331 \<Longrightarrow> fetch (change_termi_state ap) a b = (aa, Suc (length ap div 2))" |
|
1332 apply(case_tac b, auto simp: fetch.simps nth_of.simps change_termi_state.simps nth_map |
|
1333 split: if_splits block.splits) |
|
1334 done |
|
1335 |
|
1336 lemma turing_change_termi_state: |
|
1337 "\<lbrakk>steps (Suc 0, l, r) ap stp = (0, l', r'); t_correct ap\<rbrakk> |
|
1338 \<Longrightarrow> \<exists> stp. steps (Suc 0, l, r) (change_termi_state ap) stp = |
|
1339 (Suc (length ap div 2), l', r')" |
|
1340 apply(drule first_halt_point) |
|
1341 apply(erule_tac exE) |
|
1342 apply(rule_tac x = "Suc stp" in exI, simp add: tstep_red) |
|
1343 apply(case_tac "steps (Suc 0, l, r) ap stp") |
|
1344 apply(simp add: isS0_def change_termi_state_exec_in_range) |
|
1345 apply(subgoal_tac "steps (Suc 0, l, r) (change_termi_state ap) stp = (a, b, c)", simp) |
|
1346 apply(simp add: tstep.simps) |
|
1347 apply(case_tac "fetch ap a (case c of [] \<Rightarrow> Bk | x # xs \<Rightarrow> x)", simp) |
|
1348 apply(subgoal_tac "fetch (change_termi_state ap) a |
|
1349 (case c of [] \<Rightarrow> Bk | x # xs \<Rightarrow> x) = (aa, Suc (length ap div 2))", simp) |
|
1350 apply(rule_tac ap = ap in change_termi_state_fetch0, simp_all) |
|
1351 apply(rule_tac tp = "(l, r)" and l = b and r = c and stp = stp and A = ap in s_keep, simp_all) |
|
1352 apply(simp add: change_termi_state_exec_in_range) |
|
1353 done |
|
1354 |
|
1355 lemma t_twice_change_term_state: |
|
1356 "\<exists> stp ln rn. steps (Suc 0, Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_twice stp |
|
1357 = (Suc t_twice_len, Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (2 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1358 using t_twice_correct[of ires rs n] |
|
1359 apply(erule_tac exE) |
|
1360 apply(erule_tac exE) |
|
1361 apply(erule_tac exE) |
|
1362 proof(drule_tac turing_change_termi_state) |
|
1363 fix stp ln rn |
|
1364 show "t_correct (tm_of abc_twice @ tMp (Suc 0) (start_of twice_ly (length abc_twice) - Suc 0))" |
|
1365 apply(rule_tac t_compiled_correct, simp_all) |
|
1366 apply(simp add: twice_ly_def) |
|
1367 done |
|
1368 next |
|
1369 fix stp ln rn |
|
1370 show "\<exists>stp. steps (Suc 0, Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) |
|
1371 (change_termi_state (tm_of abc_twice @ tMp (Suc 0) |
|
1372 (start_of twice_ly (length abc_twice) - Suc 0))) stp = |
|
1373 (Suc (length (tm_of abc_twice @ tMp (Suc 0) (start_of twice_ly (length abc_twice) - Suc 0)) div 2), |
|
1374 Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (2 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>) \<Longrightarrow> |
|
1375 \<exists>stp ln rn. steps (Suc 0, Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_twice stp = |
|
1376 (Suc t_twice_len, Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (2 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1377 apply(erule_tac exE) |
|
1378 apply(simp add: t_twice_len_def t_twice_def) |
|
1379 apply(rule_tac x = stp in exI, rule_tac x = ln in exI, rule_tac x = rn in exI, simp) |
|
1380 done |
|
1381 qed |
|
1382 |
|
1383 lemma t_twice_append_pre: |
|
1384 "steps (Suc 0, Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_twice stp |
|
1385 = (Suc t_twice_len, Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (2 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>) |
|
1386 \<Longrightarrow> \<exists> stp>0. steps (Suc 0 + length t_wcode_main_first_part div 2, Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) |
|
1387 (t_wcode_main_first_part @ tshift t_twice (length t_wcode_main_first_part div 2) @ |
|
1388 ([(L, 1), (L, 1)] @ tshift t_fourtimes (t_twice_len + 13) @ [(L, 1), (L, 1)])) stp |
|
1389 = (Suc (t_twice_len) + length t_wcode_main_first_part div 2, Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (2 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1390 proof(rule_tac t_tshift_lemma, simp_all add: t_twice_len_ge) |
|
1391 assume "steps (Suc 0, Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_twice stp = |
|
1392 (Suc t_twice_len, Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (2 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1393 thus "0 < stp" |
|
1394 apply(case_tac stp, simp add: steps.simps t_twice_len_ge t_twice_len_def) |
|
1395 using t_twice_len_ge |
|
1396 apply(simp, simp) |
|
1397 done |
|
1398 next |
|
1399 show "t_ncorrect t_wcode_main_first_part" |
|
1400 apply(simp add: t_ncorrect.simps t_wcode_main_first_part_def) |
|
1401 done |
|
1402 next |
|
1403 show "t_ncorrect t_twice" |
|
1404 using length_tm_even[of abc_twice] |
|
1405 apply(auto simp: t_ncorrect.simps t_twice_def) |
|
1406 apply(arith) |
|
1407 done |
|
1408 next |
|
1409 show "t_ncorrect ((L, Suc 0) # (L, Suc 0) # |
|
1410 abacus.tshift t_fourtimes (t_twice_len + 13) @ [(L, Suc 0), (L, Suc 0)])" |
|
1411 using length_tm_even[of abc_fourtimes] |
|
1412 apply(simp add: t_ncorrect.simps shift_length t_fourtimes_def) |
|
1413 apply arith |
|
1414 done |
|
1415 qed |
|
1416 |
|
1417 lemma t_twice_append: |
|
1418 "\<exists> stp ln rn. steps (Suc 0 + length t_wcode_main_first_part div 2, Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) |
|
1419 (t_wcode_main_first_part @ tshift t_twice (length t_wcode_main_first_part div 2) @ |
|
1420 ([(L, 1), (L, 1)] @ tshift t_fourtimes (t_twice_len + 13) @ [(L, 1), (L, 1)])) stp |
|
1421 = (Suc (t_twice_len) + length t_wcode_main_first_part div 2, Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (2 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1422 using t_twice_change_term_state[of ires rs n] |
|
1423 apply(erule_tac exE) |
|
1424 apply(erule_tac exE) |
|
1425 apply(erule_tac exE) |
|
1426 apply(drule_tac t_twice_append_pre) |
|
1427 apply(erule_tac exE) |
|
1428 apply(rule_tac x = stpa in exI, rule_tac x = ln in exI, rule_tac x = rn in exI) |
|
1429 apply(simp) |
|
1430 done |
|
1431 |
|
1432 lemma [simp]: "fetch t_wcode_main (Suc (t_twice_len + length t_wcode_main_first_part div 2)) Oc |
|
1433 = (L, Suc 0)" |
|
1434 apply(subgoal_tac "length (t_twice) mod 2 = 0") |
|
1435 apply(simp add: t_wcode_main_def nth_append fetch.simps t_wcode_main_first_part_def |
|
1436 nth_of.simps shift_length t_twice_len_def, auto) |
|
1437 apply(simp add: t_twice_def) |
|
1438 apply(subgoal_tac "length (tm_of abc_twice) mod 2 = 0") |
|
1439 apply arith |
|
1440 apply(rule_tac tm_even) |
|
1441 done |
|
1442 |
|
1443 lemma wcode_jump1: |
|
1444 "\<exists> stp ln rn. steps (Suc (t_twice_len) + length t_wcode_main_first_part div 2, |
|
1445 Bk\<^bsup>m\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (2 * rs)\<^esup> @ Bk\<^bsup>n\<^esup>) |
|
1446 t_wcode_main stp |
|
1447 = (Suc 0, Bk\<^bsup>ln\<^esup> @ Bk # ires, Bk # Oc\<^bsup>Suc (2 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1448 apply(rule_tac x = "Suc 0" in exI, rule_tac x = "m" in exI, rule_tac x = n in exI) |
|
1449 apply(simp add: steps.simps tstep.simps exp_ind_def new_tape.simps) |
|
1450 apply(case_tac m, simp, simp add: exp_ind_def) |
|
1451 apply(simp add: exp_ind_def[THEN sym] exp_ind[THEN sym]) |
|
1452 done |
|
1453 |
|
1454 lemma wcode_main_first_part_len: |
|
1455 "length t_wcode_main_first_part = 24" |
|
1456 apply(simp add: t_wcode_main_first_part_def) |
|
1457 done |
|
1458 |
|
1459 lemma wcode_double_case: |
|
1460 shows "\<exists>stp ln rn. steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Oc # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = |
|
1461 (Suc 0, Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires, Bk # Oc\<^bsup>Suc (2 * rs + 2)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1462 proof - |
|
1463 have "\<exists>stp ln rn. steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Oc # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = |
|
1464 (13, Bk # Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires, Oc\<^bsup>Suc (Suc rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1465 using wcode_double_case_first_correctness[of ires rs m n] |
|
1466 apply(simp) |
|
1467 apply(erule_tac exE) |
|
1468 apply(case_tac "steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Oc # ires, |
|
1469 Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main na", |
|
1470 auto simp: wcode_double_case_inv.simps |
|
1471 wcode_before_double.simps) |
|
1472 apply(rule_tac x = na in exI, rule_tac x = ln in exI, rule_tac x = rn in exI) |
|
1473 apply(simp) |
|
1474 done |
|
1475 from this obtain stpa lna rna where stp1: |
|
1476 "steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Oc # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stpa = |
|
1477 (13, Bk # Bk # Bk\<^bsup>lna\<^esup> @ Oc # ires, Oc\<^bsup>Suc (Suc rs)\<^esup> @ Bk\<^bsup>rna\<^esup>)" by blast |
|
1478 have "\<exists> stp ln rn. steps (13, Bk # Bk # Bk\<^bsup>lna\<^esup> @ Oc # ires, Oc\<^bsup>Suc (Suc rs)\<^esup> @ Bk\<^bsup>rna\<^esup>) t_wcode_main stp = |
|
1479 (13 + t_twice_len, Bk # Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires, Oc\<^bsup>Suc (Suc (Suc (2 *rs)))\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1480 using t_twice_append[of "Bk\<^bsup>lna\<^esup> @ Oc # ires" "Suc rs" rna] |
|
1481 apply(erule_tac exE) |
|
1482 apply(erule_tac exE) |
|
1483 apply(erule_tac exE) |
|
1484 apply(simp add: wcode_main_first_part_len) |
|
1485 apply(rule_tac x = stp in exI, rule_tac x = "ln + lna" in exI, |
|
1486 rule_tac x = rn in exI) |
|
1487 apply(simp add: t_wcode_main_def) |
|
1488 apply(simp add: exp_ind_def[THEN sym] exp_add[THEN sym]) |
|
1489 done |
|
1490 from this obtain stpb lnb rnb where stp2: |
|
1491 "steps (13, Bk # Bk # Bk\<^bsup>lna\<^esup> @ Oc # ires, Oc\<^bsup>Suc (Suc rs)\<^esup> @ Bk\<^bsup>rna\<^esup>) t_wcode_main stpb = |
|
1492 (13 + t_twice_len, Bk # Bk # Bk\<^bsup>lnb\<^esup> @ Oc # ires, Oc\<^bsup>Suc (Suc (Suc (2 *rs)))\<^esup> @ Bk\<^bsup>rnb\<^esup>)" by blast |
|
1493 have "\<exists>stp ln rn. steps (13 + t_twice_len, Bk # Bk # Bk\<^bsup>lnb\<^esup> @ Oc # ires, |
|
1494 Oc\<^bsup>Suc (Suc (Suc (2 *rs)))\<^esup> @ Bk\<^bsup>rnb\<^esup>) t_wcode_main stp = |
|
1495 (Suc 0, Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires, Bk # Oc\<^bsup>Suc (Suc (Suc (2 *rs)))\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1496 using wcode_jump1[of lnb "Oc # ires" "Suc rs" rnb] |
|
1497 apply(erule_tac exE) |
|
1498 apply(erule_tac exE) |
|
1499 apply(erule_tac exE) |
|
1500 apply(rule_tac x = stp in exI, |
|
1501 rule_tac x = ln in exI, |
|
1502 rule_tac x = rn in exI, simp add:wcode_main_first_part_len t_wcode_main_def) |
|
1503 apply(subgoal_tac "Bk\<^bsup>lnb\<^esup> @ Bk # Bk # Oc # ires = Bk # Bk # Bk\<^bsup>lnb\<^esup> @ Oc # ires", simp) |
|
1504 apply(simp add: exp_ind_def[THEN sym] exp_ind[THEN sym]) |
|
1505 apply(simp) |
|
1506 apply(case_tac lnb, simp, simp add: exp_ind_def[THEN sym] exp_ind) |
|
1507 done |
|
1508 from this obtain stpc lnc rnc where stp3: |
|
1509 "steps (13 + t_twice_len, Bk # Bk # Bk\<^bsup>lnb\<^esup> @ Oc # ires, |
|
1510 Oc\<^bsup>Suc (Suc (Suc (2 *rs)))\<^esup> @ Bk\<^bsup>rnb\<^esup>) t_wcode_main stpc = |
|
1511 (Suc 0, Bk # Bk\<^bsup>lnc\<^esup> @ Oc # ires, Bk # Oc\<^bsup>Suc (Suc (Suc (2 *rs)))\<^esup> @ Bk\<^bsup>rnc\<^esup>)" |
|
1512 by blast |
|
1513 from stp1 stp2 stp3 show "?thesis" |
|
1514 apply(rule_tac x = "stpa + stpb + stpc" in exI, rule_tac x = lnc in exI, |
|
1515 rule_tac x = rnc in exI) |
|
1516 apply(simp add: steps_add) |
|
1517 done |
|
1518 qed |
|
1519 |
|
1520 |
|
1521 (* Begin: fourtime_case*) |
|
1522 fun wcode_on_left_moving_2_B :: "bin_inv_t" |
|
1523 where |
|
1524 "wcode_on_left_moving_2_B ires rs (l, r) = |
|
1525 (\<exists> ml mr rn. l = Bk\<^bsup>ml\<^esup> @ Oc # Bk # Oc # ires \<and> |
|
1526 r = Bk\<^bsup>mr\<^esup> @ Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup> \<and> |
|
1527 ml + mr > Suc 0 \<and> mr > 0)" |
|
1528 |
|
1529 fun wcode_on_left_moving_2_O :: "bin_inv_t" |
|
1530 where |
|
1531 "wcode_on_left_moving_2_O ires rs (l, r) = |
|
1532 (\<exists> ln rn. l = Bk # Oc # ires \<and> |
|
1533 r = Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1534 |
|
1535 fun wcode_on_left_moving_2 :: "bin_inv_t" |
|
1536 where |
|
1537 "wcode_on_left_moving_2 ires rs (l, r) = |
|
1538 (wcode_on_left_moving_2_B ires rs (l, r) \<or> |
|
1539 wcode_on_left_moving_2_O ires rs (l, r))" |
|
1540 |
|
1541 fun wcode_on_checking_2 :: "bin_inv_t" |
|
1542 where |
|
1543 "wcode_on_checking_2 ires rs (l, r) = |
|
1544 (\<exists> ln rn. l = Oc#ires \<and> |
|
1545 r = Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1546 |
|
1547 fun wcode_goon_checking :: "bin_inv_t" |
|
1548 where |
|
1549 "wcode_goon_checking ires rs (l, r) = |
|
1550 (\<exists> ln rn. l = ires \<and> |
|
1551 r = Oc # Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1552 |
|
1553 fun wcode_right_move :: "bin_inv_t" |
|
1554 where |
|
1555 "wcode_right_move ires rs (l, r) = |
|
1556 (\<exists> ln rn. l = Oc # ires \<and> |
|
1557 r = Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1558 |
|
1559 fun wcode_erase2 :: "bin_inv_t" |
|
1560 where |
|
1561 "wcode_erase2 ires rs (l, r) = |
|
1562 (\<exists> ln rn. l = Bk # Oc # ires \<and> |
|
1563 tl r = Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1564 |
|
1565 fun wcode_on_right_moving_2 :: "bin_inv_t" |
|
1566 where |
|
1567 "wcode_on_right_moving_2 ires rs (l, r) = |
|
1568 (\<exists> ml mr rn. l = Bk\<^bsup>ml\<^esup> @ Oc # ires \<and> |
|
1569 r = Bk\<^bsup>mr\<^esup> @ Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup> \<and> ml + mr > Suc 0)" |
|
1570 |
|
1571 fun wcode_goon_right_moving_2 :: "bin_inv_t" |
|
1572 where |
|
1573 "wcode_goon_right_moving_2 ires rs (l, r) = |
|
1574 (\<exists> ml mr ln rn. l = Oc\<^bsup>ml\<^esup> @ Bk # Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires \<and> |
|
1575 r = Oc\<^bsup>mr\<^esup> @ Bk\<^bsup>rn\<^esup> \<and> ml + mr = Suc rs)" |
|
1576 |
|
1577 fun wcode_backto_standard_pos_2_B :: "bin_inv_t" |
|
1578 where |
|
1579 "wcode_backto_standard_pos_2_B ires rs (l, r) = |
|
1580 (\<exists> ln rn. l = Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires \<and> |
|
1581 r = Bk # Oc\<^bsup>Suc (Suc rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1582 |
|
1583 fun wcode_backto_standard_pos_2_O :: "bin_inv_t" |
|
1584 where |
|
1585 "wcode_backto_standard_pos_2_O ires rs (l, r) = |
|
1586 (\<exists> ml mr ln rn. l = Oc\<^bsup>ml \<^esup>@ Bk # Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires \<and> |
|
1587 r = Oc\<^bsup>mr\<^esup> @ Bk\<^bsup>rn\<^esup> \<and> |
|
1588 ml + mr = (Suc (Suc rs)) \<and> mr > 0)" |
|
1589 |
|
1590 fun wcode_backto_standard_pos_2 :: "bin_inv_t" |
|
1591 where |
|
1592 "wcode_backto_standard_pos_2 ires rs (l, r) = |
|
1593 (wcode_backto_standard_pos_2_O ires rs (l, r) \<or> |
|
1594 wcode_backto_standard_pos_2_B ires rs (l, r))" |
|
1595 |
|
1596 fun wcode_before_fourtimes :: "bin_inv_t" |
|
1597 where |
|
1598 "wcode_before_fourtimes ires rs (l, r) = |
|
1599 (\<exists> ln rn. l = Bk # Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires \<and> |
|
1600 r = Oc\<^bsup>Suc (Suc rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1601 |
|
1602 declare wcode_on_left_moving_2_B.simps[simp del] wcode_on_left_moving_2.simps[simp del] |
|
1603 wcode_on_left_moving_2_O.simps[simp del] wcode_on_checking_2.simps[simp del] |
|
1604 wcode_goon_checking.simps[simp del] wcode_right_move.simps[simp del] |
|
1605 wcode_erase2.simps[simp del] |
|
1606 wcode_on_right_moving_2.simps[simp del] wcode_goon_right_moving_2.simps[simp del] |
|
1607 wcode_backto_standard_pos_2_B.simps[simp del] wcode_backto_standard_pos_2_O.simps[simp del] |
|
1608 wcode_backto_standard_pos_2.simps[simp del] |
|
1609 |
|
1610 lemmas wcode_fourtimes_invs = |
|
1611 wcode_on_left_moving_2_B.simps wcode_on_left_moving_2.simps |
|
1612 wcode_on_left_moving_2_O.simps wcode_on_checking_2.simps |
|
1613 wcode_goon_checking.simps wcode_right_move.simps |
|
1614 wcode_erase2.simps |
|
1615 wcode_on_right_moving_2.simps wcode_goon_right_moving_2.simps |
|
1616 wcode_backto_standard_pos_2_B.simps wcode_backto_standard_pos_2_O.simps |
|
1617 wcode_backto_standard_pos_2.simps |
|
1618 |
|
1619 fun wcode_fourtimes_case_inv :: "nat \<Rightarrow> bin_inv_t" |
|
1620 where |
|
1621 "wcode_fourtimes_case_inv st ires rs (l, r) = |
|
1622 (if st = Suc 0 then wcode_on_left_moving_2 ires rs (l, r) |
|
1623 else if st = Suc (Suc 0) then wcode_on_checking_2 ires rs (l, r) |
|
1624 else if st = 7 then wcode_goon_checking ires rs (l, r) |
|
1625 else if st = 8 then wcode_right_move ires rs (l, r) |
|
1626 else if st = 9 then wcode_erase2 ires rs (l, r) |
|
1627 else if st = 10 then wcode_on_right_moving_2 ires rs (l, r) |
|
1628 else if st = 11 then wcode_goon_right_moving_2 ires rs (l, r) |
|
1629 else if st = 12 then wcode_backto_standard_pos_2 ires rs (l, r) |
|
1630 else if st = t_twice_len + 14 then wcode_before_fourtimes ires rs (l, r) |
|
1631 else False)" |
|
1632 |
|
1633 declare wcode_fourtimes_case_inv.simps[simp del] |
|
1634 |
|
1635 fun wcode_fourtimes_case_state :: "t_conf \<Rightarrow> nat" |
|
1636 where |
|
1637 "wcode_fourtimes_case_state (st, l, r) = 13 - st" |
|
1638 |
|
1639 fun wcode_fourtimes_case_step :: "t_conf \<Rightarrow> nat" |
|
1640 where |
|
1641 "wcode_fourtimes_case_step (st, l, r) = |
|
1642 (if st = Suc 0 then length l |
|
1643 else if st = 9 then |
|
1644 (if hd r = Oc then 1 |
|
1645 else 0) |
|
1646 else if st = 10 then length r |
|
1647 else if st = 11 then length r |
|
1648 else if st = 12 then length l |
|
1649 else 0)" |
|
1650 |
|
1651 fun wcode_fourtimes_case_measure :: "t_conf \<Rightarrow> nat \<times> nat" |
|
1652 where |
|
1653 "wcode_fourtimes_case_measure (st, l, r) = |
|
1654 (wcode_fourtimes_case_state (st, l, r), |
|
1655 wcode_fourtimes_case_step (st, l, r))" |
|
1656 |
|
1657 definition wcode_fourtimes_case_le :: "(t_conf \<times> t_conf) set" |
|
1658 where "wcode_fourtimes_case_le \<equiv> (inv_image lex_pair wcode_fourtimes_case_measure)" |
|
1659 |
|
1660 lemma wf_wcode_fourtimes_case_le[intro]: "wf wcode_fourtimes_case_le" |
|
1661 by(auto intro:wf_inv_image simp: wcode_fourtimes_case_le_def) |
|
1662 |
|
1663 lemma [simp]: "fetch t_wcode_main (Suc (Suc 0)) Bk = (L, 7)" |
|
1664 apply(simp add: t_wcode_main_def fetch.simps |
|
1665 t_wcode_main_first_part_def nth_of.simps) |
|
1666 done |
|
1667 |
|
1668 lemma [simp]: "fetch t_wcode_main 7 Oc = (R, 8)" |
|
1669 apply(simp add: t_wcode_main_def fetch.simps |
|
1670 t_wcode_main_first_part_def nth_of.simps) |
|
1671 done |
|
1672 |
|
1673 lemma [simp]: "fetch t_wcode_main 8 Bk = (R, 9)" |
|
1674 apply(simp add: t_wcode_main_def fetch.simps |
|
1675 t_wcode_main_first_part_def nth_of.simps) |
|
1676 done |
|
1677 |
|
1678 lemma [simp]: "fetch t_wcode_main 9 Bk = (R, 10)" |
|
1679 apply(simp add: t_wcode_main_def fetch.simps |
|
1680 t_wcode_main_first_part_def nth_of.simps) |
|
1681 done |
|
1682 |
|
1683 lemma [simp]: "fetch t_wcode_main 9 Oc = (W0, 9)" |
|
1684 apply(simp add: t_wcode_main_def fetch.simps |
|
1685 t_wcode_main_first_part_def nth_of.simps) |
|
1686 done |
|
1687 |
|
1688 lemma [simp]: "fetch t_wcode_main 10 Bk = (R, 10)" |
|
1689 apply(simp add: t_wcode_main_def fetch.simps |
|
1690 t_wcode_main_first_part_def nth_of.simps) |
|
1691 done |
|
1692 |
|
1693 lemma [simp]: "fetch t_wcode_main 10 Oc = (R, 11)" |
|
1694 apply(simp add: t_wcode_main_def fetch.simps |
|
1695 t_wcode_main_first_part_def nth_of.simps) |
|
1696 done |
|
1697 |
|
1698 lemma [simp]: "fetch t_wcode_main 11 Bk = (W1, 12)" |
|
1699 apply(simp add: t_wcode_main_def fetch.simps |
|
1700 t_wcode_main_first_part_def nth_of.simps) |
|
1701 done |
|
1702 |
|
1703 lemma [simp]: "fetch t_wcode_main 11 Oc = (R, 11)" |
|
1704 apply(simp add: t_wcode_main_def fetch.simps |
|
1705 t_wcode_main_first_part_def nth_of.simps) |
|
1706 done |
|
1707 |
|
1708 lemma [simp]: "fetch t_wcode_main 12 Oc = (L, 12)" |
|
1709 apply(simp add: t_wcode_main_def fetch.simps |
|
1710 t_wcode_main_first_part_def nth_of.simps) |
|
1711 done |
|
1712 |
|
1713 lemma [simp]: "fetch t_wcode_main 12 Bk = (R, t_twice_len + 14)" |
|
1714 apply(simp add: t_wcode_main_def fetch.simps |
|
1715 t_wcode_main_first_part_def nth_of.simps) |
|
1716 done |
|
1717 |
|
1718 |
|
1719 lemma [simp]: "wcode_on_left_moving_2 ires rs (b, []) = False" |
|
1720 apply(auto simp: wcode_fourtimes_invs) |
|
1721 done |
|
1722 |
|
1723 lemma [simp]: "wcode_on_checking_2 ires rs (b, []) = False" |
|
1724 apply(auto simp: wcode_fourtimes_invs) |
|
1725 done |
|
1726 |
|
1727 lemma [simp]: "wcode_goon_checking ires rs (b, []) = False" |
|
1728 apply(auto simp: wcode_fourtimes_invs) |
|
1729 done |
|
1730 |
|
1731 lemma [simp]: "wcode_right_move ires rs (b, []) = False" |
|
1732 apply(auto simp: wcode_fourtimes_invs) |
|
1733 done |
|
1734 |
|
1735 lemma [simp]: "wcode_erase2 ires rs (b, []) = False" |
|
1736 apply(auto simp: wcode_fourtimes_invs) |
|
1737 done |
|
1738 |
|
1739 lemma [simp]: "wcode_on_right_moving_2 ires rs (b, []) = False" |
|
1740 apply(auto simp: wcode_fourtimes_invs exponent_def) |
|
1741 done |
|
1742 |
|
1743 lemma [simp]: "wcode_backto_standard_pos_2 ires rs (b, []) = False" |
|
1744 apply(auto simp: wcode_fourtimes_invs exponent_def) |
|
1745 done |
|
1746 |
|
1747 lemma [simp]: "wcode_on_left_moving_2 ires rs (b, Bk # list) \<Longrightarrow> b \<noteq> []" |
|
1748 apply(simp add: wcode_fourtimes_invs, auto) |
|
1749 done |
|
1750 |
|
1751 lemma [simp]: "wcode_on_left_moving_2 ires rs (b, Bk # list) \<Longrightarrow> wcode_on_left_moving_2 ires rs (tl b, hd b # Bk # list)" |
|
1752 apply(simp only: wcode_fourtimes_invs) |
|
1753 apply(erule_tac disjE) |
|
1754 apply(erule_tac exE)+ |
|
1755 apply(case_tac ml, simp) |
|
1756 apply(rule_tac x = "mr - (Suc (Suc 0))" in exI, rule_tac x = rn in exI, simp) |
|
1757 apply(case_tac mr, simp, case_tac nat, simp, simp add: exp_ind) |
|
1758 apply(rule_tac disjI1) |
|
1759 apply(rule_tac x = nat in exI, rule_tac x = "Suc mr" in exI, rule_tac x = rn in exI, |
|
1760 simp add: exp_ind_def) |
|
1761 apply(simp) |
|
1762 done |
|
1763 |
|
1764 lemma [simp]: "wcode_on_checking_2 ires rs (b, Bk # list) \<Longrightarrow> b \<noteq> []" |
|
1765 apply(auto simp: wcode_fourtimes_invs) |
|
1766 done |
|
1767 |
|
1768 lemma [simp]: "wcode_on_checking_2 ires rs (b, Bk # list) |
|
1769 \<Longrightarrow> wcode_goon_checking ires rs (tl b, hd b # Bk # list)" |
|
1770 apply(simp only: wcode_fourtimes_invs) |
|
1771 apply(auto) |
|
1772 done |
|
1773 |
|
1774 lemma [simp]: "wcode_goon_checking ires rs (b, Bk # list) = False" |
|
1775 apply(simp add: wcode_fourtimes_invs) |
|
1776 done |
|
1777 |
|
1778 lemma [simp]: " wcode_right_move ires rs (b, Bk # list) \<Longrightarrow> b\<noteq> []" |
|
1779 apply(simp add: wcode_fourtimes_invs) |
|
1780 done |
|
1781 |
|
1782 lemma [simp]: "wcode_right_move ires rs (b, Bk # list) \<Longrightarrow> wcode_erase2 ires rs (Bk # b, list)" |
|
1783 apply(auto simp:wcode_fourtimes_invs ) |
|
1784 apply(rule_tac x = ln in exI, rule_tac x = rn in exI, simp) |
|
1785 done |
|
1786 |
|
1787 lemma [simp]: "wcode_erase2 ires rs (b, Bk # list) \<Longrightarrow> b \<noteq> []" |
|
1788 apply(auto simp: wcode_fourtimes_invs) |
|
1789 done |
|
1790 |
|
1791 lemma [simp]: "wcode_erase2 ires rs (b, Bk # list) \<Longrightarrow> wcode_on_right_moving_2 ires rs (Bk # b, list)" |
|
1792 apply(auto simp:wcode_fourtimes_invs ) |
|
1793 apply(rule_tac x = "Suc (Suc 0)" in exI, simp add: exp_ind) |
|
1794 apply(rule_tac x = "Suc (Suc ln)" in exI, simp add: exp_ind, auto) |
|
1795 done |
|
1796 |
|
1797 lemma [simp]: "wcode_on_right_moving_2 ires rs (b, Bk # list) \<Longrightarrow> b \<noteq> []" |
|
1798 apply(auto simp:wcode_fourtimes_invs ) |
|
1799 done |
|
1800 |
|
1801 lemma [simp]: "wcode_on_right_moving_2 ires rs (b, Bk # list) |
|
1802 \<Longrightarrow> wcode_on_right_moving_2 ires rs (Bk # b, list)" |
|
1803 apply(auto simp: wcode_fourtimes_invs) |
|
1804 apply(rule_tac x = "Suc ml" in exI, simp add: exp_ind_def) |
|
1805 apply(rule_tac x = "mr - 1" in exI, case_tac mr, auto simp: exp_ind_def) |
|
1806 done |
|
1807 |
|
1808 lemma [simp]: "wcode_goon_right_moving_2 ires rs (b, Bk # list) \<Longrightarrow> b \<noteq> []" |
|
1809 apply(auto simp: wcode_fourtimes_invs) |
|
1810 done |
|
1811 |
|
1812 lemma [simp]: "wcode_goon_right_moving_2 ires rs (b, Bk # list) \<Longrightarrow> |
|
1813 wcode_backto_standard_pos_2 ires rs (b, Oc # list)" |
|
1814 apply(simp add: wcode_fourtimes_invs, auto) |
|
1815 apply(rule_tac x = ml in exI, auto) |
|
1816 apply(rule_tac x = "Suc 0" in exI, simp) |
|
1817 apply(case_tac mr, simp_all add: exp_ind_def) |
|
1818 apply(rule_tac x = "rn - 1" in exI, simp) |
|
1819 apply(case_tac rn, simp, simp add: exp_ind_def) |
|
1820 done |
|
1821 |
|
1822 lemma [simp]: "wcode_backto_standard_pos_2 ires rs (b, Bk # list) \<Longrightarrow> b \<noteq> []" |
|
1823 apply(simp add: wcode_fourtimes_invs, auto) |
|
1824 done |
|
1825 |
|
1826 lemma [simp]: "wcode_on_left_moving_2 ires rs (b, Oc # list) \<Longrightarrow> b \<noteq> []" |
|
1827 apply(simp add: wcode_fourtimes_invs, auto) |
|
1828 done |
|
1829 |
|
1830 lemma [simp]: "wcode_on_left_moving_2 ires rs (b, Oc # list) \<Longrightarrow> |
|
1831 wcode_on_checking_2 ires rs (tl b, hd b # Oc # list)" |
|
1832 apply(auto simp: wcode_fourtimes_invs) |
|
1833 apply(case_tac [!] mr, simp_all add: exp_ind_def) |
|
1834 done |
|
1835 |
|
1836 lemma [simp]: "wcode_goon_right_moving_2 ires rs (b, []) \<Longrightarrow> b \<noteq> []" |
|
1837 apply(auto simp: wcode_fourtimes_invs) |
|
1838 done |
|
1839 |
|
1840 lemma [simp]: "wcode_goon_right_moving_2 ires rs (b, []) \<Longrightarrow> |
|
1841 wcode_backto_standard_pos_2 ires rs (b, [Oc])" |
|
1842 apply(simp only: wcode_fourtimes_invs) |
|
1843 apply(erule_tac exE)+ |
|
1844 apply(rule_tac disjI1) |
|
1845 apply(rule_tac x = ml in exI, rule_tac x = "Suc 0" in exI, |
|
1846 rule_tac x = ln in exI, rule_tac x = rn in exI, simp) |
|
1847 apply(case_tac mr, simp, simp add: exp_ind_def) |
|
1848 done |
|
1849 |
|
1850 lemma "wcode_backto_standard_pos_2 ires rs (b, Bk # list) |
|
1851 \<Longrightarrow> (\<exists>ln. b = Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires) \<and> (\<exists>rn. list = Oc\<^bsup>Suc (Suc rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1852 apply(auto simp: wcode_fourtimes_invs) |
|
1853 apply(case_tac [!] mr, auto simp: exp_ind_def) |
|
1854 done |
|
1855 |
|
1856 |
|
1857 lemma [simp]: "wcode_on_checking_2 ires rs (b, Oc # list) \<Longrightarrow> False" |
|
1858 apply(simp add: wcode_fourtimes_invs) |
|
1859 done |
|
1860 |
|
1861 lemma [simp]: "wcode_goon_checking ires rs (b, Oc # list) \<Longrightarrow> |
|
1862 (b = [] \<longrightarrow> wcode_right_move ires rs ([Oc], list)) \<and> |
|
1863 (b \<noteq> [] \<longrightarrow> wcode_right_move ires rs (Oc # b, list))" |
|
1864 apply(simp only: wcode_fourtimes_invs) |
|
1865 apply(erule_tac exE)+ |
|
1866 apply(auto) |
|
1867 done |
|
1868 |
|
1869 lemma [simp]: "wcode_right_move ires rs (b, Oc # list) = False" |
|
1870 apply(auto simp: wcode_fourtimes_invs) |
|
1871 done |
|
1872 |
|
1873 lemma [simp]: " wcode_erase2 ires rs (b, Oc # list) \<Longrightarrow> b \<noteq> []" |
|
1874 apply(simp add: wcode_fourtimes_invs) |
|
1875 done |
|
1876 |
|
1877 lemma [simp]: "wcode_erase2 ires rs (b, Oc # list) |
|
1878 \<Longrightarrow> wcode_erase2 ires rs (b, Bk # list)" |
|
1879 apply(auto simp: wcode_fourtimes_invs) |
|
1880 done |
|
1881 |
|
1882 lemma [simp]: "wcode_on_right_moving_2 ires rs (b, Oc # list) \<Longrightarrow> b \<noteq> []" |
|
1883 apply(simp only: wcode_fourtimes_invs) |
|
1884 apply(auto) |
|
1885 done |
|
1886 |
|
1887 lemma [simp]: "wcode_on_right_moving_2 ires rs (b, Oc # list) |
|
1888 \<Longrightarrow> wcode_goon_right_moving_2 ires rs (Oc # b, list)" |
|
1889 apply(auto simp: wcode_fourtimes_invs) |
|
1890 apply(case_tac mr, simp_all add: exp_ind_def) |
|
1891 apply(rule_tac x = "Suc 0" in exI, auto) |
|
1892 apply(rule_tac x = "ml - 2" in exI) |
|
1893 apply(case_tac ml, simp, case_tac nat, simp_all add: exp_ind_def) |
|
1894 done |
|
1895 |
|
1896 lemma [simp]: "wcode_goon_right_moving_2 ires rs (b, Oc # list) \<Longrightarrow> b \<noteq> []" |
|
1897 apply(simp only:wcode_fourtimes_invs, auto) |
|
1898 done |
|
1899 |
|
1900 lemma [simp]: "wcode_backto_standard_pos_2 ires rs (b, Bk # list) |
|
1901 \<Longrightarrow> (\<exists>ln. b = Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires) \<and> (\<exists>rn. list = Oc\<^bsup>Suc (Suc rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1902 apply(simp add: wcode_fourtimes_invs, auto) |
|
1903 apply(case_tac [!] mr, simp_all add: exp_ind_def) |
|
1904 done |
|
1905 |
|
1906 lemma [simp]: "wcode_on_checking_2 ires rs (b, Oc # list) = False" |
|
1907 apply(simp add: wcode_fourtimes_invs) |
|
1908 done |
|
1909 |
|
1910 lemma [simp]: "wcode_goon_right_moving_2 ires rs (b, Oc # list) \<Longrightarrow> |
|
1911 wcode_goon_right_moving_2 ires rs (Oc # b, list)" |
|
1912 apply(simp only:wcode_fourtimes_invs, auto) |
|
1913 apply(rule_tac x = "Suc ml" in exI, auto simp: exp_ind_def) |
|
1914 apply(rule_tac x = "mr - 1" in exI) |
|
1915 apply(case_tac mr, case_tac rn, auto simp: exp_ind_def) |
|
1916 done |
|
1917 |
|
1918 lemma [simp]: "wcode_backto_standard_pos_2 ires rs (b, Oc # list) \<Longrightarrow> b \<noteq> []" |
|
1919 apply(simp only: wcode_fourtimes_invs, auto) |
|
1920 done |
|
1921 |
|
1922 lemma [simp]: "wcode_backto_standard_pos_2 ires rs (b, Oc # list) |
|
1923 \<Longrightarrow> wcode_backto_standard_pos_2 ires rs (tl b, hd b # Oc # list)" |
|
1924 apply(simp only: wcode_fourtimes_invs) |
|
1925 apply(erule_tac disjE) |
|
1926 apply(erule_tac exE)+ |
|
1927 apply(case_tac ml, simp) |
|
1928 apply(rule_tac disjI2) |
|
1929 apply(rule_tac conjI, rule_tac x = ln in exI, simp) |
|
1930 apply(rule_tac x = rn in exI, simp) |
|
1931 apply(rule_tac disjI1) |
|
1932 apply(rule_tac x = nat in exI, rule_tac x = "Suc mr" in exI, |
|
1933 rule_tac x = ln in exI, rule_tac x = rn in exI, simp add: exp_ind_def) |
|
1934 apply(simp) |
|
1935 done |
|
1936 |
|
1937 lemma wcode_fourtimes_case_first_correctness: |
|
1938 shows "let P = (\<lambda> (st, l, r). st = t_twice_len + 14) in |
|
1939 let Q = (\<lambda> (st, l, r). wcode_fourtimes_case_inv st ires rs (l, r)) in |
|
1940 let f = (\<lambda> stp. steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Bk # Oc # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp) in |
|
1941 \<exists> n .P (f n) \<and> Q (f (n::nat))" |
|
1942 proof - |
|
1943 let ?P = "(\<lambda> (st, l, r). st = t_twice_len + 14)" |
|
1944 let ?Q = "(\<lambda> (st, l, r). wcode_fourtimes_case_inv st ires rs (l, r))" |
|
1945 let ?f = "(\<lambda> stp. steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Bk # Oc # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp)" |
|
1946 have "\<exists> n . ?P (?f n) \<and> ?Q (?f (n::nat))" |
|
1947 proof(rule_tac halt_lemma2) |
|
1948 show "wf wcode_fourtimes_case_le" |
|
1949 by auto |
|
1950 next |
|
1951 show "\<forall> na. \<not> ?P (?f na) \<and> ?Q (?f na) \<longrightarrow> |
|
1952 ?Q (?f (Suc na)) \<and> (?f (Suc na), ?f na) \<in> wcode_fourtimes_case_le" |
|
1953 apply(rule_tac allI, |
|
1954 case_tac "steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Bk # Oc # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main na", simp, |
|
1955 rule_tac impI) |
|
1956 apply(simp add: tstep_red tstep.simps, case_tac c, simp, case_tac [2] aa, simp_all) |
|
1957 |
|
1958 apply(simp_all add: wcode_fourtimes_case_inv.simps new_tape.simps |
|
1959 wcode_fourtimes_case_le_def lex_pair_def split: if_splits) |
|
1960 done |
|
1961 next |
|
1962 show "?Q (?f 0)" |
|
1963 apply(simp add: steps.simps wcode_fourtimes_case_inv.simps) |
|
1964 apply(simp add: wcode_on_left_moving_2.simps wcode_on_left_moving_2_B.simps |
|
1965 wcode_on_left_moving_2_O.simps) |
|
1966 apply(rule_tac x = "Suc m" in exI, simp add: exp_ind_def) |
|
1967 apply(rule_tac x ="Suc 0" in exI, auto) |
|
1968 done |
|
1969 next |
|
1970 show "\<not> ?P (?f 0)" |
|
1971 apply(simp add: steps.simps) |
|
1972 done |
|
1973 qed |
|
1974 thus "?thesis" |
|
1975 apply(erule_tac exE, simp) |
|
1976 done |
|
1977 qed |
|
1978 |
|
1979 definition t_fourtimes_len :: "nat" |
|
1980 where |
|
1981 "t_fourtimes_len = (length t_fourtimes div 2)" |
|
1982 |
|
1983 lemma t_fourtimes_len_gr: "t_fourtimes_len > 0" |
|
1984 apply(simp add: t_fourtimes_len_def t_fourtimes_def) |
|
1985 done |
|
1986 |
|
1987 lemma t_fourtimes_correct: |
|
1988 "\<exists>stp ln rn. steps (Suc 0, Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) |
|
1989 (tm_of abc_fourtimes @ tMp (Suc 0) (start_of fourtimes_ly (length abc_fourtimes) - Suc 0)) stp = |
|
1990 (0, Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (4 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
1991 proof(case_tac "rec_ci rec_fourtimes") |
|
1992 fix a b c |
|
1993 assume h: "rec_ci rec_fourtimes = (a, b, c)" |
|
1994 have "\<exists>stp m l. steps (Suc 0, Bk # Bk # ires, <[rs]> @ Bk\<^bsup>n\<^esup>) (tm_of abc_fourtimes @ tMp (Suc 0) |
|
1995 (start_of fourtimes_ly (length abc_fourtimes) - 1)) stp = (0, Bk\<^bsup>m\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (4*rs)\<^esup> @ Bk\<^bsup>l\<^esup>)" |
|
1996 proof(rule_tac t_compiled_by_rec) |
|
1997 show "rec_ci rec_fourtimes = (a, b, c)" by (simp add: h) |
|
1998 next |
|
1999 show "rec_calc_rel rec_fourtimes [rs] (4 * rs)" |
|
2000 using prime_rel_exec_eq [of rec_fourtimes "[rs]" "4 * rs"] |
|
2001 apply(subgoal_tac "primerec rec_fourtimes (length [rs])") |
|
2002 apply(simp_all add: rec_fourtimes_def rec_exec.simps) |
|
2003 apply(auto) |
|
2004 apply(simp only: Nat.One_nat_def[THEN sym], auto) |
|
2005 done |
|
2006 next |
|
2007 show "length [rs] = Suc 0" by simp |
|
2008 next |
|
2009 show "layout_of (a [+] dummy_abc (Suc 0)) = layout_of (a [+] dummy_abc (Suc 0))" |
|
2010 by simp |
|
2011 next |
|
2012 show "start_of fourtimes_ly (length abc_fourtimes) = |
|
2013 start_of (layout_of (a [+] dummy_abc (Suc 0))) (length (a [+] dummy_abc (Suc 0)))" |
|
2014 using h |
|
2015 apply(simp add: fourtimes_ly_def abc_fourtimes_def) |
|
2016 done |
|
2017 next |
|
2018 show "tm_of abc_fourtimes = tm_of (a [+] dummy_abc (Suc 0))" |
|
2019 using h |
|
2020 apply(simp add: abc_fourtimes_def) |
|
2021 done |
|
2022 qed |
|
2023 thus "\<exists>stp ln rn. steps (Suc 0, Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) |
|
2024 (tm_of abc_fourtimes @ tMp (Suc 0) (start_of fourtimes_ly (length abc_fourtimes) - Suc 0)) stp = |
|
2025 (0, Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (4 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2026 apply(simp add: tape_of_nl_abv tape_of_nat_list.simps) |
|
2027 done |
|
2028 qed |
|
2029 |
|
2030 lemma t_fourtimes_change_term_state: |
|
2031 "\<exists> stp ln rn. steps (Suc 0, Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_fourtimes stp |
|
2032 = (Suc t_fourtimes_len, Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (4 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2033 using t_fourtimes_correct[of ires rs n] |
|
2034 apply(erule_tac exE) |
|
2035 apply(erule_tac exE) |
|
2036 apply(erule_tac exE) |
|
2037 proof(drule_tac turing_change_termi_state) |
|
2038 fix stp ln rn |
|
2039 show "t_correct (tm_of abc_fourtimes @ tMp (Suc 0) |
|
2040 (start_of fourtimes_ly (length abc_fourtimes) - Suc 0))" |
|
2041 apply(rule_tac t_compiled_correct, auto simp: fourtimes_ly_def) |
|
2042 done |
|
2043 next |
|
2044 fix stp ln rn |
|
2045 show "\<exists>stp. steps (Suc 0, Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) |
|
2046 (change_termi_state (tm_of abc_fourtimes @ tMp (Suc 0) |
|
2047 (start_of fourtimes_ly (length abc_fourtimes) - Suc 0))) stp = |
|
2048 (Suc (length (tm_of abc_fourtimes @ tMp (Suc 0) (start_of fourtimes_ly |
|
2049 (length abc_fourtimes) - Suc 0)) div 2), Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (4 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>) \<Longrightarrow> |
|
2050 \<exists>stp ln rn. steps (Suc 0, Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_fourtimes stp = |
|
2051 (Suc t_fourtimes_len, Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (4 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2052 apply(erule_tac exE) |
|
2053 apply(simp add: t_fourtimes_len_def t_fourtimes_def) |
|
2054 apply(rule_tac x = stp in exI, rule_tac x = ln in exI, rule_tac x = rn in exI, simp) |
|
2055 done |
|
2056 qed |
|
2057 |
|
2058 lemma t_fourtimes_append_pre: |
|
2059 "steps (Suc 0, Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_fourtimes stp |
|
2060 = (Suc t_fourtimes_len, Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (4 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>) |
|
2061 \<Longrightarrow> \<exists> stp>0. steps (Suc 0 + length (t_wcode_main_first_part @ |
|
2062 tshift t_twice (length t_wcode_main_first_part div 2) @ [(L, 1), (L, 1)]) div 2, |
|
2063 Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) |
|
2064 ((t_wcode_main_first_part @ |
|
2065 tshift t_twice (length t_wcode_main_first_part div 2) @ [(L, 1), (L, 1)]) @ |
|
2066 tshift t_fourtimes (length (t_wcode_main_first_part @ |
|
2067 tshift t_twice (length t_wcode_main_first_part div 2) @ [(L, 1), (L, 1)]) div 2) @ ([(L, 1), (L, 1)])) stp |
|
2068 = (Suc t_fourtimes_len + length (t_wcode_main_first_part @ |
|
2069 tshift t_twice (length t_wcode_main_first_part div 2) @ [(L, 1), (L, 1)]) div 2, |
|
2070 Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (4 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2071 proof(rule_tac t_tshift_lemma, auto) |
|
2072 assume "steps (Suc 0, Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_fourtimes stp = |
|
2073 (Suc t_fourtimes_len, Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (4 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2074 thus "0 < stp" |
|
2075 using t_fourtimes_len_gr |
|
2076 apply(case_tac stp, simp_all add: steps.simps) |
|
2077 done |
|
2078 next |
|
2079 show "Suc 0 \<le> length t_fourtimes div 2" |
|
2080 apply(simp add: t_fourtimes_def shift_length tMp.simps) |
|
2081 done |
|
2082 next |
|
2083 show "t_ncorrect (t_wcode_main_first_part @ |
|
2084 abacus.tshift t_twice (length t_wcode_main_first_part div 2) @ |
|
2085 [(L, Suc 0), (L, Suc 0)])" |
|
2086 apply(simp add: t_ncorrect.simps t_wcode_main_first_part_def shift_length |
|
2087 t_twice_def) |
|
2088 using tm_even[of abc_twice] |
|
2089 by arith |
|
2090 next |
|
2091 show "t_ncorrect t_fourtimes" |
|
2092 apply(simp add: t_fourtimes_def steps.simps t_ncorrect.simps) |
|
2093 using tm_even[of abc_fourtimes] |
|
2094 by arith |
|
2095 next |
|
2096 show "t_ncorrect [(L, Suc 0), (L, Suc 0)]" |
|
2097 apply(simp add: t_ncorrect.simps) |
|
2098 done |
|
2099 qed |
|
2100 |
|
2101 lemma [simp]: "length t_wcode_main_first_part = 24" |
|
2102 apply(simp add: t_wcode_main_first_part_def) |
|
2103 done |
|
2104 |
|
2105 lemma [simp]: "(26 + length t_twice) div 2 = (length t_twice) div 2 + 13" |
|
2106 using tm_even[of abc_twice] |
|
2107 apply(simp add: t_twice_def) |
|
2108 done |
|
2109 |
|
2110 lemma [simp]: "((26 + length (abacus.tshift t_twice 12)) div 2) |
|
2111 = (length (abacus.tshift t_twice 12) div 2 + 13)" |
|
2112 using tm_even[of abc_twice] |
|
2113 apply(simp add: t_twice_def) |
|
2114 done |
|
2115 |
|
2116 lemma [simp]: "t_twice_len + 14 = 14 + length (abacus.tshift t_twice 12) div 2" |
|
2117 using tm_even[of abc_twice] |
|
2118 apply(simp add: t_twice_def t_twice_len_def shift_length) |
|
2119 done |
|
2120 |
|
2121 lemma t_fourtimes_append: |
|
2122 "\<exists> stp ln rn. |
|
2123 steps (Suc 0 + length (t_wcode_main_first_part @ tshift t_twice |
|
2124 (length t_wcode_main_first_part div 2) @ [(L, 1), (L, 1)]) div 2, |
|
2125 Bk # Bk # ires, Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) |
|
2126 ((t_wcode_main_first_part @ tshift t_twice (length t_wcode_main_first_part div 2) @ |
|
2127 [(L, 1), (L, 1)]) @ tshift t_fourtimes (t_twice_len + 13) @ [(L, 1), (L, 1)]) stp |
|
2128 = (Suc t_fourtimes_len + length (t_wcode_main_first_part @ tshift t_twice |
|
2129 (length t_wcode_main_first_part div 2) @ [(L, 1), (L, 1)]) div 2, Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, |
|
2130 Oc\<^bsup>Suc (4 * rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2131 using t_fourtimes_change_term_state[of ires rs n] |
|
2132 apply(erule_tac exE) |
|
2133 apply(erule_tac exE) |
|
2134 apply(erule_tac exE) |
|
2135 apply(drule_tac t_fourtimes_append_pre) |
|
2136 apply(erule_tac exE) |
|
2137 apply(rule_tac x = stpa in exI, rule_tac x = ln in exI, rule_tac x = rn in exI) |
|
2138 apply(simp add: t_twice_len_def shift_length) |
|
2139 done |
|
2140 |
|
2141 lemma t_wcode_main_len: "length t_wcode_main = length t_twice + length t_fourtimes + 28" |
|
2142 apply(simp add: t_wcode_main_def shift_length) |
|
2143 done |
|
2144 |
|
2145 lemma [simp]: "fetch t_wcode_main (14 + length t_twice div 2 + t_fourtimes_len) b |
|
2146 = (L, Suc 0)" |
|
2147 using tm_even[of "abc_twice"] tm_even[of "abc_fourtimes"] |
|
2148 apply(case_tac b) |
|
2149 apply(simp_all only: fetch.simps) |
|
2150 apply(auto simp: nth_of.simps t_wcode_main_len t_twice_len_def |
|
2151 t_fourtimes_def t_twice_def t_fourtimes_def t_fourtimes_len_def) |
|
2152 apply(auto simp: t_wcode_main_def t_wcode_main_first_part_def shift_length t_twice_def nth_append |
|
2153 t_fourtimes_def) |
|
2154 done |
|
2155 |
|
2156 lemma wcode_jump2: |
|
2157 "\<exists> stp ln rn. steps (t_twice_len + 14 + t_fourtimes_len |
|
2158 , Bk # Bk # Bk\<^bsup>lnb\<^esup> @ Oc # ires, Oc\<^bsup>Suc (4 * rs + 4)\<^esup> @ Bk\<^bsup>rnb\<^esup>) t_wcode_main stp = |
|
2159 (Suc 0, Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires, Bk # Oc\<^bsup>Suc (4 * rs + 4)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2160 apply(rule_tac x = "Suc 0" in exI) |
|
2161 apply(simp add: steps.simps shift_length) |
|
2162 apply(rule_tac x = lnb in exI, rule_tac x = rnb in exI) |
|
2163 apply(simp add: tstep.simps new_tape.simps) |
|
2164 done |
|
2165 |
|
2166 lemma wcode_fourtimes_case: |
|
2167 shows "\<exists>stp ln rn. |
|
2168 steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Bk # Oc # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = |
|
2169 (Suc 0, Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires, Bk # Oc\<^bsup>Suc (4*rs + 4)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2170 proof - |
|
2171 have "\<exists>stp ln rn. |
|
2172 steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Bk # Oc # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = |
|
2173 (t_twice_len + 14, Bk # Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires, Oc\<^bsup>Suc (rs + 1)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2174 using wcode_fourtimes_case_first_correctness[of ires rs m n] |
|
2175 apply(simp add: wcode_fourtimes_case_inv.simps, auto) |
|
2176 apply(rule_tac x = na in exI, rule_tac x = ln in exI, |
|
2177 rule_tac x = rn in exI) |
|
2178 apply(simp) |
|
2179 done |
|
2180 from this obtain stpa lna rna where stp1: |
|
2181 "steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Bk # Oc # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stpa = |
|
2182 (t_twice_len + 14, Bk # Bk # Bk\<^bsup>lna\<^esup> @ Oc # ires, Oc\<^bsup>Suc (rs + 1)\<^esup> @ Bk\<^bsup>rna\<^esup>)" by blast |
|
2183 have "\<exists>stp ln rn. steps (t_twice_len + 14, Bk # Bk # Bk\<^bsup>lna\<^esup> @ Oc # ires, Oc\<^bsup>Suc (rs + 1)\<^esup> @ Bk\<^bsup>rna\<^esup>) |
|
2184 t_wcode_main stp = |
|
2185 (t_twice_len + 14 + t_fourtimes_len, Bk # Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires, Oc\<^bsup>Suc (4*rs + 4)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2186 using t_fourtimes_append[of " Bk\<^bsup>lna\<^esup> @ Oc # ires" "rs + 1" rna] |
|
2187 apply(erule_tac exE) |
|
2188 apply(erule_tac exE) |
|
2189 apply(erule_tac exE) |
|
2190 apply(simp add: t_wcode_main_def) |
|
2191 apply(rule_tac x = stp in exI, |
|
2192 rule_tac x = "ln + lna" in exI, |
|
2193 rule_tac x = rn in exI, simp) |
|
2194 apply(simp add: exp_ind_def[THEN sym] exp_add[THEN sym]) |
|
2195 done |
|
2196 from this obtain stpb lnb rnb where stp2: |
|
2197 "steps (t_twice_len + 14, Bk # Bk # Bk\<^bsup>lna\<^esup> @ Oc # ires, Oc\<^bsup>Suc (rs + 1)\<^esup> @ Bk\<^bsup>rna\<^esup>) |
|
2198 t_wcode_main stpb = |
|
2199 (t_twice_len + 14 + t_fourtimes_len, Bk # Bk # Bk\<^bsup>lnb\<^esup> @ Oc # ires, Oc\<^bsup>Suc (4*rs + 4)\<^esup> @ Bk\<^bsup>rnb\<^esup>)" |
|
2200 by blast |
|
2201 have "\<exists>stp ln rn. steps (t_twice_len + 14 + t_fourtimes_len, |
|
2202 Bk # Bk # Bk\<^bsup>lnb\<^esup> @ Oc # ires, Oc\<^bsup>Suc (4*rs + 4)\<^esup> @ Bk\<^bsup>rnb\<^esup>) |
|
2203 t_wcode_main stp = |
|
2204 (Suc 0, Bk # Bk\<^bsup>ln\<^esup> @ Oc # ires, Bk # Oc\<^bsup>Suc (4*rs + 4)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2205 apply(rule wcode_jump2) |
|
2206 done |
|
2207 from this obtain stpc lnc rnc where stp3: |
|
2208 "steps (t_twice_len + 14 + t_fourtimes_len, |
|
2209 Bk # Bk # Bk\<^bsup>lnb\<^esup> @ Oc # ires, Oc\<^bsup>Suc (4*rs + 4)\<^esup> @ Bk\<^bsup>rnb\<^esup>) |
|
2210 t_wcode_main stpc = |
|
2211 (Suc 0, Bk # Bk\<^bsup>lnc\<^esup> @ Oc # ires, Bk # Oc\<^bsup>Suc (4*rs + 4)\<^esup> @ Bk\<^bsup>rnc\<^esup>)" |
|
2212 by blast |
|
2213 from stp1 stp2 stp3 show "?thesis" |
|
2214 apply(rule_tac x = "stpa + stpb + stpc" in exI, |
|
2215 rule_tac x = lnc in exI, rule_tac x = rnc in exI) |
|
2216 apply(simp add: steps_add) |
|
2217 done |
|
2218 qed |
|
2219 |
|
2220 (**********************************************************) |
|
2221 |
|
2222 fun wcode_on_left_moving_3_B :: "bin_inv_t" |
|
2223 where |
|
2224 "wcode_on_left_moving_3_B ires rs (l, r) = |
|
2225 (\<exists> ml mr rn. l = Bk\<^bsup>ml\<^esup> @ Oc # Bk # Bk # ires \<and> |
|
2226 r = Bk\<^bsup>mr\<^esup> @ Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup> \<and> |
|
2227 ml + mr > Suc 0 \<and> mr > 0 )" |
|
2228 |
|
2229 fun wcode_on_left_moving_3_O :: "bin_inv_t" |
|
2230 where |
|
2231 "wcode_on_left_moving_3_O ires rs (l, r) = |
|
2232 (\<exists> ln rn. l = Bk # Bk # ires \<and> |
|
2233 r = Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2234 |
|
2235 fun wcode_on_left_moving_3 :: "bin_inv_t" |
|
2236 where |
|
2237 "wcode_on_left_moving_3 ires rs (l, r) = |
|
2238 (wcode_on_left_moving_3_B ires rs (l, r) \<or> |
|
2239 wcode_on_left_moving_3_O ires rs (l, r))" |
|
2240 |
|
2241 fun wcode_on_checking_3 :: "bin_inv_t" |
|
2242 where |
|
2243 "wcode_on_checking_3 ires rs (l, r) = |
|
2244 (\<exists> ln rn. l = Bk # ires \<and> |
|
2245 r = Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2246 |
|
2247 fun wcode_goon_checking_3 :: "bin_inv_t" |
|
2248 where |
|
2249 "wcode_goon_checking_3 ires rs (l, r) = |
|
2250 (\<exists> ln rn. l = ires \<and> |
|
2251 r = Bk # Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2252 |
|
2253 fun wcode_stop :: "bin_inv_t" |
|
2254 where |
|
2255 "wcode_stop ires rs (l, r) = |
|
2256 (\<exists> ln rn. l = Bk # ires \<and> |
|
2257 r = Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2258 |
|
2259 fun wcode_halt_case_inv :: "nat \<Rightarrow> bin_inv_t" |
|
2260 where |
|
2261 "wcode_halt_case_inv st ires rs (l, r) = |
|
2262 (if st = 0 then wcode_stop ires rs (l, r) |
|
2263 else if st = Suc 0 then wcode_on_left_moving_3 ires rs (l, r) |
|
2264 else if st = Suc (Suc 0) then wcode_on_checking_3 ires rs (l, r) |
|
2265 else if st = 7 then wcode_goon_checking_3 ires rs (l, r) |
|
2266 else False)" |
|
2267 |
|
2268 fun wcode_halt_case_state :: "t_conf \<Rightarrow> nat" |
|
2269 where |
|
2270 "wcode_halt_case_state (st, l, r) = |
|
2271 (if st = 1 then 5 |
|
2272 else if st = Suc (Suc 0) then 4 |
|
2273 else if st = 7 then 3 |
|
2274 else 0)" |
|
2275 |
|
2276 fun wcode_halt_case_step :: "t_conf \<Rightarrow> nat" |
|
2277 where |
|
2278 "wcode_halt_case_step (st, l, r) = |
|
2279 (if st = 1 then length l |
|
2280 else 0)" |
|
2281 |
|
2282 fun wcode_halt_case_measure :: "t_conf \<Rightarrow> nat \<times> nat" |
|
2283 where |
|
2284 "wcode_halt_case_measure (st, l, r) = |
|
2285 (wcode_halt_case_state (st, l, r), |
|
2286 wcode_halt_case_step (st, l, r))" |
|
2287 |
|
2288 definition wcode_halt_case_le :: "(t_conf \<times> t_conf) set" |
|
2289 where "wcode_halt_case_le \<equiv> (inv_image lex_pair wcode_halt_case_measure)" |
|
2290 |
|
2291 lemma wf_wcode_halt_case_le[intro]: "wf wcode_halt_case_le" |
|
2292 by(auto intro:wf_inv_image simp: wcode_halt_case_le_def) |
|
2293 |
|
2294 declare wcode_on_left_moving_3_B.simps[simp del] wcode_on_left_moving_3_O.simps[simp del] |
|
2295 wcode_on_checking_3.simps[simp del] wcode_goon_checking_3.simps[simp del] |
|
2296 wcode_on_left_moving_3.simps[simp del] wcode_stop.simps[simp del] |
|
2297 |
|
2298 lemmas wcode_halt_invs = |
|
2299 wcode_on_left_moving_3_B.simps wcode_on_left_moving_3_O.simps |
|
2300 wcode_on_checking_3.simps wcode_goon_checking_3.simps |
|
2301 wcode_on_left_moving_3.simps wcode_stop.simps |
|
2302 |
|
2303 lemma [simp]: "fetch t_wcode_main 7 Bk = (R, 0)" |
|
2304 apply(simp add: fetch.simps t_wcode_main_def nth_append nth_of.simps |
|
2305 t_wcode_main_first_part_def) |
|
2306 done |
|
2307 |
|
2308 lemma [simp]: "wcode_on_left_moving_3 ires rs (b, []) = False" |
|
2309 apply(simp only: wcode_halt_invs) |
|
2310 apply(simp add: exp_ind_def) |
|
2311 done |
|
2312 |
|
2313 lemma [simp]: "wcode_on_checking_3 ires rs (b, []) = False" |
|
2314 apply(simp add: wcode_halt_invs) |
|
2315 done |
|
2316 |
|
2317 lemma [simp]: "wcode_goon_checking_3 ires rs (b, []) = False" |
|
2318 apply(simp add: wcode_halt_invs) |
|
2319 done |
|
2320 |
|
2321 lemma [simp]: "wcode_on_left_moving_3 ires rs (b, Bk # list) |
|
2322 \<Longrightarrow> wcode_on_left_moving_3 ires rs (tl b, hd b # Bk # list)" |
|
2323 apply(simp only: wcode_halt_invs) |
|
2324 apply(erule_tac disjE) |
|
2325 apply(erule_tac exE)+ |
|
2326 apply(case_tac ml, simp) |
|
2327 apply(rule_tac x = "mr - 2" in exI, rule_tac x = rn in exI) |
|
2328 apply(case_tac mr, simp, simp add: exp_ind, simp add: exp_ind[THEN sym]) |
|
2329 apply(rule_tac disjI1) |
|
2330 apply(rule_tac x = nat in exI, rule_tac x = "Suc mr" in exI, |
|
2331 rule_tac x = rn in exI, simp add: exp_ind_def) |
|
2332 apply(simp) |
|
2333 done |
|
2334 |
|
2335 lemma [simp]: "wcode_goon_checking_3 ires rs (b, Bk # list) \<Longrightarrow> |
|
2336 (b = [] \<longrightarrow> wcode_stop ires rs ([Bk], list)) \<and> |
|
2337 (b \<noteq> [] \<longrightarrow> wcode_stop ires rs (Bk # b, list))" |
|
2338 apply(auto simp: wcode_halt_invs) |
|
2339 done |
|
2340 |
|
2341 lemma [simp]: "wcode_on_left_moving_3 ires rs (b, Oc # list) \<Longrightarrow> b \<noteq> []" |
|
2342 apply(auto simp: wcode_halt_invs) |
|
2343 done |
|
2344 |
|
2345 lemma [simp]: "wcode_on_left_moving_3 ires rs (b, Oc # list) \<Longrightarrow> |
|
2346 wcode_on_checking_3 ires rs (tl b, hd b # Oc # list)" |
|
2347 apply(simp add:wcode_halt_invs, auto) |
|
2348 apply(case_tac [!] mr, simp_all add: exp_ind_def) |
|
2349 done |
|
2350 |
|
2351 lemma [simp]: "wcode_on_checking_3 ires rs (b, Oc # list) = False" |
|
2352 apply(auto simp: wcode_halt_invs) |
|
2353 done |
|
2354 |
|
2355 lemma [simp]: "wcode_on_left_moving_3 ires rs (b, Bk # list) \<Longrightarrow> b \<noteq> []" |
|
2356 apply(simp add: wcode_halt_invs, auto) |
|
2357 done |
|
2358 |
|
2359 |
|
2360 lemma [simp]: "wcode_on_checking_3 ires rs (b, Bk # list) \<Longrightarrow> b \<noteq> []" |
|
2361 apply(auto simp: wcode_halt_invs) |
|
2362 done |
|
2363 |
|
2364 lemma [simp]: "wcode_on_checking_3 ires rs (b, Bk # list) \<Longrightarrow> |
|
2365 wcode_goon_checking_3 ires rs (tl b, hd b # Bk # list)" |
|
2366 apply(auto simp: wcode_halt_invs) |
|
2367 done |
|
2368 |
|
2369 lemma [simp]: "wcode_goon_checking_3 ires rs (b, Oc # list) = False" |
|
2370 apply(simp add: wcode_goon_checking_3.simps) |
|
2371 done |
|
2372 |
|
2373 lemma t_halt_case_correctness: |
|
2374 shows "let P = (\<lambda> (st, l, r). st = 0) in |
|
2375 let Q = (\<lambda> (st, l, r). wcode_halt_case_inv st ires rs (l, r)) in |
|
2376 let f = (\<lambda> stp. steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Bk # Bk # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp) in |
|
2377 \<exists> n .P (f n) \<and> Q (f (n::nat))" |
|
2378 proof - |
|
2379 let ?P = "(\<lambda> (st, l, r). st = 0)" |
|
2380 let ?Q = "(\<lambda> (st, l, r). wcode_halt_case_inv st ires rs (l, r))" |
|
2381 let ?f = "(\<lambda> stp. steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Bk # Bk # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp)" |
|
2382 have "\<exists> n. ?P (?f n) \<and> ?Q (?f (n::nat))" |
|
2383 proof(rule_tac halt_lemma2) |
|
2384 show "wf wcode_halt_case_le" by auto |
|
2385 next |
|
2386 show "\<forall> na. \<not> ?P (?f na) \<and> ?Q (?f na) \<longrightarrow> |
|
2387 ?Q (?f (Suc na)) \<and> (?f (Suc na), ?f na) \<in> wcode_halt_case_le" |
|
2388 apply(rule_tac allI, rule_tac impI, case_tac "?f na") |
|
2389 apply(simp add: tstep_red tstep.simps) |
|
2390 apply(case_tac c, simp, case_tac [2] aa) |
|
2391 apply(simp_all split: if_splits add: new_tape.simps wcode_halt_case_le_def lex_pair_def) |
|
2392 done |
|
2393 next |
|
2394 show "?Q (?f 0)" |
|
2395 apply(simp add: steps.simps wcode_halt_invs) |
|
2396 apply(rule_tac x = "Suc m" in exI, simp add: exp_ind_def) |
|
2397 apply(rule_tac x = "Suc 0" in exI, auto) |
|
2398 done |
|
2399 next |
|
2400 show "\<not> ?P (?f 0)" |
|
2401 apply(simp add: steps.simps) |
|
2402 done |
|
2403 qed |
|
2404 thus "?thesis" |
|
2405 apply(auto) |
|
2406 done |
|
2407 qed |
|
2408 |
|
2409 declare wcode_halt_case_inv.simps[simp del] |
|
2410 lemma [intro]: "\<exists> xs. (<rev list @ [aa::nat]> :: block list) = Oc # xs" |
|
2411 apply(case_tac "rev list", simp) |
|
2412 apply(simp add: tape_of_nat_abv tape_of_nat_list.simps exp_ind_def) |
|
2413 apply(case_tac list, simp, simp) |
|
2414 done |
|
2415 |
|
2416 lemma wcode_halt_case: |
|
2417 "\<exists>stp ln rn. steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Bk # Bk # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) |
|
2418 t_wcode_main stp = (0, Bk # ires, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2419 using t_halt_case_correctness[of ires rs m n] |
|
2420 apply(simp) |
|
2421 apply(erule_tac exE) |
|
2422 apply(case_tac "steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Bk # Bk # ires, |
|
2423 Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main na") |
|
2424 apply(auto simp: wcode_halt_case_inv.simps wcode_stop.simps) |
|
2425 apply(rule_tac x = na in exI, rule_tac x = ln in exI, |
|
2426 rule_tac x = rn in exI, simp) |
|
2427 done |
|
2428 |
|
2429 lemma bl_bin_one: "bl_bin [Oc] = Suc 0" |
|
2430 apply(simp add: bl_bin.simps) |
|
2431 done |
|
2432 |
|
2433 lemma t_wcode_main_lemma_pre: |
|
2434 "\<lbrakk>args \<noteq> []; lm = <args::nat list>\<rbrakk> \<Longrightarrow> |
|
2435 \<exists> stp ln rn. steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ rev lm @ Bk # Bk # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main |
|
2436 stp |
|
2437 = (0, Bk # ires, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin lm + rs * 2^(length lm - 1) \<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2438 proof(induct "length args" arbitrary: args lm rs m n, simp) |
|
2439 fix x args lm rs m n |
|
2440 assume ind: |
|
2441 "\<And>args lm rs m n. |
|
2442 \<lbrakk>x = length args; (args::nat list) \<noteq> []; lm = <args>\<rbrakk> |
|
2443 \<Longrightarrow> \<exists>stp ln rn. |
|
2444 steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ rev lm @ Bk # Bk # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = |
|
2445 (0, Bk # ires, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin lm + rs * 2 ^ (length lm - 1)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2446 |
|
2447 and h: "Suc x = length args" "(args::nat list) \<noteq> []" "lm = <args>" |
|
2448 from h have "\<exists> (a::nat) xs. args = xs @ [a]" |
|
2449 apply(rule_tac x = "last args" in exI) |
|
2450 apply(rule_tac x = "butlast args" in exI, auto) |
|
2451 done |
|
2452 from this obtain a xs where "args = xs @ [a]" by blast |
|
2453 from h and this show |
|
2454 "\<exists>stp ln rn. |
|
2455 steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ rev lm @ Bk # Bk # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = |
|
2456 (0, Bk # ires, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin lm + rs * 2 ^ (length lm - 1)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2457 proof(case_tac "xs::nat list", simp) |
|
2458 show "\<exists>stp ln rn. |
|
2459 steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ rev (<a>) @ Bk # Bk # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = |
|
2460 (0, Bk # ires, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin (<a>) + rs * 2 ^ a\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2461 proof(induct "a" arbitrary: m n rs ires, simp) |
|
2462 fix m n rs ires |
|
2463 show "\<exists>stp ln rn. steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Bk # Bk # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) |
|
2464 t_wcode_main stp = (0, Bk # ires, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin [Oc] + rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2465 apply(simp add: bl_bin_one) |
|
2466 apply(rule_tac wcode_halt_case) |
|
2467 done |
|
2468 next |
|
2469 fix a m n rs ires |
|
2470 assume ind2: |
|
2471 "\<And>m n rs ires. |
|
2472 \<exists>stp ln rn. |
|
2473 steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ rev (<a>) @ Bk # Bk # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = |
|
2474 (0, Bk # ires, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin (<a>) + rs * 2 ^ a\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2475 show "\<exists>stp ln rn. |
|
2476 steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ rev (<Suc a>) @ Bk # Bk # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = |
|
2477 (0, Bk # ires, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin (<Suc a>) + rs * 2 ^ Suc a\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2478 proof - |
|
2479 have "\<exists>stp ln rn. |
|
2480 steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ rev (<Suc a>) @ Bk # Bk # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = |
|
2481 (Suc 0, Bk # Bk\<^bsup>ln\<^esup> @ rev (<a>) @ Bk # Bk # ires, Bk # Oc\<^bsup>Suc (2 * rs + 2)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2482 apply(simp add: tape_of_nat) |
|
2483 using wcode_double_case[of m "Oc\<^bsup>a\<^esup> @ Bk # Bk # ires" rs n] |
|
2484 apply(simp add: exp_ind_def) |
|
2485 done |
|
2486 from this obtain stpa lna rna where stp1: |
|
2487 "steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ rev (<Suc a>) @ Bk # Bk # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stpa = |
|
2488 (Suc 0, Bk # Bk\<^bsup>lna\<^esup> @ rev (<a>) @ Bk # Bk # ires, Bk # Oc\<^bsup>Suc (2 * rs + 2)\<^esup> @ Bk\<^bsup>rna\<^esup>)" by blast |
|
2489 moreover have |
|
2490 "\<exists>stp ln rn. |
|
2491 steps (Suc 0, Bk # Bk\<^bsup>lna\<^esup> @ rev (<a>) @ Bk # Bk # ires, Bk # Oc\<^bsup>Suc (2 * rs + 2)\<^esup> @ Bk\<^bsup>rna\<^esup>) t_wcode_main stp = |
|
2492 (0, Bk # ires, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin (<a>) + (2*rs + 2) * 2 ^ a\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2493 using ind2[of lna ires "2*rs + 2" rna] by simp |
|
2494 from this obtain stpb lnb rnb where stp2: |
|
2495 "steps (Suc 0, Bk # Bk\<^bsup>lna\<^esup> @ rev (<a>) @ Bk # Bk # ires, Bk # Oc\<^bsup>Suc (2 * rs + 2)\<^esup> @ Bk\<^bsup>rna\<^esup>) t_wcode_main stpb = |
|
2496 (0, Bk # ires, Bk # Oc # Bk\<^bsup>lnb\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin (<a>) + (2*rs + 2) * 2 ^ a\<^esup> @ Bk\<^bsup>rnb\<^esup>)" |
|
2497 by blast |
|
2498 from stp1 and stp2 show "?thesis" |
|
2499 apply(rule_tac x = "stpa + stpb" in exI, |
|
2500 rule_tac x = lnb in exI, rule_tac x = rnb in exI, simp) |
|
2501 apply(simp add: steps_add bl_bin_nat_Suc exponent_def) |
|
2502 done |
|
2503 qed |
|
2504 qed |
|
2505 next |
|
2506 fix aa list |
|
2507 assume g: "Suc x = length args" "args \<noteq> []" "lm = <args>" "args = xs @ [a::nat]" "xs = (aa::nat) # list" |
|
2508 thus "\<exists>stp ln rn. steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ rev lm @ Bk # Bk # ires, Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = |
|
2509 (0, Bk # ires, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin lm + rs * 2 ^ (length lm - 1)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2510 proof(induct a arbitrary: m n rs args lm, simp_all add: tape_of_nl_rev, |
|
2511 simp only: tape_of_nl_cons_app1, simp) |
|
2512 fix m n rs args lm |
|
2513 have "\<exists>stp ln rn. |
|
2514 steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Bk # rev (<(aa::nat) # list>) @ Bk # Bk # ires, |
|
2515 Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = |
|
2516 (Suc 0, Bk # Bk\<^bsup>ln\<^esup> @ rev (<aa # list>) @ Bk # Bk # ires, |
|
2517 Bk # Oc\<^bsup>Suc (4*rs + 4)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2518 proof(simp add: tape_of_nl_rev) |
|
2519 have "\<exists> xs. (<rev list @ [aa]>) = Oc # xs" by auto |
|
2520 from this obtain xs where "(<rev list @ [aa]>) = Oc # xs" .. |
|
2521 thus "\<exists>stp ln rn. |
|
2522 steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Bk # <rev list @ [aa]> @ Bk # Bk # ires, |
|
2523 Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = |
|
2524 (Suc 0, Bk # Bk\<^bsup>ln\<^esup> @ <rev list @ [aa]> @ Bk # Bk # ires, Bk # Oc\<^bsup>5 + 4 * rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2525 apply(simp) |
|
2526 using wcode_fourtimes_case[of m "xs @ Bk # Bk # ires" rs n] |
|
2527 apply(simp) |
|
2528 done |
|
2529 qed |
|
2530 from this obtain stpa lna rna where stp1: |
|
2531 "steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Bk # rev (<aa # list>) @ Bk # Bk # ires, |
|
2532 Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stpa = |
|
2533 (Suc 0, Bk # Bk\<^bsup>lna\<^esup> @ rev (<aa # list>) @ Bk # Bk # ires, |
|
2534 Bk # Oc\<^bsup>Suc (4*rs + 4)\<^esup> @ Bk\<^bsup>rna\<^esup>)" by blast |
|
2535 from g have |
|
2536 "\<exists> stp ln rn. steps (Suc 0, Bk # Bk\<^bsup>lna\<^esup> @ rev (<(aa::nat) # list>) @ Bk # Bk # ires, |
|
2537 Bk # Oc\<^bsup>Suc (4*rs + 4)\<^esup> @ Bk\<^bsup>rna\<^esup>) t_wcode_main stp = (0, Bk # ires, |
|
2538 Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin (<aa#list>)+ (4*rs + 4) * 2^(length (<aa#list>) - 1) \<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2539 apply(rule_tac args = "(aa::nat)#list" in ind, simp_all) |
|
2540 done |
|
2541 from this obtain stpb lnb rnb where stp2: |
|
2542 "steps (Suc 0, Bk # Bk\<^bsup>lna\<^esup> @ rev (<(aa::nat) # list>) @ Bk # Bk # ires, |
|
2543 Bk # Oc\<^bsup>Suc (4*rs + 4)\<^esup> @ Bk\<^bsup>rna\<^esup>) t_wcode_main stpb = (0, Bk # ires, |
|
2544 Bk # Oc # Bk\<^bsup>lnb\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin (<aa#list>)+ (4*rs + 4) * 2^(length (<aa#list>) - 1) \<^esup> @ Bk\<^bsup>rnb\<^esup>)" |
|
2545 by blast |
|
2546 from stp1 and stp2 and h |
|
2547 show "\<exists>stp ln rn. |
|
2548 steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc # Bk # <rev list @ [aa]> @ Bk # Bk # ires, |
|
2549 Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = |
|
2550 (0, Bk # ires, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # |
|
2551 Bk # Oc\<^bsup>bl_bin (Oc\<^bsup>Suc aa\<^esup> @ Bk # <list @ [0]>) + rs * (2 * 2 ^ (aa + length (<list @ [0]>)))\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2552 apply(rule_tac x = "stpa + stpb" in exI, rule_tac x = lnb in exI, |
|
2553 rule_tac x = rnb in exI, simp add: steps_add tape_of_nl_rev) |
|
2554 done |
|
2555 next |
|
2556 fix ab m n rs args lm |
|
2557 assume ind2: |
|
2558 "\<And> m n rs args lm. |
|
2559 \<lbrakk>lm = <aa # list @ [ab]>; args = aa # list @ [ab]\<rbrakk> |
|
2560 \<Longrightarrow> \<exists>stp ln rn. |
|
2561 steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ <ab # rev list @ [aa]> @ Bk # Bk # ires, |
|
2562 Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = |
|
2563 (0, Bk # ires, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # |
|
2564 Bk # Oc\<^bsup>bl_bin (<aa # list @ [ab]>) + rs * 2 ^ (length (<aa # list @ [ab]>) - Suc 0)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2565 and k: "args = aa # list @ [Suc ab]" "lm = <aa # list @ [Suc ab]>" |
|
2566 show "\<exists>stp ln rn. |
|
2567 steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ <Suc ab # rev list @ [aa]> @ Bk # Bk # ires, |
|
2568 Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = |
|
2569 (0, Bk # ires,Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # |
|
2570 Bk # Oc\<^bsup>bl_bin (<aa # list @ [Suc ab]>) + rs * 2 ^ (length (<aa # list @ [Suc ab]>) - Suc 0)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2571 proof(simp add: tape_of_nl_cons_app1) |
|
2572 have "\<exists>stp ln rn. |
|
2573 steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc\<^bsup>Suc (Suc ab)\<^esup> @ Bk # <rev list @ [aa]> @ Bk # Bk # ires, |
|
2574 Bk # Oc # Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp |
|
2575 = (Suc 0, Bk # Bk\<^bsup>ln\<^esup> @ Oc\<^bsup>Suc ab\<^esup> @ Bk # <rev list @ [aa]> @ Bk # Bk # ires, |
|
2576 Bk # Oc\<^bsup>Suc (2*rs + 2)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2577 using wcode_double_case[of m "Oc\<^bsup>ab\<^esup> @ Bk # <rev list @ [aa]> @ Bk # Bk # ires" |
|
2578 rs n] |
|
2579 apply(simp add: exp_ind_def) |
|
2580 done |
|
2581 from this obtain stpa lna rna where stp1: |
|
2582 "steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc\<^bsup>Suc (Suc ab)\<^esup> @ Bk # <rev list @ [aa]> @ Bk # Bk # ires, |
|
2583 Bk # Oc # Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stpa |
|
2584 = (Suc 0, Bk # Bk\<^bsup>lna\<^esup> @ Oc\<^bsup>Suc ab\<^esup> @ Bk # <rev list @ [aa]> @ Bk # Bk # ires, |
|
2585 Bk # Oc\<^bsup>Suc (2*rs + 2)\<^esup> @ Bk\<^bsup>rna\<^esup>)" by blast |
|
2586 from k have |
|
2587 "\<exists> stp ln rn. steps (Suc 0, Bk # Bk\<^bsup>lna\<^esup> @ <ab # rev list @ [aa]> @ Bk # Bk # ires, |
|
2588 Bk # Oc\<^bsup>Suc (2*rs + 2)\<^esup> @ Bk\<^bsup>rna\<^esup>) t_wcode_main stp |
|
2589 = (0, Bk # ires, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # |
|
2590 Bk # Oc\<^bsup>bl_bin (<aa # list @ [ab]> ) + (2*rs + 2)* 2^(length (<aa # list @ [ab]>) - Suc 0)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2591 apply(rule_tac ind2, simp_all) |
|
2592 done |
|
2593 from this obtain stpb lnb rnb where stp2: |
|
2594 "steps (Suc 0, Bk # Bk\<^bsup>lna\<^esup> @ <ab # rev list @ [aa]> @ Bk # Bk # ires, |
|
2595 Bk # Oc\<^bsup>Suc (2*rs + 2)\<^esup> @ Bk\<^bsup>rna\<^esup>) t_wcode_main stpb |
|
2596 = (0, Bk # ires, Bk # Oc # Bk\<^bsup>lnb\<^esup> @ Bk # |
|
2597 Bk # Oc\<^bsup>bl_bin (<aa # list @ [ab]> ) + (2*rs + 2)* 2^(length (<aa # list @ [ab]>) - Suc 0)\<^esup> @ Bk\<^bsup>rnb\<^esup>)" |
|
2598 by blast |
|
2599 from stp1 and stp2 show |
|
2600 "\<exists>stp ln rn. |
|
2601 steps (Suc 0, Bk # Bk\<^bsup>m\<^esup> @ Oc\<^bsup>Suc (Suc ab)\<^esup> @ Bk # <rev list @ [aa]> @ Bk # Bk # ires, |
|
2602 Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>) t_wcode_main stp = |
|
2603 (0, Bk # ires, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # |
|
2604 Oc\<^bsup>bl_bin (Oc\<^bsup>Suc aa\<^esup> @ Bk # <list @ [Suc ab]>) + rs * (2 * 2 ^ (aa + length (<list @ [Suc ab]>)))\<^esup> |
|
2605 @ Bk\<^bsup>rn\<^esup>)" |
|
2606 apply(rule_tac x = "stpa + stpb" in exI, rule_tac x = lnb in exI, |
|
2607 rule_tac x = rnb in exI, simp add: steps_add tape_of_nl_cons_app1 exp_ind_def) |
|
2608 done |
|
2609 qed |
|
2610 qed |
|
2611 qed |
|
2612 qed |
|
2613 |
|
2614 |
|
2615 |
|
2616 (* turing_shift can be used*) |
|
2617 term t_wcode_main |
|
2618 definition t_wcode_prepare :: "tprog" |
|
2619 where |
|
2620 "t_wcode_prepare \<equiv> |
|
2621 [(W1, 2), (L, 1), (L, 3), (R, 2), (R, 4), (W0, 3), |
|
2622 (R, 4), (R, 5), (R, 6), (R, 5), (R, 7), (R, 5), |
|
2623 (W1, 7), (L, 0)]" |
|
2624 |
|
2625 fun wprepare_add_one :: "nat \<Rightarrow> nat list \<Rightarrow> tape \<Rightarrow> bool" |
|
2626 where |
|
2627 "wprepare_add_one m lm (l, r) = |
|
2628 (\<exists> rn. l = [] \<and> |
|
2629 (r = <m # lm> @ Bk\<^bsup>rn\<^esup> \<or> |
|
2630 r = Bk # <m # lm> @ Bk\<^bsup>rn\<^esup>))" |
|
2631 |
|
2632 fun wprepare_goto_first_end :: "nat \<Rightarrow> nat list \<Rightarrow> tape \<Rightarrow> bool" |
|
2633 where |
|
2634 "wprepare_goto_first_end m lm (l, r) = |
|
2635 (\<exists> ml mr rn. l = Oc\<^bsup>ml\<^esup> \<and> |
|
2636 r = Oc\<^bsup>mr\<^esup> @ Bk # <lm> @ Bk\<^bsup>rn\<^esup> \<and> |
|
2637 ml + mr = Suc (Suc m))" |
|
2638 |
|
2639 fun wprepare_erase :: "nat \<Rightarrow> nat list \<Rightarrow> tape \<Rightarrow> bool" |
|
2640 where |
|
2641 "wprepare_erase m lm (l, r) = |
|
2642 (\<exists> rn. l = Oc\<^bsup>Suc m\<^esup> \<and> |
|
2643 tl r = Bk # <lm> @ Bk\<^bsup>rn\<^esup>)" |
|
2644 |
|
2645 fun wprepare_goto_start_pos_B :: "nat \<Rightarrow> nat list \<Rightarrow> tape \<Rightarrow> bool" |
|
2646 where |
|
2647 "wprepare_goto_start_pos_B m lm (l, r) = |
|
2648 (\<exists> rn. l = Bk # Oc\<^bsup>Suc m\<^esup> \<and> |
|
2649 r = Bk # <lm> @ Bk\<^bsup>rn\<^esup>)" |
|
2650 |
|
2651 fun wprepare_goto_start_pos_O :: "nat \<Rightarrow> nat list \<Rightarrow> tape \<Rightarrow> bool" |
|
2652 where |
|
2653 "wprepare_goto_start_pos_O m lm (l, r) = |
|
2654 (\<exists> rn. l = Bk # Bk # Oc\<^bsup>Suc m\<^esup> \<and> |
|
2655 r = <lm> @ Bk\<^bsup>rn\<^esup>)" |
|
2656 |
|
2657 fun wprepare_goto_start_pos :: "nat \<Rightarrow> nat list \<Rightarrow> tape \<Rightarrow> bool" |
|
2658 where |
|
2659 "wprepare_goto_start_pos m lm (l, r) = |
|
2660 (wprepare_goto_start_pos_B m lm (l, r) \<or> |
|
2661 wprepare_goto_start_pos_O m lm (l, r))" |
|
2662 |
|
2663 fun wprepare_loop_start_on_rightmost :: "nat \<Rightarrow> nat list \<Rightarrow> tape \<Rightarrow> bool" |
|
2664 where |
|
2665 "wprepare_loop_start_on_rightmost m lm (l, r) = |
|
2666 (\<exists> rn mr. rev l @ r = Oc\<^bsup>Suc m\<^esup> @ Bk # Bk # <lm> @ Bk\<^bsup>rn\<^esup> \<and> l \<noteq> [] \<and> |
|
2667 r = Oc\<^bsup>mr\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
2668 |
|
2669 fun wprepare_loop_start_in_middle :: "nat \<Rightarrow> nat list \<Rightarrow> tape \<Rightarrow> bool" |
|
2670 where |
|
2671 "wprepare_loop_start_in_middle m lm (l, r) = |
|
2672 (\<exists> rn (mr:: nat) (lm1::nat list). |
|
2673 rev l @ r = Oc\<^bsup>Suc m\<^esup> @ Bk # Bk # <lm> @ Bk\<^bsup>rn\<^esup> \<and> l \<noteq> [] \<and> |
|
2674 r = Oc\<^bsup>mr\<^esup> @ Bk # <lm1> @ Bk\<^bsup>rn\<^esup> \<and> lm1 \<noteq> [])" |
|
2675 |
|
2676 fun wprepare_loop_start :: "nat \<Rightarrow> nat list \<Rightarrow> tape \<Rightarrow> bool" |
|
2677 where |
|
2678 "wprepare_loop_start m lm (l, r) = (wprepare_loop_start_on_rightmost m lm (l, r) \<or> |
|
2679 wprepare_loop_start_in_middle m lm (l, r))" |
|
2680 |
|
2681 fun wprepare_loop_goon_on_rightmost :: "nat \<Rightarrow> nat list \<Rightarrow> tape \<Rightarrow> bool" |
|
2682 where |
|
2683 "wprepare_loop_goon_on_rightmost m lm (l, r) = |
|
2684 (\<exists> rn. l = Bk # <rev lm> @ Bk # Bk # Oc\<^bsup>Suc m\<^esup> \<and> |
|
2685 r = Bk\<^bsup>rn\<^esup>)" |
|
2686 |
|
2687 fun wprepare_loop_goon_in_middle :: "nat \<Rightarrow> nat list \<Rightarrow> tape \<Rightarrow> bool" |
|
2688 where |
|
2689 "wprepare_loop_goon_in_middle m lm (l, r) = |
|
2690 (\<exists> rn (mr:: nat) (lm1::nat list). |
|
2691 rev l @ r = Oc\<^bsup>Suc m\<^esup> @ Bk # Bk # <lm> @ Bk\<^bsup>rn\<^esup> \<and> l \<noteq> [] \<and> |
|
2692 (if lm1 = [] then r = Oc\<^bsup>mr\<^esup> @ Bk\<^bsup>rn\<^esup> |
|
2693 else r = Oc\<^bsup>mr\<^esup> @ Bk # <lm1> @ Bk\<^bsup>rn\<^esup>) \<and> mr > 0)" |
|
2694 |
|
2695 fun wprepare_loop_goon :: "nat \<Rightarrow> nat list \<Rightarrow> tape \<Rightarrow> bool" |
|
2696 where |
|
2697 "wprepare_loop_goon m lm (l, r) = |
|
2698 (wprepare_loop_goon_in_middle m lm (l, r) \<or> |
|
2699 wprepare_loop_goon_on_rightmost m lm (l, r))" |
|
2700 |
|
2701 fun wprepare_add_one2 :: "nat \<Rightarrow> nat list \<Rightarrow> tape \<Rightarrow> bool" |
|
2702 where |
|
2703 "wprepare_add_one2 m lm (l, r) = |
|
2704 (\<exists> rn. l = Bk # Bk # <rev lm> @ Bk # Bk # Oc\<^bsup>Suc m\<^esup> \<and> |
|
2705 (r = [] \<or> tl r = Bk\<^bsup>rn\<^esup>))" |
|
2706 |
|
2707 fun wprepare_stop :: "nat \<Rightarrow> nat list \<Rightarrow> tape \<Rightarrow> bool" |
|
2708 where |
|
2709 "wprepare_stop m lm (l, r) = |
|
2710 (\<exists> rn. l = Bk # <rev lm> @ Bk # Bk # Oc\<^bsup>Suc m\<^esup> \<and> |
|
2711 r = Bk # Oc # Bk\<^bsup>rn\<^esup>)" |
|
2712 |
|
2713 fun wprepare_inv :: "nat \<Rightarrow> nat \<Rightarrow> nat list \<Rightarrow> tape \<Rightarrow> bool" |
|
2714 where |
|
2715 "wprepare_inv st m lm (l, r) = |
|
2716 (if st = 0 then wprepare_stop m lm (l, r) |
|
2717 else if st = Suc 0 then wprepare_add_one m lm (l, r) |
|
2718 else if st = Suc (Suc 0) then wprepare_goto_first_end m lm (l, r) |
|
2719 else if st = Suc (Suc (Suc 0)) then wprepare_erase m lm (l, r) |
|
2720 else if st = 4 then wprepare_goto_start_pos m lm (l, r) |
|
2721 else if st = 5 then wprepare_loop_start m lm (l, r) |
|
2722 else if st = 6 then wprepare_loop_goon m lm (l, r) |
|
2723 else if st = 7 then wprepare_add_one2 m lm (l, r) |
|
2724 else False)" |
|
2725 |
|
2726 fun wprepare_stage :: "t_conf \<Rightarrow> nat" |
|
2727 where |
|
2728 "wprepare_stage (st, l, r) = |
|
2729 (if st \<ge> 1 \<and> st \<le> 4 then 3 |
|
2730 else if st = 5 \<or> st = 6 then 2 |
|
2731 else 1)" |
|
2732 |
|
2733 fun wprepare_state :: "t_conf \<Rightarrow> nat" |
|
2734 where |
|
2735 "wprepare_state (st, l, r) = |
|
2736 (if st = 1 then 4 |
|
2737 else if st = Suc (Suc 0) then 3 |
|
2738 else if st = Suc (Suc (Suc 0)) then 2 |
|
2739 else if st = 4 then 1 |
|
2740 else if st = 7 then 2 |
|
2741 else 0)" |
|
2742 |
|
2743 fun wprepare_step :: "t_conf \<Rightarrow> nat" |
|
2744 where |
|
2745 "wprepare_step (st, l, r) = |
|
2746 (if st = 1 then (if hd r = Oc then Suc (length l) |
|
2747 else 0) |
|
2748 else if st = Suc (Suc 0) then length r |
|
2749 else if st = Suc (Suc (Suc 0)) then (if hd r = Oc then 1 |
|
2750 else 0) |
|
2751 else if st = 4 then length r |
|
2752 else if st = 5 then Suc (length r) |
|
2753 else if st = 6 then (if r = [] then 0 else Suc (length r)) |
|
2754 else if st = 7 then (if (r \<noteq> [] \<and> hd r = Oc) then 0 |
|
2755 else 1) |
|
2756 else 0)" |
|
2757 |
|
2758 fun wcode_prepare_measure :: "t_conf \<Rightarrow> nat \<times> nat \<times> nat" |
|
2759 where |
|
2760 "wcode_prepare_measure (st, l, r) = |
|
2761 (wprepare_stage (st, l, r), |
|
2762 wprepare_state (st, l, r), |
|
2763 wprepare_step (st, l, r))" |
|
2764 |
|
2765 definition wcode_prepare_le :: "(t_conf \<times> t_conf) set" |
|
2766 where "wcode_prepare_le \<equiv> (inv_image lex_triple wcode_prepare_measure)" |
|
2767 |
|
2768 lemma [intro]: "wf lex_pair" |
|
2769 by(auto intro:wf_lex_prod simp:lex_pair_def) |
|
2770 |
|
2771 lemma wf_wcode_prepare_le[intro]: "wf wcode_prepare_le" |
|
2772 by(auto intro:wf_inv_image simp: wcode_prepare_le_def |
|
2773 recursive.lex_triple_def) |
|
2774 |
|
2775 declare wprepare_add_one.simps[simp del] wprepare_goto_first_end.simps[simp del] |
|
2776 wprepare_erase.simps[simp del] wprepare_goto_start_pos.simps[simp del] |
|
2777 wprepare_loop_start.simps[simp del] wprepare_loop_goon.simps[simp del] |
|
2778 wprepare_add_one2.simps[simp del] |
|
2779 |
|
2780 lemmas wprepare_invs = wprepare_add_one.simps wprepare_goto_first_end.simps |
|
2781 wprepare_erase.simps wprepare_goto_start_pos.simps |
|
2782 wprepare_loop_start.simps wprepare_loop_goon.simps |
|
2783 wprepare_add_one2.simps |
|
2784 |
|
2785 declare wprepare_inv.simps[simp del] |
|
2786 lemma [simp]: "fetch t_wcode_prepare (Suc 0) Bk = (W1, 2)" |
|
2787 apply(simp add: fetch.simps t_wcode_prepare_def nth_of.simps) |
|
2788 done |
|
2789 |
|
2790 lemma [simp]: "fetch t_wcode_prepare (Suc 0) Oc = (L, 1)" |
|
2791 apply(simp add: fetch.simps t_wcode_prepare_def nth_of.simps) |
|
2792 done |
|
2793 |
|
2794 lemma [simp]: "fetch t_wcode_prepare (Suc (Suc 0)) Bk = (L, 3)" |
|
2795 apply(simp add: fetch.simps t_wcode_prepare_def nth_of.simps) |
|
2796 done |
|
2797 |
|
2798 lemma [simp]: "fetch t_wcode_prepare (Suc (Suc 0)) Oc = (R, 2)" |
|
2799 apply(simp add: fetch.simps t_wcode_prepare_def nth_of.simps) |
|
2800 done |
|
2801 |
|
2802 lemma [simp]: "fetch t_wcode_prepare (Suc (Suc (Suc 0))) Bk = (R, 4)" |
|
2803 apply(simp add: fetch.simps t_wcode_prepare_def nth_of.simps) |
|
2804 done |
|
2805 |
|
2806 lemma [simp]: "fetch t_wcode_prepare (Suc (Suc (Suc 0))) Oc = (W0, 3)" |
|
2807 apply(simp add: fetch.simps t_wcode_prepare_def nth_of.simps) |
|
2808 done |
|
2809 |
|
2810 lemma [simp]: "fetch t_wcode_prepare 4 Bk = (R, 4)" |
|
2811 apply(simp add: fetch.simps t_wcode_prepare_def nth_of.simps) |
|
2812 done |
|
2813 |
|
2814 lemma [simp]: "fetch t_wcode_prepare 4 Oc = (R, 5)" |
|
2815 apply(simp add: fetch.simps t_wcode_prepare_def nth_of.simps) |
|
2816 done |
|
2817 |
|
2818 lemma [simp]: "fetch t_wcode_prepare 5 Oc = (R, 5)" |
|
2819 apply(simp add: fetch.simps t_wcode_prepare_def nth_of.simps) |
|
2820 done |
|
2821 |
|
2822 lemma [simp]: "fetch t_wcode_prepare 5 Bk = (R, 6)" |
|
2823 apply(simp add: fetch.simps t_wcode_prepare_def nth_of.simps) |
|
2824 done |
|
2825 |
|
2826 lemma [simp]: "fetch t_wcode_prepare 6 Oc = (R, 5)" |
|
2827 apply(simp add: fetch.simps t_wcode_prepare_def nth_of.simps) |
|
2828 done |
|
2829 |
|
2830 lemma [simp]: "fetch t_wcode_prepare 6 Bk = (R, 7)" |
|
2831 apply(simp add: fetch.simps t_wcode_prepare_def nth_of.simps) |
|
2832 done |
|
2833 |
|
2834 lemma [simp]: "fetch t_wcode_prepare 7 Oc = (L, 0)" |
|
2835 apply(simp add: fetch.simps t_wcode_prepare_def nth_of.simps) |
|
2836 done |
|
2837 |
|
2838 lemma [simp]: "fetch t_wcode_prepare 7 Bk = (W1, 7)" |
|
2839 apply(simp add: fetch.simps t_wcode_prepare_def nth_of.simps) |
|
2840 done |
|
2841 |
|
2842 lemma tape_of_nl_not_null: "lm \<noteq> [] \<Longrightarrow> <lm::nat list> \<noteq> []" |
|
2843 apply(case_tac lm, auto) |
|
2844 apply(case_tac list, auto simp: tape_of_nl_abv tape_of_nat_list.simps exp_ind_def) |
|
2845 done |
|
2846 |
|
2847 lemma [simp]: "lm \<noteq> [] \<Longrightarrow> wprepare_add_one m lm (b, []) = False" |
|
2848 apply(simp add: wprepare_invs) |
|
2849 apply(simp add: tape_of_nl_not_null) |
|
2850 done |
|
2851 |
|
2852 lemma [simp]: "lm \<noteq> [] \<Longrightarrow> wprepare_goto_first_end m lm (b, []) = False" |
|
2853 apply(simp add: wprepare_invs) |
|
2854 done |
|
2855 |
|
2856 lemma [simp]: "lm \<noteq> [] \<Longrightarrow> wprepare_erase m lm (b, []) = False" |
|
2857 apply(simp add: wprepare_invs) |
|
2858 done |
|
2859 |
|
2860 |
|
2861 |
|
2862 lemma [simp]: "lm \<noteq> [] \<Longrightarrow> wprepare_goto_start_pos m lm (b, []) = False" |
|
2863 apply(simp add: wprepare_invs tape_of_nl_not_null) |
|
2864 done |
|
2865 |
|
2866 lemma [simp]: "\<lbrakk>lm \<noteq> []; wprepare_loop_start m lm (b, [])\<rbrakk> \<Longrightarrow> b \<noteq> []" |
|
2867 apply(simp add: wprepare_invs tape_of_nl_not_null, auto) |
|
2868 done |
|
2869 |
|
2870 lemma [simp]: "\<lbrakk>lm \<noteq> []; wprepare_loop_start m lm (b, [])\<rbrakk> \<Longrightarrow> |
|
2871 wprepare_loop_goon m lm (Bk # b, [])" |
|
2872 apply(simp only: wprepare_invs tape_of_nl_not_null) |
|
2873 apply(erule_tac disjE) |
|
2874 apply(rule_tac disjI2) |
|
2875 apply(simp add: wprepare_loop_start_on_rightmost.simps |
|
2876 wprepare_loop_goon_on_rightmost.simps, auto) |
|
2877 apply(rule_tac rev_eq, simp add: tape_of_nl_rev) |
|
2878 done |
|
2879 |
|
2880 lemma [simp]: "\<lbrakk>lm \<noteq> []; wprepare_loop_goon m lm (b, [])\<rbrakk> \<Longrightarrow> b \<noteq> []" |
|
2881 apply(simp only: wprepare_invs tape_of_nl_not_null, auto) |
|
2882 done |
|
2883 |
|
2884 lemma [simp]:"\<lbrakk>lm \<noteq> []; wprepare_loop_goon m lm (b, [])\<rbrakk> \<Longrightarrow> |
|
2885 wprepare_add_one2 m lm (Bk # b, [])" |
|
2886 apply(simp only: wprepare_invs tape_of_nl_not_null, auto split: if_splits) |
|
2887 apply(case_tac mr, simp, simp add: exp_ind_def) |
|
2888 done |
|
2889 |
|
2890 lemma [simp]: "wprepare_add_one2 m lm (b, []) \<Longrightarrow> b \<noteq> []" |
|
2891 apply(simp only: wprepare_invs tape_of_nl_not_null, auto) |
|
2892 done |
|
2893 |
|
2894 lemma [simp]: "wprepare_add_one2 m lm (b, []) \<Longrightarrow> wprepare_add_one2 m lm (b, [Oc])" |
|
2895 apply(simp only: wprepare_invs tape_of_nl_not_null, auto) |
|
2896 done |
|
2897 |
|
2898 lemma [simp]: "Bk # list = <(m::nat) # lm> @ ys = False" |
|
2899 apply(case_tac lm, auto simp: tape_of_nl_abv tape_of_nat_list.simps exp_ind_def) |
|
2900 done |
|
2901 |
|
2902 lemma [simp]: "\<lbrakk>lm \<noteq> []; wprepare_add_one m lm (b, Bk # list)\<rbrakk> |
|
2903 \<Longrightarrow> (b = [] \<longrightarrow> wprepare_goto_first_end m lm ([], Oc # list)) \<and> |
|
2904 (b \<noteq> [] \<longrightarrow> wprepare_goto_first_end m lm (b, Oc # list))" |
|
2905 apply(simp only: wprepare_invs, auto) |
|
2906 apply(rule_tac x = 0 in exI, simp add: exp_ind_def) |
|
2907 apply(case_tac lm, simp, simp add: tape_of_nl_abv tape_of_nat_list.simps exp_ind_def) |
|
2908 apply(rule_tac x = rn in exI, simp) |
|
2909 done |
|
2910 |
|
2911 lemma [simp]: "wprepare_goto_first_end m lm (b, Bk # list) \<Longrightarrow> b \<noteq> []" |
|
2912 apply(simp only: wprepare_invs tape_of_nl_not_null, auto) |
|
2913 apply(case_tac mr, simp_all add: exp_ind_def) |
|
2914 done |
|
2915 |
|
2916 lemma [simp]: "wprepare_goto_first_end m lm (b, Bk # list) \<Longrightarrow> |
|
2917 wprepare_erase m lm (tl b, hd b # Bk # list)" |
|
2918 apply(simp only: wprepare_invs tape_of_nl_not_null, auto) |
|
2919 apply(case_tac mr, simp_all add: exp_ind_def) |
|
2920 apply(case_tac mr, auto simp: exp_ind_def) |
|
2921 done |
|
2922 |
|
2923 lemma [simp]: "wprepare_erase m lm (b, Bk # list) \<Longrightarrow> b \<noteq> []" |
|
2924 apply(simp only: wprepare_invs exp_ind_def, auto) |
|
2925 done |
|
2926 |
|
2927 lemma [simp]: "wprepare_erase m lm (b, Bk # list) \<Longrightarrow> |
|
2928 wprepare_goto_start_pos m lm (Bk # b, list)" |
|
2929 apply(simp only: wprepare_invs, auto) |
|
2930 done |
|
2931 |
|
2932 lemma [simp]: "\<lbrakk>wprepare_add_one m lm (b, Bk # list)\<rbrakk> \<Longrightarrow> list \<noteq> []" |
|
2933 apply(simp only: wprepare_invs) |
|
2934 apply(case_tac lm, simp_all add: tape_of_nl_abv |
|
2935 tape_of_nat_list.simps exp_ind_def, auto) |
|
2936 done |
|
2937 |
|
2938 lemma [simp]: "\<lbrakk>lm \<noteq> []; wprepare_goto_first_end m lm (b, Bk # list)\<rbrakk> \<Longrightarrow> list \<noteq> []" |
|
2939 apply(simp only: wprepare_invs, auto) |
|
2940 apply(case_tac mr, simp_all add: exp_ind_def) |
|
2941 apply(simp add: tape_of_nl_not_null) |
|
2942 done |
|
2943 |
|
2944 lemma [simp]: "\<lbrakk>lm \<noteq> []; wprepare_goto_first_end m lm (b, Bk # list)\<rbrakk> \<Longrightarrow> b \<noteq> []" |
|
2945 apply(simp only: wprepare_invs, auto) |
|
2946 apply(case_tac mr, simp_all add: exp_ind_def tape_of_nl_not_null) |
|
2947 done |
|
2948 |
|
2949 lemma [simp]: "\<lbrakk>lm \<noteq> []; wprepare_erase m lm (b, Bk # list)\<rbrakk> \<Longrightarrow> list \<noteq> []" |
|
2950 apply(simp only: wprepare_invs, auto) |
|
2951 done |
|
2952 |
|
2953 lemma [simp]: "\<lbrakk>lm \<noteq> []; wprepare_erase m lm (b, Bk # list)\<rbrakk> \<Longrightarrow> b \<noteq> []" |
|
2954 apply(simp only: wprepare_invs, auto simp: exp_ind_def) |
|
2955 done |
|
2956 |
|
2957 lemma [simp]: "\<lbrakk>lm \<noteq> []; wprepare_goto_start_pos m lm (b, Bk # list)\<rbrakk> \<Longrightarrow> list \<noteq> []" |
|
2958 apply(simp only: wprepare_invs, auto) |
|
2959 apply(simp add: tape_of_nl_not_null) |
|
2960 apply(case_tac lm, simp, case_tac list) |
|
2961 apply(simp_all add: tape_of_nl_abv tape_of_nat_list.simps exp_ind_def) |
|
2962 done |
|
2963 |
|
2964 lemma [simp]: "\<lbrakk>lm \<noteq> []; wprepare_goto_start_pos m lm (b, Bk # list)\<rbrakk> \<Longrightarrow> b \<noteq> []" |
|
2965 apply(simp only: wprepare_invs) |
|
2966 apply(auto) |
|
2967 done |
|
2968 |
|
2969 lemma [simp]: "\<lbrakk>lm \<noteq> []; wprepare_loop_goon m lm (b, Bk # list)\<rbrakk> \<Longrightarrow> b \<noteq> []" |
|
2970 apply(simp only: wprepare_invs, auto) |
|
2971 done |
|
2972 |
|
2973 lemma [simp]: "\<lbrakk>lm \<noteq> []; wprepare_loop_goon m lm (b, Bk # list)\<rbrakk> \<Longrightarrow> |
|
2974 (list = [] \<longrightarrow> wprepare_add_one2 m lm (Bk # b, [])) \<and> |
|
2975 (list \<noteq> [] \<longrightarrow> wprepare_add_one2 m lm (Bk # b, list))" |
|
2976 apply(simp only: wprepare_invs, simp) |
|
2977 apply(case_tac list, simp_all split: if_splits, auto) |
|
2978 apply(case_tac [1-3] mr, simp_all add: exp_ind_def) |
|
2979 apply(case_tac mr, simp_all add: exp_ind_def tape_of_nl_not_null) |
|
2980 apply(case_tac [1-2] mr, simp_all add: exp_ind_def) |
|
2981 apply(case_tac rn, simp, case_tac nat, auto simp: exp_ind_def) |
|
2982 done |
|
2983 |
|
2984 lemma [simp]: "wprepare_add_one2 m lm (b, Bk # list) \<Longrightarrow> b \<noteq> []" |
|
2985 apply(simp only: wprepare_invs, simp) |
|
2986 done |
|
2987 |
|
2988 lemma [simp]: "wprepare_add_one2 m lm (b, Bk # list) \<Longrightarrow> |
|
2989 (list = [] \<longrightarrow> wprepare_add_one2 m lm (b, [Oc])) \<and> |
|
2990 (list \<noteq> [] \<longrightarrow> wprepare_add_one2 m lm (b, Oc # list))" |
|
2991 apply(simp only: wprepare_invs, auto) |
|
2992 done |
|
2993 |
|
2994 lemma [simp]: "wprepare_goto_first_end m lm (b, Oc # list) |
|
2995 \<Longrightarrow> (b = [] \<longrightarrow> wprepare_goto_first_end m lm ([Oc], list)) \<and> |
|
2996 (b \<noteq> [] \<longrightarrow> wprepare_goto_first_end m lm (Oc # b, list))" |
|
2997 apply(simp only: wprepare_invs, auto) |
|
2998 apply(rule_tac x = 1 in exI, auto) |
|
2999 apply(case_tac mr, simp_all add: exp_ind_def) |
|
3000 apply(case_tac ml, simp_all add: exp_ind_def) |
|
3001 apply(rule_tac x = rn in exI, simp) |
|
3002 apply(rule_tac x = "Suc ml" in exI, simp_all add: exp_ind_def) |
|
3003 apply(rule_tac x = "mr - 1" in exI, simp) |
|
3004 apply(case_tac mr, simp_all add: exp_ind_def, auto) |
|
3005 done |
|
3006 |
|
3007 lemma [simp]: "wprepare_erase m lm (b, Oc # list) \<Longrightarrow> b \<noteq> []" |
|
3008 apply(simp only: wprepare_invs, auto simp: exp_ind_def) |
|
3009 done |
|
3010 |
|
3011 lemma [simp]: "wprepare_erase m lm (b, Oc # list) |
|
3012 \<Longrightarrow> wprepare_erase m lm (b, Bk # list)" |
|
3013 apply(simp only:wprepare_invs, auto simp: exp_ind_def) |
|
3014 done |
|
3015 |
|
3016 lemma [simp]: "\<lbrakk>lm \<noteq> []; wprepare_goto_start_pos m lm (b, Bk # list)\<rbrakk> |
|
3017 \<Longrightarrow> wprepare_goto_start_pos m lm (Bk # b, list)" |
|
3018 apply(simp only:wprepare_invs, auto) |
|
3019 apply(case_tac [!] lm, simp, simp_all) |
|
3020 done |
|
3021 |
|
3022 lemma [simp]: "wprepare_loop_start m lm (b, aa) \<Longrightarrow> b \<noteq> []" |
|
3023 apply(simp only:wprepare_invs, auto) |
|
3024 done |
|
3025 lemma [elim]: "Bk # list = Oc\<^bsup>mr\<^esup> @ Bk\<^bsup>rn\<^esup> \<Longrightarrow> \<exists>rn. list = Bk\<^bsup>rn\<^esup>" |
|
3026 apply(case_tac mr, simp_all) |
|
3027 apply(case_tac rn, simp_all add: exp_ind_def, auto) |
|
3028 done |
|
3029 |
|
3030 lemma rev_equal_iff: "x = y \<Longrightarrow> rev x = rev y" |
|
3031 by simp |
|
3032 |
|
3033 lemma tape_of_nl_false1: |
|
3034 "lm \<noteq> [] \<Longrightarrow> rev b @ [Bk] \<noteq> Bk\<^bsup>ln\<^esup> @ Oc # Oc\<^bsup>m\<^esup> @ Bk # Bk # <lm::nat list>" |
|
3035 apply(auto) |
|
3036 apply(drule_tac rev_equal_iff, simp add: tape_of_nl_rev) |
|
3037 apply(case_tac "rev lm") |
|
3038 apply(case_tac [2] list, auto simp: tape_of_nl_abv tape_of_nat_list.simps exp_ind_def) |
|
3039 done |
|
3040 |
|
3041 lemma [simp]: "wprepare_loop_start_in_middle m lm (b, [Bk]) = False" |
|
3042 apply(simp add: wprepare_loop_start_in_middle.simps, auto) |
|
3043 apply(case_tac mr, simp_all add: exp_ind_def) |
|
3044 apply(case_tac lm1, simp, simp add: tape_of_nl_not_null) |
|
3045 done |
|
3046 |
|
3047 declare wprepare_loop_start_in_middle.simps[simp del] |
|
3048 |
|
3049 declare wprepare_loop_start_on_rightmost.simps[simp del] |
|
3050 wprepare_loop_goon_in_middle.simps[simp del] |
|
3051 wprepare_loop_goon_on_rightmost.simps[simp del] |
|
3052 |
|
3053 lemma [simp]: "wprepare_loop_goon_in_middle m lm (Bk # b, []) = False" |
|
3054 apply(simp add: wprepare_loop_goon_in_middle.simps, auto) |
|
3055 done |
|
3056 |
|
3057 lemma [simp]: "\<lbrakk>lm \<noteq> []; wprepare_loop_start m lm (b, [Bk])\<rbrakk> \<Longrightarrow> |
|
3058 wprepare_loop_goon m lm (Bk # b, [])" |
|
3059 apply(simp only: wprepare_invs, simp) |
|
3060 apply(simp add: wprepare_loop_goon_on_rightmost.simps |
|
3061 wprepare_loop_start_on_rightmost.simps, auto) |
|
3062 apply(case_tac mr, simp_all add: exp_ind_def) |
|
3063 apply(rule_tac rev_eq) |
|
3064 apply(simp add: tape_of_nl_rev) |
|
3065 apply(simp add: exp_ind_def[THEN sym] exp_ind) |
|
3066 done |
|
3067 |
|
3068 lemma [simp]: "wprepare_loop_start_on_rightmost m lm (b, Bk # a # lista) |
|
3069 \<Longrightarrow> wprepare_loop_goon_in_middle m lm (Bk # b, a # lista) = False" |
|
3070 apply(auto simp: wprepare_loop_start_on_rightmost.simps |
|
3071 wprepare_loop_goon_in_middle.simps) |
|
3072 apply(case_tac [!] mr, simp_all add: exp_ind_def) |
|
3073 done |
|
3074 |
|
3075 lemma [simp]: "\<lbrakk>lm \<noteq> []; wprepare_loop_start_on_rightmost m lm (b, Bk # a # lista)\<rbrakk> |
|
3076 \<Longrightarrow> wprepare_loop_goon_on_rightmost m lm (Bk # b, a # lista)" |
|
3077 apply(simp only: wprepare_loop_start_on_rightmost.simps |
|
3078 wprepare_loop_goon_on_rightmost.simps, auto) |
|
3079 apply(case_tac mr, simp_all add: exp_ind_def) |
|
3080 apply(simp add: tape_of_nl_rev) |
|
3081 apply(simp add: exp_ind_def[THEN sym] exp_ind) |
|
3082 done |
|
3083 |
|
3084 lemma [simp]: "\<lbrakk>lm \<noteq> []; wprepare_loop_start_in_middle m lm (b, Bk # a # lista)\<rbrakk> |
|
3085 \<Longrightarrow> wprepare_loop_goon_on_rightmost m lm (Bk # b, a # lista) = False" |
|
3086 apply(simp add: wprepare_loop_start_in_middle.simps |
|
3087 wprepare_loop_goon_on_rightmost.simps, auto) |
|
3088 apply(case_tac mr, simp_all add: exp_ind_def) |
|
3089 apply(case_tac "lm1::nat list", simp_all, case_tac list, simp) |
|
3090 apply(simp add: tape_of_nl_abv tape_of_nat_list.simps tape_of_nat_abv exp_ind_def) |
|
3091 apply(case_tac [!] rna, simp_all add: exp_ind_def) |
|
3092 apply(case_tac mr, simp_all add: exp_ind_def) |
|
3093 apply(case_tac lm1, simp, case_tac list, simp) |
|
3094 apply(simp_all add: tape_of_nl_abv tape_of_nat_list.simps exp_ind_def tape_of_nat_abv) |
|
3095 done |
|
3096 |
|
3097 lemma [simp]: |
|
3098 "\<lbrakk>lm \<noteq> []; wprepare_loop_start_in_middle m lm (b, Bk # a # lista)\<rbrakk> |
|
3099 \<Longrightarrow> wprepare_loop_goon_in_middle m lm (Bk # b, a # lista)" |
|
3100 apply(simp add: wprepare_loop_start_in_middle.simps |
|
3101 wprepare_loop_goon_in_middle.simps, auto) |
|
3102 apply(rule_tac x = rn in exI, simp) |
|
3103 apply(case_tac mr, simp_all add: exp_ind_def) |
|
3104 apply(case_tac lm1, simp) |
|
3105 apply(rule_tac x = "Suc aa" in exI, simp) |
|
3106 apply(rule_tac x = list in exI) |
|
3107 apply(case_tac list, simp_all add: tape_of_nl_abv tape_of_nat_list.simps) |
|
3108 done |
|
3109 |
|
3110 lemma [simp]: "\<lbrakk>lm \<noteq> []; wprepare_loop_start m lm (b, Bk # a # lista)\<rbrakk> \<Longrightarrow> |
|
3111 wprepare_loop_goon m lm (Bk # b, a # lista)" |
|
3112 apply(simp add: wprepare_loop_start.simps |
|
3113 wprepare_loop_goon.simps) |
|
3114 apply(erule_tac disjE, simp, auto) |
|
3115 done |
|
3116 |
|
3117 lemma start_2_goon: |
|
3118 "\<lbrakk>lm \<noteq> []; wprepare_loop_start m lm (b, Bk # list)\<rbrakk> \<Longrightarrow> |
|
3119 (list = [] \<longrightarrow> wprepare_loop_goon m lm (Bk # b, [])) \<and> |
|
3120 (list \<noteq> [] \<longrightarrow> wprepare_loop_goon m lm (Bk # b, list))" |
|
3121 apply(case_tac list, auto) |
|
3122 done |
|
3123 |
|
3124 lemma add_one_2_add_one: "wprepare_add_one m lm (b, Oc # list) |
|
3125 \<Longrightarrow> (hd b = Oc \<longrightarrow> (b = [] \<longrightarrow> wprepare_add_one m lm ([], Bk # Oc # list)) \<and> |
|
3126 (b \<noteq> [] \<longrightarrow> wprepare_add_one m lm (tl b, Oc # Oc # list))) \<and> |
|
3127 (hd b \<noteq> Oc \<longrightarrow> (b = [] \<longrightarrow> wprepare_add_one m lm ([], Bk # Oc # list)) \<and> |
|
3128 (b \<noteq> [] \<longrightarrow> wprepare_add_one m lm (tl b, hd b # Oc # list)))" |
|
3129 apply(simp only: wprepare_add_one.simps, auto) |
|
3130 done |
|
3131 |
|
3132 lemma [simp]: "wprepare_loop_start m lm (b, Oc # list) \<Longrightarrow> b \<noteq> []" |
|
3133 apply(simp) |
|
3134 done |
|
3135 |
|
3136 lemma [simp]: "wprepare_loop_start_on_rightmost m lm (b, Oc # list) \<Longrightarrow> |
|
3137 wprepare_loop_start_on_rightmost m lm (Oc # b, list)" |
|
3138 apply(simp add: wprepare_loop_start_on_rightmost.simps, auto) |
|
3139 apply(rule_tac x = rn in exI, auto) |
|
3140 apply(case_tac mr, simp_all add: exp_ind_def) |
|
3141 apply(case_tac rn, auto simp: exp_ind_def) |
|
3142 done |
|
3143 |
|
3144 lemma [simp]: "wprepare_loop_start_in_middle m lm (b, Oc # list) \<Longrightarrow> |
|
3145 wprepare_loop_start_in_middle m lm (Oc # b, list)" |
|
3146 apply(simp add: wprepare_loop_start_in_middle.simps, auto) |
|
3147 apply(rule_tac x = rn in exI, auto) |
|
3148 apply(case_tac mr, simp, simp add: exp_ind_def) |
|
3149 apply(rule_tac x = nat in exI, simp) |
|
3150 apply(rule_tac x = lm1 in exI, simp) |
|
3151 done |
|
3152 |
|
3153 lemma start_2_start: "wprepare_loop_start m lm (b, Oc # list) \<Longrightarrow> |
|
3154 wprepare_loop_start m lm (Oc # b, list)" |
|
3155 apply(simp add: wprepare_loop_start.simps) |
|
3156 apply(erule_tac disjE, simp_all ) |
|
3157 done |
|
3158 |
|
3159 lemma [simp]: "wprepare_loop_goon m lm (b, Oc # list) \<Longrightarrow> b \<noteq> []" |
|
3160 apply(simp add: wprepare_loop_goon.simps |
|
3161 wprepare_loop_goon_in_middle.simps |
|
3162 wprepare_loop_goon_on_rightmost.simps) |
|
3163 apply(auto) |
|
3164 done |
|
3165 |
|
3166 lemma [simp]: "wprepare_goto_start_pos m lm (b, Oc # list) \<Longrightarrow> b \<noteq> []" |
|
3167 apply(simp add: wprepare_goto_start_pos.simps) |
|
3168 done |
|
3169 |
|
3170 lemma [simp]: "wprepare_loop_goon_on_rightmost m lm (b, Oc # list) = False" |
|
3171 apply(simp add: wprepare_loop_goon_on_rightmost.simps) |
|
3172 done |
|
3173 lemma wprepare_loop1: "\<lbrakk>rev b @ Oc\<^bsup>mr\<^esup> = Oc\<^bsup>Suc m\<^esup> @ Bk # Bk # <lm>; |
|
3174 b \<noteq> []; 0 < mr; Oc # list = Oc\<^bsup>mr\<^esup> @ Bk\<^bsup>rn\<^esup>\<rbrakk> |
|
3175 \<Longrightarrow> wprepare_loop_start_on_rightmost m lm (Oc # b, list)" |
|
3176 apply(simp add: wprepare_loop_start_on_rightmost.simps) |
|
3177 apply(rule_tac x = rn in exI, simp) |
|
3178 apply(case_tac mr, simp, simp add: exp_ind_def, auto) |
|
3179 done |
|
3180 |
|
3181 lemma wprepare_loop2: "\<lbrakk>rev b @ Oc\<^bsup>mr\<^esup> @ Bk # <a # lista> = Oc\<^bsup>Suc m\<^esup> @ Bk # Bk # <lm>; |
|
3182 b \<noteq> []; Oc # list = Oc\<^bsup>mr\<^esup> @ Bk # <(a::nat) # lista> @ Bk\<^bsup>rn\<^esup>\<rbrakk> |
|
3183 \<Longrightarrow> wprepare_loop_start_in_middle m lm (Oc # b, list)" |
|
3184 apply(simp add: wprepare_loop_start_in_middle.simps) |
|
3185 apply(rule_tac x = rn in exI, simp) |
|
3186 apply(case_tac mr, simp_all add: exp_ind_def) |
|
3187 apply(rule_tac x = nat in exI, simp) |
|
3188 apply(rule_tac x = "a#lista" in exI, simp) |
|
3189 done |
|
3190 |
|
3191 lemma [simp]: "wprepare_loop_goon_in_middle m lm (b, Oc # list) \<Longrightarrow> |
|
3192 wprepare_loop_start_on_rightmost m lm (Oc # b, list) \<or> |
|
3193 wprepare_loop_start_in_middle m lm (Oc # b, list)" |
|
3194 apply(simp add: wprepare_loop_goon_in_middle.simps split: if_splits) |
|
3195 apply(case_tac lm1, simp_all add: wprepare_loop1 wprepare_loop2) |
|
3196 done |
|
3197 |
|
3198 lemma [simp]: "wprepare_loop_goon m lm (b, Oc # list) |
|
3199 \<Longrightarrow> wprepare_loop_start m lm (Oc # b, list)" |
|
3200 apply(simp add: wprepare_loop_goon.simps |
|
3201 wprepare_loop_start.simps) |
|
3202 done |
|
3203 |
|
3204 lemma [simp]: "wprepare_add_one m lm (b, Oc # list) |
|
3205 \<Longrightarrow> b = [] \<longrightarrow> wprepare_add_one m lm ([], Bk # Oc # list)" |
|
3206 apply(auto) |
|
3207 apply(simp add: wprepare_add_one.simps) |
|
3208 done |
|
3209 |
|
3210 lemma [simp]: "wprepare_goto_start_pos m [a] (b, Oc # list) |
|
3211 \<Longrightarrow> wprepare_loop_start_on_rightmost m [a] (Oc # b, list) " |
|
3212 apply(auto simp: wprepare_goto_start_pos.simps |
|
3213 wprepare_loop_start_on_rightmost.simps) |
|
3214 apply(rule_tac x = rn in exI, simp) |
|
3215 apply(simp add: tape_of_nat_abv tape_of_nat_list.simps exp_ind_def, auto) |
|
3216 done |
|
3217 |
|
3218 lemma [simp]: "wprepare_goto_start_pos m (a # aa # listaa) (b, Oc # list) |
|
3219 \<Longrightarrow>wprepare_loop_start_in_middle m (a # aa # listaa) (Oc # b, list)" |
|
3220 apply(auto simp: wprepare_goto_start_pos.simps |
|
3221 wprepare_loop_start_in_middle.simps) |
|
3222 apply(rule_tac x = rn in exI, simp) |
|
3223 apply(simp add: tape_of_nl_abv tape_of_nat_list.simps exp_ind_def) |
|
3224 apply(rule_tac x = a in exI, rule_tac x = "aa#listaa" in exI, simp) |
|
3225 done |
|
3226 |
|
3227 lemma [simp]: "\<lbrakk>lm \<noteq> []; wprepare_goto_start_pos m lm (b, Oc # list)\<rbrakk> |
|
3228 \<Longrightarrow> wprepare_loop_start m lm (Oc # b, list)" |
|
3229 apply(case_tac lm, simp_all) |
|
3230 apply(case_tac lista, simp_all add: wprepare_loop_start.simps) |
|
3231 done |
|
3232 |
|
3233 lemma [simp]: "wprepare_add_one2 m lm (b, Oc # list) \<Longrightarrow> b \<noteq> []" |
|
3234 apply(auto simp: wprepare_add_one2.simps) |
|
3235 done |
|
3236 |
|
3237 lemma add_one_2_stop: |
|
3238 "wprepare_add_one2 m lm (b, Oc # list) |
|
3239 \<Longrightarrow> wprepare_stop m lm (tl b, hd b # Oc # list)" |
|
3240 apply(simp add: wprepare_stop.simps wprepare_add_one2.simps) |
|
3241 done |
|
3242 |
|
3243 declare wprepare_stop.simps[simp del] |
|
3244 |
|
3245 lemma wprepare_correctness: |
|
3246 assumes h: "lm \<noteq> []" |
|
3247 shows "let P = (\<lambda> (st, l, r). st = 0) in |
|
3248 let Q = (\<lambda> (st, l, r). wprepare_inv st m lm (l, r)) in |
|
3249 let f = (\<lambda> stp. steps (Suc 0, [], (<m # lm>)) t_wcode_prepare stp) in |
|
3250 \<exists> n .P (f n) \<and> Q (f n)" |
|
3251 proof - |
|
3252 let ?P = "(\<lambda> (st, l, r). st = 0)" |
|
3253 let ?Q = "(\<lambda> (st, l, r). wprepare_inv st m lm (l, r))" |
|
3254 let ?f = "(\<lambda> stp. steps (Suc 0, [], (<m # lm>)) t_wcode_prepare stp)" |
|
3255 have "\<exists> n. ?P (?f n) \<and> ?Q (?f n)" |
|
3256 proof(rule_tac halt_lemma2) |
|
3257 show "wf wcode_prepare_le" by auto |
|
3258 next |
|
3259 show "\<forall> n. \<not> ?P (?f n) \<and> ?Q (?f n) \<longrightarrow> |
|
3260 ?Q (?f (Suc n)) \<and> (?f (Suc n), ?f n) \<in> wcode_prepare_le" |
|
3261 using h |
|
3262 apply(rule_tac allI, rule_tac impI, case_tac "?f n", |
|
3263 simp add: tstep_red tstep.simps) |
|
3264 apply(case_tac c, simp, case_tac [2] aa) |
|
3265 apply(simp_all add: wprepare_inv.simps wcode_prepare_le_def new_tape.simps |
|
3266 lex_triple_def lex_pair_def |
|
3267 |
|
3268 split: if_splits) |
|
3269 apply(simp_all add: start_2_goon start_2_start |
|
3270 add_one_2_add_one add_one_2_stop) |
|
3271 apply(auto simp: wprepare_add_one2.simps) |
|
3272 done |
|
3273 next |
|
3274 show "?Q (?f 0)" |
|
3275 apply(simp add: steps.simps wprepare_inv.simps wprepare_invs) |
|
3276 done |
|
3277 next |
|
3278 show "\<not> ?P (?f 0)" |
|
3279 apply(simp add: steps.simps) |
|
3280 done |
|
3281 qed |
|
3282 thus "?thesis" |
|
3283 apply(auto) |
|
3284 done |
|
3285 qed |
|
3286 |
|
3287 lemma [intro]: "t_correct t_wcode_prepare" |
|
3288 apply(simp add: t_correct.simps t_wcode_prepare_def iseven_def) |
|
3289 apply(rule_tac x = 7 in exI, simp) |
|
3290 done |
|
3291 |
|
3292 lemma twice_len_even: "length (tm_of abc_twice) mod 2 = 0" |
|
3293 apply(simp add: tm_even) |
|
3294 done |
|
3295 |
|
3296 lemma fourtimes_len_even: "length (tm_of abc_fourtimes) mod 2 = 0" |
|
3297 apply(simp add: tm_even) |
|
3298 done |
|
3299 |
|
3300 lemma t_correct_termi: "t_correct tp \<Longrightarrow> |
|
3301 list_all (\<lambda>(acn, st). (st \<le> Suc (length tp div 2))) (change_termi_state tp)" |
|
3302 apply(auto simp: t_correct.simps List.list_all_length) |
|
3303 apply(erule_tac x = n in allE, simp) |
|
3304 apply(case_tac "tp!n", auto simp: change_termi_state.simps split: if_splits) |
|
3305 done |
|
3306 |
|
3307 |
|
3308 lemma t_correct_shift: |
|
3309 "list_all (\<lambda>(acn, st). (st \<le> y)) tp \<Longrightarrow> |
|
3310 list_all (\<lambda>(acn, st). (st \<le> y + off)) (tshift tp off) " |
|
3311 apply(auto simp: t_correct.simps List.list_all_length) |
|
3312 apply(erule_tac x = n in allE, simp add: shift_length) |
|
3313 apply(case_tac "tp!n", auto simp: tshift.simps) |
|
3314 done |
|
3315 |
|
3316 lemma [intro]: |
|
3317 "t_correct (tm_of abc_twice @ tMp (Suc 0) |
|
3318 (start_of twice_ly (length abc_twice) - Suc 0))" |
|
3319 apply(rule_tac t_compiled_correct, simp_all) |
|
3320 apply(simp add: twice_ly_def) |
|
3321 done |
|
3322 |
|
3323 lemma [intro]: "t_correct (tm_of abc_fourtimes @ tMp (Suc 0) |
|
3324 (start_of fourtimes_ly (length abc_fourtimes) - Suc 0))" |
|
3325 apply(rule_tac t_compiled_correct, simp_all) |
|
3326 apply(simp add: fourtimes_ly_def) |
|
3327 done |
|
3328 |
|
3329 |
|
3330 lemma [intro]: "t_correct t_wcode_main" |
|
3331 apply(auto simp: t_wcode_main_def t_correct.simps shift_length |
|
3332 t_twice_def t_fourtimes_def) |
|
3333 proof - |
|
3334 show "iseven (60 + (length (tm_of abc_twice) + |
|
3335 length (tm_of abc_fourtimes)))" |
|
3336 using twice_len_even fourtimes_len_even |
|
3337 apply(auto simp: iseven_def) |
|
3338 apply(rule_tac x = "30 + q + qa" in exI, simp) |
|
3339 done |
|
3340 next |
|
3341 show " list_all (\<lambda>(acn, s). s \<le> (60 + (length (tm_of abc_twice) + |
|
3342 length (tm_of abc_fourtimes))) div 2) t_wcode_main_first_part" |
|
3343 apply(auto simp: t_wcode_main_first_part_def shift_length t_twice_def) |
|
3344 done |
|
3345 next |
|
3346 have "list_all (\<lambda>(acn, s). s \<le> Suc (length (tm_of abc_twice @ tMp (Suc 0) |
|
3347 (start_of twice_ly (length abc_twice) - Suc 0)) div 2)) |
|
3348 (change_termi_state (tm_of abc_twice @ tMp (Suc 0) |
|
3349 (start_of twice_ly (length abc_twice) - Suc 0)))" |
|
3350 apply(rule_tac t_correct_termi, auto) |
|
3351 done |
|
3352 hence "list_all (\<lambda>(acn, s). s \<le> Suc (length (tm_of abc_twice @ tMp (Suc 0) |
|
3353 (start_of twice_ly (length abc_twice) - Suc 0)) div 2) + 12) |
|
3354 (abacus.tshift (change_termi_state (tm_of abc_twice @ tMp (Suc 0) |
|
3355 (start_of twice_ly (length abc_twice) - Suc 0))) 12)" |
|
3356 apply(rule_tac t_correct_shift, simp) |
|
3357 done |
|
3358 thus "list_all (\<lambda>(acn, s). s \<le> |
|
3359 (60 + (length (tm_of abc_twice) + length (tm_of abc_fourtimes))) div 2) |
|
3360 (abacus.tshift (change_termi_state (tm_of abc_twice @ tMp (Suc 0) |
|
3361 (start_of twice_ly (length abc_twice) - Suc 0))) 12)" |
|
3362 apply(simp) |
|
3363 apply(simp add: list_all_length, auto) |
|
3364 done |
|
3365 next |
|
3366 have "list_all (\<lambda>(acn, s). s \<le> Suc (length (tm_of abc_fourtimes @ tMp (Suc 0) |
|
3367 (start_of fourtimes_ly (length abc_fourtimes) - Suc 0)) div 2)) |
|
3368 (change_termi_state (tm_of abc_fourtimes @ tMp (Suc 0) |
|
3369 (start_of fourtimes_ly (length abc_fourtimes) - Suc 0))) " |
|
3370 apply(rule_tac t_correct_termi, auto) |
|
3371 done |
|
3372 hence "list_all (\<lambda>(acn, s). s \<le> Suc (length (tm_of abc_fourtimes @ tMp (Suc 0) |
|
3373 (start_of fourtimes_ly (length abc_fourtimes) - Suc 0)) div 2) + (t_twice_len + 13)) |
|
3374 (abacus.tshift (change_termi_state (tm_of abc_fourtimes @ tMp (Suc 0) |
|
3375 (start_of fourtimes_ly (length abc_fourtimes) - Suc 0))) (t_twice_len + 13))" |
|
3376 apply(rule_tac t_correct_shift, simp) |
|
3377 done |
|
3378 thus "list_all (\<lambda>(acn, s). s \<le> (60 + (length (tm_of abc_twice) + length (tm_of abc_fourtimes))) div 2) |
|
3379 (abacus.tshift (change_termi_state (tm_of abc_fourtimes @ tMp (Suc 0) |
|
3380 (start_of fourtimes_ly (length abc_fourtimes) - Suc 0))) (t_twice_len + 13))" |
|
3381 apply(simp add: t_twice_len_def t_twice_def) |
|
3382 using twice_len_even fourtimes_len_even |
|
3383 apply(auto simp: list_all_length) |
|
3384 done |
|
3385 qed |
|
3386 |
|
3387 lemma [intro]: "t_correct (t_wcode_prepare |+| t_wcode_main)" |
|
3388 apply(auto intro: t_correct_add) |
|
3389 done |
|
3390 |
|
3391 lemma prepare_mainpart_lemma: |
|
3392 "args \<noteq> [] \<Longrightarrow> |
|
3393 \<exists> stp ln rn. steps (Suc 0, [], <m # args>) (t_wcode_prepare |+| t_wcode_main) stp |
|
3394 = (0, Bk # Oc\<^bsup>Suc m\<^esup>, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin (<args>)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
3395 proof - |
|
3396 let ?P1 = "\<lambda> (l, r). l = [] \<and> r = <m # args>" |
|
3397 let ?Q1 = "\<lambda> (l, r). wprepare_stop m args (l, r)" |
|
3398 let ?P2 = ?Q1 |
|
3399 let ?Q2 = "\<lambda> (l, r). (\<exists> ln rn. l = Bk # Oc\<^bsup>Suc m\<^esup> \<and> |
|
3400 r = Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin (<args>)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
3401 let ?P3 = "\<lambda> tp. False" |
|
3402 assume h: "args \<noteq> []" |
|
3403 have "?P1 \<turnstile>-> \<lambda> tp. (\<exists> stp tp'. steps (Suc 0, tp) |
|
3404 (t_wcode_prepare |+| t_wcode_main) stp = (0, tp') \<and> ?Q2 tp')" |
|
3405 proof(rule_tac turing_merge.t_merge_halt[of t_wcode_prepare t_wcode_main ?P1 ?P2 ?P3 ?P3 ?Q1 ?Q2], |
|
3406 auto simp: turing_merge_def) |
|
3407 show "\<exists>stp. case steps (Suc 0, [], <m # args>) t_wcode_prepare stp of (st, tp') |
|
3408 \<Rightarrow> st = 0 \<and> wprepare_stop m args tp'" |
|
3409 using wprepare_correctness[of args m] h |
|
3410 apply(simp, auto) |
|
3411 apply(rule_tac x = n in exI, simp add: wprepare_inv.simps) |
|
3412 done |
|
3413 next |
|
3414 fix a b |
|
3415 assume "wprepare_stop m args (a, b)" |
|
3416 thus "\<exists>stp. case steps (Suc 0, a, b) t_wcode_main stp of |
|
3417 (st, tp') \<Rightarrow> (st = 0) \<and> (case tp' of (l, r) \<Rightarrow> l = Bk # Oc\<^bsup>Suc m\<^esup> \<and> |
|
3418 (\<exists>ln rn. r = Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin (<args>)\<^esup> @ Bk\<^bsup>rn\<^esup>))" |
|
3419 proof(simp only: wprepare_stop.simps, erule_tac exE) |
|
3420 fix rn |
|
3421 assume "a = Bk # <rev args> @ Bk # Bk # Oc\<^bsup>Suc m\<^esup> \<and> |
|
3422 b = Bk # Oc # Bk\<^bsup>rn\<^esup>" |
|
3423 thus "?thesis" |
|
3424 using t_wcode_main_lemma_pre[of "args" "<args>" 0 "Oc\<^bsup>Suc m\<^esup>" 0 rn] h |
|
3425 apply(simp) |
|
3426 apply(erule_tac exE)+ |
|
3427 apply(rule_tac x = stp in exI, simp add: tape_of_nl_rev, auto) |
|
3428 done |
|
3429 qed |
|
3430 next |
|
3431 show "wprepare_stop m args \<turnstile>-> wprepare_stop m args" |
|
3432 by(simp add: t_imply_def) |
|
3433 qed |
|
3434 thus "\<exists> stp ln rn. steps (Suc 0, [], <m # args>) (t_wcode_prepare |+| t_wcode_main) stp |
|
3435 = (0, Bk # Oc\<^bsup>Suc m\<^esup>, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin (<args>)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
3436 apply(simp add: t_imply_def) |
|
3437 apply(erule_tac exE)+ |
|
3438 apply(auto) |
|
3439 done |
|
3440 qed |
|
3441 |
|
3442 |
|
3443 lemma [simp]: "tinres r r' \<Longrightarrow> |
|
3444 fetch t ss (case r of [] \<Rightarrow> Bk | x # xs \<Rightarrow> x) = |
|
3445 fetch t ss (case r' of [] \<Rightarrow> Bk | x # xs \<Rightarrow> x)" |
|
3446 apply(simp add: fetch.simps, auto split: if_splits simp: tinres_def) |
|
3447 apply(case_tac [!] r', simp_all) |
|
3448 apply(case_tac [!] n, simp_all add: exp_ind_def) |
|
3449 apply(case_tac [!] r, simp_all) |
|
3450 done |
|
3451 |
|
3452 lemma [intro]: "\<exists> n. (a::block)\<^bsup>n\<^esup> = []" |
|
3453 by auto |
|
3454 |
|
3455 lemma [simp]: "\<lbrakk>tinres r r'; r \<noteq> []; r' \<noteq> []\<rbrakk> \<Longrightarrow> hd r = hd r'" |
|
3456 apply(auto simp: tinres_def) |
|
3457 done |
|
3458 |
|
3459 lemma [intro]: "hd (Bk\<^bsup>Suc n\<^esup>) = Bk" |
|
3460 apply(simp add: exp_ind_def) |
|
3461 done |
|
3462 |
|
3463 lemma [simp]: "\<lbrakk>tinres r []; r \<noteq> []\<rbrakk> \<Longrightarrow> hd r = Bk" |
|
3464 apply(auto simp: tinres_def) |
|
3465 apply(case_tac n, auto) |
|
3466 done |
|
3467 |
|
3468 lemma [simp]: "\<lbrakk>tinres [] r'; r' \<noteq> []\<rbrakk> \<Longrightarrow> hd r' = Bk" |
|
3469 apply(auto simp: tinres_def) |
|
3470 done |
|
3471 |
|
3472 lemma [intro]: "\<exists>na. tl r = tl (r @ Bk\<^bsup>n\<^esup>) @ Bk\<^bsup>na\<^esup> \<or> tl (r @ Bk\<^bsup>n\<^esup>) = tl r @ Bk\<^bsup>na\<^esup>" |
|
3473 apply(case_tac r, simp) |
|
3474 apply(case_tac n, simp) |
|
3475 apply(rule_tac x = 0 in exI, simp) |
|
3476 apply(rule_tac x = nat in exI, simp add: exp_ind_def) |
|
3477 apply(simp) |
|
3478 apply(rule_tac x = n in exI, simp) |
|
3479 done |
|
3480 |
|
3481 lemma [simp]: "tinres r r' \<Longrightarrow> tinres (tl r) (tl r')" |
|
3482 apply(auto simp: tinres_def) |
|
3483 apply(case_tac r', simp_all) |
|
3484 apply(case_tac n, simp_all add: exp_ind_def) |
|
3485 apply(rule_tac x = 0 in exI, simp) |
|
3486 apply(rule_tac x = nat in exI, simp_all) |
|
3487 apply(rule_tac x = n in exI, simp) |
|
3488 done |
|
3489 |
|
3490 lemma [simp]: "\<lbrakk>tinres r []; r \<noteq> []\<rbrakk> \<Longrightarrow> tinres (tl r) []" |
|
3491 apply(case_tac r, auto simp: tinres_def) |
|
3492 apply(case_tac n, simp_all add: exp_ind_def) |
|
3493 apply(rule_tac x = nat in exI, simp) |
|
3494 done |
|
3495 |
|
3496 lemma [simp]: "\<lbrakk>tinres [] r'\<rbrakk> \<Longrightarrow> tinres [] (tl r')" |
|
3497 apply(case_tac r', auto simp: tinres_def) |
|
3498 apply(case_tac n, simp_all add: exp_ind_def) |
|
3499 apply(rule_tac x = nat in exI, simp) |
|
3500 done |
|
3501 |
|
3502 lemma [simp]: "tinres r r' \<Longrightarrow> tinres (b # r) (b # r')" |
|
3503 apply(auto simp: tinres_def) |
|
3504 done |
|
3505 |
|
3506 lemma tinres_step2: |
|
3507 "\<lbrakk>tinres r r'; tstep (ss, l, r) t = (sa, la, ra); tstep (ss, l, r') t = (sb, lb, rb)\<rbrakk> |
|
3508 \<Longrightarrow> la = lb \<and> tinres ra rb \<and> sa = sb" |
|
3509 apply(case_tac "ss = 0", simp add: tstep_0) |
|
3510 apply(simp add: tstep.simps [simp del]) |
|
3511 apply(case_tac "fetch t ss (case r of [] \<Rightarrow> Bk | x # xs \<Rightarrow> x)", simp) |
|
3512 apply(auto simp: new_tape.simps) |
|
3513 apply(simp_all split: taction.splits if_splits) |
|
3514 apply(auto) |
|
3515 done |
|
3516 |
|
3517 |
|
3518 lemma tinres_steps2: |
|
3519 "\<lbrakk>tinres r r'; steps (ss, l, r) t stp = (sa, la, ra); steps (ss, l, r') t stp = (sb, lb, rb)\<rbrakk> |
|
3520 \<Longrightarrow> la = lb \<and> tinres ra rb \<and> sa = sb" |
|
3521 apply(induct stp arbitrary: sa la ra sb lb rb, simp add: steps.simps) |
|
3522 apply(simp add: tstep_red) |
|
3523 apply(case_tac "(steps (ss, l, r) t stp)") |
|
3524 apply(case_tac "(steps (ss, l, r') t stp)") |
|
3525 proof - |
|
3526 fix stp sa la ra sb lb rb a b c aa ba ca |
|
3527 assume ind: "\<And>sa la ra sb lb rb. \<lbrakk>steps (ss, l, r) t stp = (sa, la, ra); |
|
3528 steps (ss, l, r') t stp = (sb, lb, rb)\<rbrakk> \<Longrightarrow> la = lb \<and> tinres ra rb \<and> sa = sb" |
|
3529 and h: " tinres r r'" "tstep (steps (ss, l, r) t stp) t = (sa, la, ra)" |
|
3530 "tstep (steps (ss, l, r') t stp) t = (sb, lb, rb)" "steps (ss, l, r) t stp = (a, b, c)" |
|
3531 "steps (ss, l, r') t stp = (aa, ba, ca)" |
|
3532 have "b = ba \<and> tinres c ca \<and> a = aa" |
|
3533 apply(rule_tac ind, simp_all add: h) |
|
3534 done |
|
3535 thus "la = lb \<and> tinres ra rb \<and> sa = sb" |
|
3536 apply(rule_tac l = b and r = c and ss = a and r' = ca |
|
3537 and t = t in tinres_step2) |
|
3538 using h |
|
3539 apply(simp, simp, simp) |
|
3540 done |
|
3541 qed |
|
3542 |
|
3543 definition t_wcode_adjust :: "tprog" |
|
3544 where |
|
3545 "t_wcode_adjust = [(W1, 1), (R, 2), (Nop, 2), (R, 3), (R, 3), (R, 4), |
|
3546 (L, 8), (L, 5), (L, 6), (W0, 5), (L, 6), (R, 7), |
|
3547 (W1, 2), (Nop, 7), (L, 9), (W0, 8), (L, 9), (L, 10), |
|
3548 (L, 11), (L, 10), (R, 0), (L, 11)]" |
|
3549 |
|
3550 lemma [simp]: "fetch t_wcode_adjust (Suc 0) Bk = (W1, 1)" |
|
3551 apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) |
|
3552 done |
|
3553 |
|
3554 lemma [simp]: "fetch t_wcode_adjust (Suc 0) Oc = (R, 2)" |
|
3555 apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) |
|
3556 done |
|
3557 |
|
3558 lemma [simp]: "fetch t_wcode_adjust (Suc (Suc 0)) Oc = (R, 3)" |
|
3559 apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) |
|
3560 done |
|
3561 |
|
3562 lemma [simp]: "fetch t_wcode_adjust (Suc (Suc (Suc 0))) Oc = (R, 4)" |
|
3563 apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) |
|
3564 done |
|
3565 |
|
3566 lemma [simp]: "fetch t_wcode_adjust (Suc (Suc (Suc 0))) Bk = (R, 3)" |
|
3567 apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) |
|
3568 done |
|
3569 |
|
3570 lemma [simp]: "fetch t_wcode_adjust 4 Bk = (L, 8)" |
|
3571 apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) |
|
3572 done |
|
3573 |
|
3574 lemma [simp]: "fetch t_wcode_adjust 4 Oc = (L, 5)" |
|
3575 apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) |
|
3576 done |
|
3577 |
|
3578 lemma [simp]: "fetch t_wcode_adjust 5 Oc = (W0, 5)" |
|
3579 apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) |
|
3580 done |
|
3581 |
|
3582 lemma [simp]: "fetch t_wcode_adjust 5 Bk = (L, 6)" |
|
3583 apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) |
|
3584 done |
|
3585 |
|
3586 lemma [simp]: "fetch t_wcode_adjust 6 Oc = (R, 7)" |
|
3587 apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) |
|
3588 done |
|
3589 |
|
3590 lemma [simp]: "fetch t_wcode_adjust 6 Bk = (L, 6)" |
|
3591 apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) |
|
3592 done |
|
3593 |
|
3594 lemma [simp]: "fetch t_wcode_adjust 7 Bk = (W1, 2)" |
|
3595 apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) |
|
3596 done |
|
3597 |
|
3598 lemma [simp]: "fetch t_wcode_adjust 8 Bk = (L, 9)" |
|
3599 apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) |
|
3600 done |
|
3601 |
|
3602 lemma [simp]: "fetch t_wcode_adjust 8 Oc = (W0, 8)" |
|
3603 apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) |
|
3604 done |
|
3605 |
|
3606 lemma [simp]: "fetch t_wcode_adjust 9 Oc = (L, 10)" |
|
3607 apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) |
|
3608 done |
|
3609 |
|
3610 lemma [simp]: "fetch t_wcode_adjust 9 Bk = (L, 9)" |
|
3611 apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) |
|
3612 done |
|
3613 |
|
3614 lemma [simp]: "fetch t_wcode_adjust 10 Bk = (L, 11)" |
|
3615 apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) |
|
3616 done |
|
3617 |
|
3618 lemma [simp]: "fetch t_wcode_adjust 10 Oc = (L, 10)" |
|
3619 apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) |
|
3620 done |
|
3621 |
|
3622 lemma [simp]: "fetch t_wcode_adjust 11 Oc = (L, 11)" |
|
3623 apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) |
|
3624 done |
|
3625 |
|
3626 lemma [simp]: "fetch t_wcode_adjust 11 Bk = (R, 0)" |
|
3627 apply(simp add: fetch.simps t_wcode_adjust_def nth_of.simps) |
|
3628 done |
|
3629 |
|
3630 fun wadjust_start :: "nat \<Rightarrow> nat \<Rightarrow> tape \<Rightarrow> bool" |
|
3631 where |
|
3632 "wadjust_start m rs (l, r) = |
|
3633 (\<exists> ln rn. l = Bk # Oc\<^bsup>Suc m\<^esup> \<and> |
|
3634 tl r = Oc # Bk\<^bsup>ln\<^esup> @ Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
3635 |
|
3636 fun wadjust_loop_start :: "nat \<Rightarrow> nat \<Rightarrow> tape \<Rightarrow> bool" |
|
3637 where |
|
3638 "wadjust_loop_start m rs (l, r) = |
|
3639 (\<exists> ln rn ml mr. l = Oc\<^bsup>ml\<^esup> @ Bk # Oc\<^bsup>Suc m\<^esup> \<and> |
|
3640 r = Oc # Bk\<^bsup>ln\<^esup> @ Bk # Oc\<^bsup>mr\<^esup> @ Bk\<^bsup>rn\<^esup> \<and> |
|
3641 ml + mr = Suc (Suc rs) \<and> mr > 0)" |
|
3642 |
|
3643 fun wadjust_loop_right_move :: "nat \<Rightarrow> nat \<Rightarrow> tape \<Rightarrow> bool" |
|
3644 where |
|
3645 "wadjust_loop_right_move m rs (l, r) = |
|
3646 (\<exists> ml mr nl nr rn. l = Bk\<^bsup>nl\<^esup> @ Oc # Oc\<^bsup>ml\<^esup> @ Bk # Oc\<^bsup>Suc m\<^esup> \<and> |
|
3647 r = Bk\<^bsup>nr\<^esup> @ Oc\<^bsup>mr\<^esup> @ Bk\<^bsup>rn\<^esup> \<and> |
|
3648 ml + mr = Suc (Suc rs) \<and> mr > 0 \<and> |
|
3649 nl + nr > 0)" |
|
3650 |
|
3651 fun wadjust_loop_check :: "nat \<Rightarrow> nat \<Rightarrow> tape \<Rightarrow> bool" |
|
3652 where |
|
3653 "wadjust_loop_check m rs (l, r) = |
|
3654 (\<exists> ml mr ln rn. l = Oc # Bk\<^bsup>ln\<^esup> @ Bk # Oc # Oc\<^bsup>ml\<^esup> @ Bk # Oc\<^bsup>Suc m\<^esup> \<and> |
|
3655 r = Oc\<^bsup>mr\<^esup> @ Bk\<^bsup>rn\<^esup> \<and> ml + mr = (Suc rs))" |
|
3656 |
|
3657 fun wadjust_loop_erase :: "nat \<Rightarrow> nat \<Rightarrow> tape \<Rightarrow> bool" |
|
3658 where |
|
3659 "wadjust_loop_erase m rs (l, r) = |
|
3660 (\<exists> ml mr ln rn. l = Bk\<^bsup>ln\<^esup> @ Bk # Oc # Oc\<^bsup>ml\<^esup> @ Bk # Oc\<^bsup>Suc m\<^esup> \<and> |
|
3661 tl r = Oc\<^bsup>mr\<^esup> @ Bk\<^bsup>rn\<^esup> \<and> ml + mr = (Suc rs) \<and> mr > 0)" |
|
3662 |
|
3663 fun wadjust_loop_on_left_moving_O :: "nat \<Rightarrow> nat \<Rightarrow> tape \<Rightarrow> bool" |
|
3664 where |
|
3665 "wadjust_loop_on_left_moving_O m rs (l, r) = |
|
3666 (\<exists> ml mr ln rn. l = Oc\<^bsup>ml\<^esup> @ Bk # Oc\<^bsup>Suc m \<^esup>\<and> |
|
3667 r = Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>mr\<^esup> @ Bk\<^bsup>rn\<^esup> \<and> |
|
3668 ml + mr = Suc rs \<and> mr > 0)" |
|
3669 |
|
3670 fun wadjust_loop_on_left_moving_B :: "nat \<Rightarrow> nat \<Rightarrow> tape \<Rightarrow> bool" |
|
3671 where |
|
3672 "wadjust_loop_on_left_moving_B m rs (l, r) = |
|
3673 (\<exists> ml mr nl nr rn. l = Bk\<^bsup>nl\<^esup> @ Oc # Oc\<^bsup>ml\<^esup> @ Bk # Oc\<^bsup>Suc m\<^esup> \<and> |
|
3674 r = Bk\<^bsup>nr\<^esup> @ Bk # Bk # Oc\<^bsup>mr\<^esup> @ Bk\<^bsup>rn\<^esup> \<and> |
|
3675 ml + mr = Suc rs \<and> mr > 0)" |
|
3676 |
|
3677 fun wadjust_loop_on_left_moving :: "nat \<Rightarrow> nat \<Rightarrow> tape \<Rightarrow> bool" |
|
3678 where |
|
3679 "wadjust_loop_on_left_moving m rs (l, r) = |
|
3680 (wadjust_loop_on_left_moving_O m rs (l, r) \<or> |
|
3681 wadjust_loop_on_left_moving_B m rs (l, r))" |
|
3682 |
|
3683 fun wadjust_loop_right_move2 :: "nat \<Rightarrow> nat \<Rightarrow> tape \<Rightarrow> bool" |
|
3684 where |
|
3685 "wadjust_loop_right_move2 m rs (l, r) = |
|
3686 (\<exists> ml mr ln rn. l = Oc # Oc\<^bsup>ml\<^esup> @ Bk # Oc\<^bsup>Suc m\<^esup> \<and> |
|
3687 r = Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>mr\<^esup> @ Bk\<^bsup>rn\<^esup> \<and> |
|
3688 ml + mr = Suc rs \<and> mr > 0)" |
|
3689 |
|
3690 fun wadjust_erase2 :: "nat \<Rightarrow> nat \<Rightarrow> tape \<Rightarrow> bool" |
|
3691 where |
|
3692 "wadjust_erase2 m rs (l, r) = |
|
3693 (\<exists> ln rn. l = Bk\<^bsup>ln\<^esup> @ Bk # Oc # Oc\<^bsup>Suc rs\<^esup> @ Bk # Oc\<^bsup>Suc m\<^esup> \<and> |
|
3694 tl r = Bk\<^bsup>rn\<^esup>)" |
|
3695 |
|
3696 fun wadjust_on_left_moving_O :: "nat \<Rightarrow> nat \<Rightarrow> tape \<Rightarrow> bool" |
|
3697 where |
|
3698 "wadjust_on_left_moving_O m rs (l, r) = |
|
3699 (\<exists> rn. l = Oc\<^bsup>Suc rs\<^esup> @ Bk # Oc\<^bsup>Suc m\<^esup> \<and> |
|
3700 r = Oc # Bk\<^bsup>rn\<^esup>)" |
|
3701 |
|
3702 fun wadjust_on_left_moving_B :: "nat \<Rightarrow> nat \<Rightarrow> tape \<Rightarrow> bool" |
|
3703 where |
|
3704 "wadjust_on_left_moving_B m rs (l, r) = |
|
3705 (\<exists> ln rn. l = Bk\<^bsup>ln\<^esup> @ Oc # Oc\<^bsup>Suc rs\<^esup> @ Bk # Oc\<^bsup>Suc m\<^esup> \<and> |
|
3706 r = Bk\<^bsup>rn\<^esup>)" |
|
3707 |
|
3708 fun wadjust_on_left_moving :: "nat \<Rightarrow> nat \<Rightarrow> tape \<Rightarrow> bool" |
|
3709 where |
|
3710 "wadjust_on_left_moving m rs (l, r) = |
|
3711 (wadjust_on_left_moving_O m rs (l, r) \<or> |
|
3712 wadjust_on_left_moving_B m rs (l, r))" |
|
3713 |
|
3714 fun wadjust_goon_left_moving_B :: "nat \<Rightarrow> nat \<Rightarrow> tape \<Rightarrow> bool" |
|
3715 where |
|
3716 "wadjust_goon_left_moving_B m rs (l, r) = |
|
3717 (\<exists> rn. l = Oc\<^bsup>Suc m\<^esup> \<and> |
|
3718 r = Bk # Oc\<^bsup>Suc (Suc rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
3719 |
|
3720 fun wadjust_goon_left_moving_O :: "nat \<Rightarrow> nat \<Rightarrow> tape \<Rightarrow> bool" |
|
3721 where |
|
3722 "wadjust_goon_left_moving_O m rs (l, r) = |
|
3723 (\<exists> ml mr rn. l = Oc\<^bsup>ml\<^esup> @ Bk # Oc\<^bsup>Suc m\<^esup> \<and> |
|
3724 r = Oc\<^bsup>mr\<^esup> @ Bk\<^bsup>rn\<^esup> \<and> |
|
3725 ml + mr = Suc (Suc rs) \<and> mr > 0)" |
|
3726 |
|
3727 fun wadjust_goon_left_moving :: "nat \<Rightarrow> nat \<Rightarrow> tape \<Rightarrow> bool" |
|
3728 where |
|
3729 "wadjust_goon_left_moving m rs (l, r) = |
|
3730 (wadjust_goon_left_moving_B m rs (l, r) \<or> |
|
3731 wadjust_goon_left_moving_O m rs (l, r))" |
|
3732 |
|
3733 fun wadjust_backto_standard_pos_B :: "nat \<Rightarrow> nat \<Rightarrow> tape \<Rightarrow> bool" |
|
3734 where |
|
3735 "wadjust_backto_standard_pos_B m rs (l, r) = |
|
3736 (\<exists> rn. l = [] \<and> |
|
3737 r = Bk # Oc\<^bsup>Suc m \<^esup>@ Bk # Oc\<^bsup>Suc (Suc rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
3738 |
|
3739 fun wadjust_backto_standard_pos_O :: "nat \<Rightarrow> nat \<Rightarrow> tape \<Rightarrow> bool" |
|
3740 where |
|
3741 "wadjust_backto_standard_pos_O m rs (l, r) = |
|
3742 (\<exists> ml mr rn. l = Oc\<^bsup>ml\<^esup> \<and> |
|
3743 r = Oc\<^bsup>mr\<^esup> @ Bk # Oc\<^bsup>Suc (Suc rs)\<^esup> @ Bk\<^bsup>rn\<^esup> \<and> |
|
3744 ml + mr = Suc m \<and> mr > 0)" |
|
3745 |
|
3746 fun wadjust_backto_standard_pos :: "nat \<Rightarrow> nat \<Rightarrow> tape \<Rightarrow> bool" |
|
3747 where |
|
3748 "wadjust_backto_standard_pos m rs (l, r) = |
|
3749 (wadjust_backto_standard_pos_B m rs (l, r) \<or> |
|
3750 wadjust_backto_standard_pos_O m rs (l, r))" |
|
3751 |
|
3752 fun wadjust_stop :: "nat \<Rightarrow> nat \<Rightarrow> tape \<Rightarrow> bool" |
|
3753 where |
|
3754 "wadjust_stop m rs (l, r) = |
|
3755 (\<exists> rn. l = [Bk] \<and> |
|
3756 r = Oc\<^bsup>Suc m \<^esup>@ Bk # Oc\<^bsup>Suc (Suc rs)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
3757 |
|
3758 declare wadjust_start.simps[simp del] wadjust_loop_start.simps[simp del] |
|
3759 wadjust_loop_right_move.simps[simp del] wadjust_loop_check.simps[simp del] |
|
3760 wadjust_loop_erase.simps[simp del] wadjust_loop_on_left_moving.simps[simp del] |
|
3761 wadjust_loop_right_move2.simps[simp del] wadjust_erase2.simps[simp del] |
|
3762 wadjust_on_left_moving_O.simps[simp del] wadjust_on_left_moving_B.simps[simp del] |
|
3763 wadjust_on_left_moving.simps[simp del] wadjust_goon_left_moving_B.simps[simp del] |
|
3764 wadjust_goon_left_moving_O.simps[simp del] wadjust_goon_left_moving.simps[simp del] |
|
3765 wadjust_backto_standard_pos.simps[simp del] wadjust_backto_standard_pos_B.simps[simp del] |
|
3766 wadjust_backto_standard_pos_O.simps[simp del] wadjust_stop.simps[simp del] |
|
3767 |
|
3768 fun wadjust_inv :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> tape \<Rightarrow> bool" |
|
3769 where |
|
3770 "wadjust_inv st m rs (l, r) = |
|
3771 (if st = Suc 0 then wadjust_start m rs (l, r) |
|
3772 else if st = Suc (Suc 0) then wadjust_loop_start m rs (l, r) |
|
3773 else if st = Suc (Suc (Suc 0)) then wadjust_loop_right_move m rs (l, r) |
|
3774 else if st = 4 then wadjust_loop_check m rs (l, r) |
|
3775 else if st = 5 then wadjust_loop_erase m rs (l, r) |
|
3776 else if st = 6 then wadjust_loop_on_left_moving m rs (l, r) |
|
3777 else if st = 7 then wadjust_loop_right_move2 m rs (l, r) |
|
3778 else if st = 8 then wadjust_erase2 m rs (l, r) |
|
3779 else if st = 9 then wadjust_on_left_moving m rs (l, r) |
|
3780 else if st = 10 then wadjust_goon_left_moving m rs (l, r) |
|
3781 else if st = 11 then wadjust_backto_standard_pos m rs (l, r) |
|
3782 else if st = 0 then wadjust_stop m rs (l, r) |
|
3783 else False |
|
3784 )" |
|
3785 |
|
3786 declare wadjust_inv.simps[simp del] |
|
3787 |
|
3788 fun wadjust_phase :: "nat \<Rightarrow> t_conf \<Rightarrow> nat" |
|
3789 where |
|
3790 "wadjust_phase rs (st, l, r) = |
|
3791 (if st = 1 then 3 |
|
3792 else if st \<ge> 2 \<and> st \<le> 7 then 2 |
|
3793 else if st \<ge> 8 \<and> st \<le> 11 then 1 |
|
3794 else 0)" |
|
3795 |
|
3796 thm dropWhile.simps |
|
3797 |
|
3798 fun wadjust_stage :: "nat \<Rightarrow> t_conf \<Rightarrow> nat" |
|
3799 where |
|
3800 "wadjust_stage rs (st, l, r) = |
|
3801 (if st \<ge> 2 \<and> st \<le> 7 then |
|
3802 rs - length (takeWhile (\<lambda> a. a = Oc) |
|
3803 (tl (dropWhile (\<lambda> a. a = Oc) (rev l @ r)))) |
|
3804 else 0)" |
|
3805 |
|
3806 fun wadjust_state :: "nat \<Rightarrow> t_conf \<Rightarrow> nat" |
|
3807 where |
|
3808 "wadjust_state rs (st, l, r) = |
|
3809 (if st \<ge> 2 \<and> st \<le> 7 then 8 - st |
|
3810 else if st \<ge> 8 \<and> st \<le> 11 then 12 - st |
|
3811 else 0)" |
|
3812 |
|
3813 fun wadjust_step :: "nat \<Rightarrow> t_conf \<Rightarrow> nat" |
|
3814 where |
|
3815 "wadjust_step rs (st, l, r) = |
|
3816 (if st = 1 then (if hd r = Bk then 1 |
|
3817 else 0) |
|
3818 else if st = 3 then length r |
|
3819 else if st = 5 then (if hd r = Oc then 1 |
|
3820 else 0) |
|
3821 else if st = 6 then length l |
|
3822 else if st = 8 then (if hd r = Oc then 1 |
|
3823 else 0) |
|
3824 else if st = 9 then length l |
|
3825 else if st = 10 then length l |
|
3826 else if st = 11 then (if hd r = Bk then 0 |
|
3827 else Suc (length l)) |
|
3828 else 0)" |
|
3829 |
|
3830 fun wadjust_measure :: "(nat \<times> t_conf) \<Rightarrow> nat \<times> nat \<times> nat \<times> nat" |
|
3831 where |
|
3832 "wadjust_measure (rs, (st, l, r)) = |
|
3833 (wadjust_phase rs (st, l, r), |
|
3834 wadjust_stage rs (st, l, r), |
|
3835 wadjust_state rs (st, l, r), |
|
3836 wadjust_step rs (st, l, r))" |
|
3837 |
|
3838 definition wadjust_le :: "((nat \<times> t_conf) \<times> nat \<times> t_conf) set" |
|
3839 where "wadjust_le \<equiv> (inv_image lex_square wadjust_measure)" |
|
3840 |
|
3841 lemma [intro]: "wf lex_square" |
|
3842 by(auto intro:wf_lex_prod simp: abacus.lex_pair_def lex_square_def |
|
3843 abacus.lex_triple_def) |
|
3844 |
|
3845 lemma wf_wadjust_le[intro]: "wf wadjust_le" |
|
3846 by(auto intro:wf_inv_image simp: wadjust_le_def |
|
3847 abacus.lex_triple_def abacus.lex_pair_def) |
|
3848 |
|
3849 lemma [simp]: "wadjust_start m rs (c, []) = False" |
|
3850 apply(auto simp: wadjust_start.simps) |
|
3851 done |
|
3852 |
|
3853 lemma [simp]: "wadjust_loop_right_move m rs (c, []) \<Longrightarrow> c \<noteq> []" |
|
3854 apply(auto simp: wadjust_loop_right_move.simps) |
|
3855 done |
|
3856 |
|
3857 lemma [simp]: "wadjust_loop_right_move m rs (c, []) |
|
3858 \<Longrightarrow> wadjust_loop_check m rs (Bk # c, [])" |
|
3859 apply(simp only: wadjust_loop_right_move.simps wadjust_loop_check.simps) |
|
3860 apply(auto) |
|
3861 apply(case_tac [!] mr, simp_all add: exp_ind_def) |
|
3862 done |
|
3863 |
|
3864 lemma [simp]: "wadjust_loop_check m rs (c, []) \<Longrightarrow> c \<noteq> []" |
|
3865 apply(simp only: wadjust_loop_check.simps, auto) |
|
3866 done |
|
3867 |
|
3868 lemma [simp]: "wadjust_loop_start m rs (c, []) = False" |
|
3869 apply(simp add: wadjust_loop_start.simps) |
|
3870 done |
|
3871 |
|
3872 lemma [simp]: "wadjust_loop_right_move m rs (c, []) \<Longrightarrow> |
|
3873 wadjust_loop_right_move m rs (Bk # c, [])" |
|
3874 apply(simp only: wadjust_loop_right_move.simps) |
|
3875 apply(erule_tac exE)+ |
|
3876 apply(auto) |
|
3877 apply(case_tac [!] mr, simp_all add: exp_ind_def) |
|
3878 done |
|
3879 |
|
3880 lemma [simp]: "wadjust_loop_check m rs (c, []) \<Longrightarrow> wadjust_erase2 m rs (tl c, [hd c])" |
|
3881 apply(simp only: wadjust_loop_check.simps wadjust_erase2.simps, auto) |
|
3882 apply(case_tac mr, simp_all add: exp_ind_def, auto) |
|
3883 done |
|
3884 |
|
3885 lemma [simp]: " wadjust_loop_erase m rs (c, []) |
|
3886 \<Longrightarrow> (c = [] \<longrightarrow> wadjust_loop_on_left_moving m rs ([], [Bk])) \<and> |
|
3887 (c \<noteq> [] \<longrightarrow> wadjust_loop_on_left_moving m rs (tl c, [hd c]))" |
|
3888 apply(simp add: wadjust_loop_erase.simps, auto) |
|
3889 apply(case_tac [!] mr, simp_all add: exp_ind_def) |
|
3890 done |
|
3891 |
|
3892 lemma [simp]: "wadjust_loop_on_left_moving m rs (c, []) = False" |
|
3893 apply(auto simp: wadjust_loop_on_left_moving.simps) |
|
3894 done |
|
3895 |
|
3896 |
|
3897 lemma [simp]: "wadjust_loop_right_move2 m rs (c, []) = False" |
|
3898 apply(auto simp: wadjust_loop_right_move2.simps) |
|
3899 done |
|
3900 |
|
3901 lemma [simp]: "wadjust_erase2 m rs ([], []) = False" |
|
3902 apply(auto simp: wadjust_erase2.simps) |
|
3903 done |
|
3904 |
|
3905 lemma [simp]: "wadjust_on_left_moving_B m rs |
|
3906 (Oc # Oc # Oc\<^bsup>rs\<^esup> @ Bk # Oc # Oc\<^bsup>m\<^esup>, [Bk])" |
|
3907 apply(simp add: wadjust_on_left_moving_B.simps, auto) |
|
3908 apply(rule_tac x = 0 in exI, simp add: exp_ind_def) |
|
3909 done |
|
3910 |
|
3911 lemma [simp]: "wadjust_on_left_moving_B m rs |
|
3912 (Bk\<^bsup>n\<^esup> @ Bk # Oc # Oc # Oc\<^bsup>rs\<^esup> @ Bk # Oc # Oc\<^bsup>m\<^esup>, [Bk])" |
|
3913 apply(simp add: wadjust_on_left_moving_B.simps exp_ind_def, auto) |
|
3914 apply(rule_tac x = "Suc n" in exI, simp add: exp_ind) |
|
3915 done |
|
3916 |
|
3917 lemma [simp]: "\<lbrakk>wadjust_erase2 m rs (c, []); c \<noteq> []\<rbrakk> \<Longrightarrow> |
|
3918 wadjust_on_left_moving m rs (tl c, [hd c])" |
|
3919 apply(simp only: wadjust_erase2.simps) |
|
3920 apply(erule_tac exE)+ |
|
3921 apply(case_tac ln, simp_all add: exp_ind_def wadjust_on_left_moving.simps) |
|
3922 done |
|
3923 |
|
3924 lemma [simp]: "wadjust_erase2 m rs (c, []) |
|
3925 \<Longrightarrow> (c = [] \<longrightarrow> wadjust_on_left_moving m rs ([], [Bk])) \<and> |
|
3926 (c \<noteq> [] \<longrightarrow> wadjust_on_left_moving m rs (tl c, [hd c]))" |
|
3927 apply(auto) |
|
3928 done |
|
3929 |
|
3930 lemma [simp]: "wadjust_on_left_moving m rs ([], []) = False" |
|
3931 apply(simp add: wadjust_on_left_moving.simps |
|
3932 wadjust_on_left_moving_O.simps wadjust_on_left_moving_B.simps) |
|
3933 done |
|
3934 |
|
3935 lemma [simp]: "wadjust_on_left_moving_O m rs (c, []) = False" |
|
3936 apply(simp add: wadjust_on_left_moving_O.simps) |
|
3937 done |
|
3938 |
|
3939 lemma [simp]: " \<lbrakk>wadjust_on_left_moving_B m rs (c, []); c \<noteq> []; hd c = Bk\<rbrakk> \<Longrightarrow> |
|
3940 wadjust_on_left_moving_B m rs (tl c, [Bk])" |
|
3941 apply(simp add: wadjust_on_left_moving_B.simps, auto) |
|
3942 apply(case_tac [!] ln, simp_all add: exp_ind_def, auto) |
|
3943 done |
|
3944 |
|
3945 lemma [simp]: "\<lbrakk>wadjust_on_left_moving_B m rs (c, []); c \<noteq> []; hd c = Oc\<rbrakk> \<Longrightarrow> |
|
3946 wadjust_on_left_moving_O m rs (tl c, [Oc])" |
|
3947 apply(simp add: wadjust_on_left_moving_B.simps wadjust_on_left_moving_O.simps, auto) |
|
3948 apply(case_tac [!] ln, simp_all add: exp_ind_def) |
|
3949 done |
|
3950 |
|
3951 lemma [simp]: "\<lbrakk>wadjust_on_left_moving m rs (c, []); c \<noteq> []\<rbrakk> \<Longrightarrow> |
|
3952 wadjust_on_left_moving m rs (tl c, [hd c])" |
|
3953 apply(simp add: wadjust_on_left_moving.simps) |
|
3954 apply(case_tac "hd c", simp_all) |
|
3955 done |
|
3956 |
|
3957 lemma [simp]: "wadjust_on_left_moving m rs (c, []) |
|
3958 \<Longrightarrow> (c = [] \<longrightarrow> wadjust_on_left_moving m rs ([], [Bk])) \<and> |
|
3959 (c \<noteq> [] \<longrightarrow> wadjust_on_left_moving m rs (tl c, [hd c]))" |
|
3960 apply(auto) |
|
3961 done |
|
3962 |
|
3963 lemma [simp]: "wadjust_goon_left_moving m rs (c, []) = False" |
|
3964 apply(auto simp: wadjust_goon_left_moving.simps wadjust_goon_left_moving_B.simps |
|
3965 wadjust_goon_left_moving_O.simps) |
|
3966 done |
|
3967 |
|
3968 lemma [simp]: "wadjust_backto_standard_pos m rs (c, []) = False" |
|
3969 apply(auto simp: wadjust_backto_standard_pos.simps |
|
3970 wadjust_backto_standard_pos_B.simps wadjust_backto_standard_pos_O.simps) |
|
3971 done |
|
3972 |
|
3973 lemma [simp]: |
|
3974 "wadjust_start m rs (c, Bk # list) \<Longrightarrow> |
|
3975 (c = [] \<longrightarrow> wadjust_start m rs ([], Oc # list)) \<and> |
|
3976 (c \<noteq> [] \<longrightarrow> wadjust_start m rs (c, Oc # list))" |
|
3977 apply(auto simp: wadjust_start.simps) |
|
3978 done |
|
3979 |
|
3980 lemma [simp]: "wadjust_loop_start m rs (c, Bk # list) = False" |
|
3981 apply(auto simp: wadjust_loop_start.simps) |
|
3982 done |
|
3983 |
|
3984 lemma [simp]: "wadjust_loop_right_move m rs (c, b) \<Longrightarrow> c \<noteq> []" |
|
3985 apply(simp only: wadjust_loop_right_move.simps, auto) |
|
3986 done |
|
3987 |
|
3988 lemma [simp]: "wadjust_loop_right_move m rs (c, Bk # list) |
|
3989 \<Longrightarrow> wadjust_loop_right_move m rs (Bk # c, list)" |
|
3990 apply(simp only: wadjust_loop_right_move.simps) |
|
3991 apply(erule_tac exE)+ |
|
3992 apply(rule_tac x = ml in exI, simp) |
|
3993 apply(rule_tac x = mr in exI, simp) |
|
3994 apply(rule_tac x = "Suc nl" in exI, simp add: exp_ind_def) |
|
3995 apply(case_tac nr, simp, case_tac mr, simp_all add: exp_ind_def) |
|
3996 apply(rule_tac x = nat in exI, auto) |
|
3997 done |
|
3998 |
|
3999 lemma [simp]: "wadjust_loop_check m rs (c, b) \<Longrightarrow> c \<noteq> []" |
|
4000 apply(simp only: wadjust_loop_check.simps, auto) |
|
4001 done |
|
4002 |
|
4003 lemma [simp]: "wadjust_loop_check m rs (c, Bk # list) |
|
4004 \<Longrightarrow> wadjust_erase2 m rs (tl c, hd c # Bk # list)" |
|
4005 apply(auto simp: wadjust_loop_check.simps wadjust_erase2.simps) |
|
4006 apply(case_tac [!] mr, simp_all add: exp_ind_def, auto) |
|
4007 done |
|
4008 |
|
4009 lemma [simp]: "wadjust_loop_erase m rs (c, b) \<Longrightarrow> c \<noteq> []" |
|
4010 apply(simp only: wadjust_loop_erase.simps, auto) |
|
4011 done |
|
4012 |
|
4013 declare wadjust_loop_on_left_moving_O.simps[simp del] |
|
4014 wadjust_loop_on_left_moving_B.simps[simp del] |
|
4015 |
|
4016 lemma [simp]: "\<lbrakk>wadjust_loop_erase m rs (c, Bk # list); hd c = Bk\<rbrakk> |
|
4017 \<Longrightarrow> wadjust_loop_on_left_moving_B m rs (tl c, Bk # Bk # list)" |
|
4018 apply(simp only: wadjust_loop_erase.simps |
|
4019 wadjust_loop_on_left_moving_B.simps) |
|
4020 apply(erule_tac exE)+ |
|
4021 apply(rule_tac x = ml in exI, rule_tac x = mr in exI, |
|
4022 rule_tac x = ln in exI, rule_tac x = 0 in exI, simp) |
|
4023 apply(case_tac ln, simp_all add: exp_ind_def, auto) |
|
4024 apply(simp add: exp_ind exp_ind_def[THEN sym]) |
|
4025 done |
|
4026 |
|
4027 lemma [simp]: "\<lbrakk>wadjust_loop_erase m rs (c, Bk # list); c \<noteq> []; hd c = Oc\<rbrakk> \<Longrightarrow> |
|
4028 wadjust_loop_on_left_moving_O m rs (tl c, Oc # Bk # list)" |
|
4029 apply(simp only: wadjust_loop_erase.simps wadjust_loop_on_left_moving_O.simps, |
|
4030 auto) |
|
4031 apply(case_tac [!] ln, simp_all add: exp_ind_def) |
|
4032 done |
|
4033 |
|
4034 lemma [simp]: "\<lbrakk>wadjust_loop_erase m rs (c, Bk # list); c \<noteq> []\<rbrakk> \<Longrightarrow> |
|
4035 wadjust_loop_on_left_moving m rs (tl c, hd c # Bk # list)" |
|
4036 apply(case_tac "hd c", simp_all add:wadjust_loop_on_left_moving.simps) |
|
4037 done |
|
4038 |
|
4039 lemma [simp]: "wadjust_loop_on_left_moving m rs (c, b) \<Longrightarrow> c \<noteq> []" |
|
4040 apply(simp add: wadjust_loop_on_left_moving.simps |
|
4041 wadjust_loop_on_left_moving_O.simps wadjust_loop_on_left_moving_B.simps, auto) |
|
4042 done |
|
4043 |
|
4044 lemma [simp]: "wadjust_loop_on_left_moving_O m rs (c, Bk # list) = False" |
|
4045 apply(simp add: wadjust_loop_on_left_moving_O.simps) |
|
4046 done |
|
4047 |
|
4048 lemma [simp]: "\<lbrakk>wadjust_loop_on_left_moving_B m rs (c, Bk # list); hd c = Bk\<rbrakk> |
|
4049 \<Longrightarrow> wadjust_loop_on_left_moving_B m rs (tl c, Bk # Bk # list)" |
|
4050 apply(simp only: wadjust_loop_on_left_moving_B.simps) |
|
4051 apply(erule_tac exE)+ |
|
4052 apply(rule_tac x = ml in exI, rule_tac x = mr in exI) |
|
4053 apply(case_tac nl, simp_all add: exp_ind_def, auto) |
|
4054 apply(rule_tac x = "Suc nr" in exI, auto simp: exp_ind_def) |
|
4055 done |
|
4056 |
|
4057 lemma [simp]: "\<lbrakk>wadjust_loop_on_left_moving_B m rs (c, Bk # list); hd c = Oc\<rbrakk> |
|
4058 \<Longrightarrow> wadjust_loop_on_left_moving_O m rs (tl c, Oc # Bk # list)" |
|
4059 apply(simp only: wadjust_loop_on_left_moving_O.simps |
|
4060 wadjust_loop_on_left_moving_B.simps) |
|
4061 apply(erule_tac exE)+ |
|
4062 apply(rule_tac x = ml in exI, rule_tac x = mr in exI) |
|
4063 apply(case_tac nl, simp_all add: exp_ind_def, auto) |
|
4064 done |
|
4065 |
|
4066 lemma [simp]: "wadjust_loop_on_left_moving m rs (c, Bk # list) |
|
4067 \<Longrightarrow> wadjust_loop_on_left_moving m rs (tl c, hd c # Bk # list)" |
|
4068 apply(simp add: wadjust_loop_on_left_moving.simps) |
|
4069 apply(case_tac "hd c", simp_all) |
|
4070 done |
|
4071 |
|
4072 lemma [simp]: "wadjust_loop_right_move2 m rs (c, b) \<Longrightarrow> c \<noteq> []" |
|
4073 apply(simp only: wadjust_loop_right_move2.simps, auto) |
|
4074 done |
|
4075 |
|
4076 lemma [simp]: "wadjust_loop_right_move2 m rs (c, Bk # list) \<Longrightarrow> wadjust_loop_start m rs (c, Oc # list)" |
|
4077 apply(auto simp: wadjust_loop_right_move2.simps wadjust_loop_start.simps) |
|
4078 apply(case_tac ln, simp_all add: exp_ind_def) |
|
4079 apply(rule_tac x = 0 in exI, simp) |
|
4080 apply(rule_tac x = rn in exI, simp) |
|
4081 apply(rule_tac x = "Suc ml" in exI, simp add: exp_ind_def, auto) |
|
4082 apply(rule_tac x = "Suc nat" in exI, simp add: exp_ind) |
|
4083 apply(rule_tac x = rn in exI, auto) |
|
4084 apply(rule_tac x = "Suc ml" in exI, auto simp: exp_ind_def) |
|
4085 done |
|
4086 |
|
4087 lemma [simp]: "wadjust_erase2 m rs (c, Bk # list) \<Longrightarrow> c \<noteq> []" |
|
4088 apply(auto simp:wadjust_erase2.simps ) |
|
4089 done |
|
4090 |
|
4091 lemma [simp]: "wadjust_erase2 m rs (c, Bk # list) \<Longrightarrow> |
|
4092 wadjust_on_left_moving m rs (tl c, hd c # Bk # list)" |
|
4093 apply(auto simp: wadjust_erase2.simps) |
|
4094 apply(case_tac ln, simp_all add: exp_ind_def wadjust_on_left_moving.simps |
|
4095 wadjust_on_left_moving_O.simps wadjust_on_left_moving_B.simps) |
|
4096 apply(auto) |
|
4097 apply(rule_tac x = "(Suc (Suc rn))" in exI, simp add: exp_ind_def) |
|
4098 apply(rule_tac x = "Suc nat" in exI, simp add: exp_ind) |
|
4099 apply(rule_tac x = "(Suc (Suc rn))" in exI, simp add: exp_ind_def) |
|
4100 done |
|
4101 |
|
4102 lemma [simp]: "wadjust_on_left_moving m rs (c,b) \<Longrightarrow> c \<noteq> []" |
|
4103 apply(simp only:wadjust_on_left_moving.simps |
|
4104 wadjust_on_left_moving_O.simps |
|
4105 wadjust_on_left_moving_B.simps |
|
4106 , auto) |
|
4107 done |
|
4108 |
|
4109 lemma [simp]: "wadjust_on_left_moving_O m rs (c, Bk # list) = False" |
|
4110 apply(simp add: wadjust_on_left_moving_O.simps) |
|
4111 done |
|
4112 |
|
4113 lemma [simp]: "\<lbrakk>wadjust_on_left_moving_B m rs (c, Bk # list); hd c = Bk\<rbrakk> |
|
4114 \<Longrightarrow> wadjust_on_left_moving_B m rs (tl c, Bk # Bk # list)" |
|
4115 apply(auto simp: wadjust_on_left_moving_B.simps) |
|
4116 apply(case_tac ln, simp_all add: exp_ind_def, auto) |
|
4117 done |
|
4118 |
|
4119 lemma [simp]: "\<lbrakk>wadjust_on_left_moving_B m rs (c, Bk # list); hd c = Oc\<rbrakk> |
|
4120 \<Longrightarrow> wadjust_on_left_moving_O m rs (tl c, Oc # Bk # list)" |
|
4121 apply(auto simp: wadjust_on_left_moving_O.simps |
|
4122 wadjust_on_left_moving_B.simps) |
|
4123 apply(case_tac ln, simp_all add: exp_ind_def) |
|
4124 done |
|
4125 |
|
4126 lemma [simp]: "wadjust_on_left_moving m rs (c, Bk # list) \<Longrightarrow> |
|
4127 wadjust_on_left_moving m rs (tl c, hd c # Bk # list)" |
|
4128 apply(simp add: wadjust_on_left_moving.simps) |
|
4129 apply(case_tac "hd c", simp_all) |
|
4130 done |
|
4131 |
|
4132 lemma [simp]: "wadjust_goon_left_moving m rs (c, b) \<Longrightarrow> c \<noteq> []" |
|
4133 apply(simp add: wadjust_goon_left_moving.simps |
|
4134 wadjust_goon_left_moving_B.simps |
|
4135 wadjust_goon_left_moving_O.simps exp_ind_def, auto) |
|
4136 done |
|
4137 |
|
4138 lemma [simp]: "wadjust_goon_left_moving_O m rs (c, Bk # list) = False" |
|
4139 apply(simp add: wadjust_goon_left_moving_O.simps, auto) |
|
4140 apply(case_tac mr, simp_all add: exp_ind_def) |
|
4141 done |
|
4142 |
|
4143 lemma [simp]: "\<lbrakk>wadjust_goon_left_moving_B m rs (c, Bk # list); hd c = Bk\<rbrakk> |
|
4144 \<Longrightarrow> wadjust_backto_standard_pos_B m rs (tl c, Bk # Bk # list)" |
|
4145 apply(auto simp: wadjust_goon_left_moving_B.simps |
|
4146 wadjust_backto_standard_pos_B.simps exp_ind_def) |
|
4147 done |
|
4148 |
|
4149 lemma [simp]: "\<lbrakk>wadjust_goon_left_moving_B m rs (c, Bk # list); hd c = Oc\<rbrakk> |
|
4150 \<Longrightarrow> wadjust_backto_standard_pos_O m rs (tl c, Oc # Bk # list)" |
|
4151 apply(auto simp: wadjust_goon_left_moving_B.simps |
|
4152 wadjust_backto_standard_pos_O.simps exp_ind_def) |
|
4153 apply(rule_tac x = m in exI, simp, auto) |
|
4154 done |
|
4155 |
|
4156 lemma [simp]: "wadjust_goon_left_moving m rs (c, Bk # list) \<Longrightarrow> |
|
4157 wadjust_backto_standard_pos m rs (tl c, hd c # Bk # list)" |
|
4158 apply(case_tac "hd c", simp_all add: wadjust_backto_standard_pos.simps |
|
4159 wadjust_goon_left_moving.simps) |
|
4160 done |
|
4161 |
|
4162 lemma [simp]: "wadjust_backto_standard_pos m rs (c, Bk # list) \<Longrightarrow> |
|
4163 (c = [] \<longrightarrow> wadjust_stop m rs ([Bk], list)) \<and> (c \<noteq> [] \<longrightarrow> wadjust_stop m rs (Bk # c, list))" |
|
4164 apply(auto simp: wadjust_backto_standard_pos.simps |
|
4165 wadjust_backto_standard_pos_B.simps |
|
4166 wadjust_backto_standard_pos_O.simps wadjust_stop.simps) |
|
4167 apply(case_tac [!] mr, simp_all add: exp_ind_def) |
|
4168 done |
|
4169 |
|
4170 lemma [simp]: "wadjust_start m rs (c, Oc # list) |
|
4171 \<Longrightarrow> (c = [] \<longrightarrow> wadjust_loop_start m rs ([Oc], list)) \<and> |
|
4172 (c \<noteq> [] \<longrightarrow> wadjust_loop_start m rs (Oc # c, list))" |
|
4173 apply(auto simp:wadjust_loop_start.simps wadjust_start.simps ) |
|
4174 apply(rule_tac x = ln in exI, rule_tac x = rn in exI, |
|
4175 rule_tac x = "Suc 0" in exI, simp) |
|
4176 done |
|
4177 |
|
4178 lemma [simp]: "wadjust_loop_start m rs (c, b) \<Longrightarrow> c \<noteq> []" |
|
4179 apply(simp add: wadjust_loop_start.simps, auto) |
|
4180 done |
|
4181 |
|
4182 lemma [simp]: "wadjust_loop_start m rs (c, Oc # list) |
|
4183 \<Longrightarrow> wadjust_loop_right_move m rs (Oc # c, list)" |
|
4184 apply(simp add: wadjust_loop_start.simps wadjust_loop_right_move.simps, auto) |
|
4185 apply(rule_tac x = ml in exI, rule_tac x = mr in exI, |
|
4186 rule_tac x = 0 in exI, simp) |
|
4187 apply(rule_tac x = "Suc ln" in exI, simp add: exp_ind, auto) |
|
4188 done |
|
4189 |
|
4190 lemma [simp]: "wadjust_loop_right_move m rs (c, Oc # list) \<Longrightarrow> |
|
4191 wadjust_loop_check m rs (Oc # c, list)" |
|
4192 apply(simp add: wadjust_loop_right_move.simps |
|
4193 wadjust_loop_check.simps, auto) |
|
4194 apply(rule_tac [!] x = ml in exI, simp_all, auto) |
|
4195 apply(case_tac nl, auto simp: exp_ind_def) |
|
4196 apply(rule_tac x = "mr - 1" in exI, case_tac mr, simp_all add: exp_ind_def) |
|
4197 apply(case_tac [!] nr, simp_all add: exp_ind_def, auto) |
|
4198 done |
|
4199 |
|
4200 lemma [simp]: "wadjust_loop_check m rs (c, Oc # list) \<Longrightarrow> |
|
4201 wadjust_loop_erase m rs (tl c, hd c # Oc # list)" |
|
4202 apply(simp only: wadjust_loop_check.simps wadjust_loop_erase.simps) |
|
4203 apply(erule_tac exE)+ |
|
4204 apply(rule_tac x = ml in exI, rule_tac x = mr in exI, auto) |
|
4205 apply(case_tac mr, simp_all add: exp_ind_def) |
|
4206 apply(case_tac rn, simp_all add: exp_ind_def) |
|
4207 done |
|
4208 |
|
4209 lemma [simp]: "wadjust_loop_erase m rs (c, Oc # list) \<Longrightarrow> |
|
4210 wadjust_loop_erase m rs (c, Bk # list)" |
|
4211 apply(auto simp: wadjust_loop_erase.simps) |
|
4212 done |
|
4213 |
|
4214 lemma [simp]: "wadjust_loop_on_left_moving_B m rs (c, Oc # list) = False" |
|
4215 apply(auto simp: wadjust_loop_on_left_moving_B.simps) |
|
4216 apply(case_tac nr, simp_all add: exp_ind_def) |
|
4217 done |
|
4218 |
|
4219 lemma [simp]: "wadjust_loop_on_left_moving m rs (c, Oc # list) |
|
4220 \<Longrightarrow> wadjust_loop_right_move2 m rs (Oc # c, list)" |
|
4221 apply(simp add:wadjust_loop_on_left_moving.simps) |
|
4222 apply(auto simp: wadjust_loop_on_left_moving_O.simps |
|
4223 wadjust_loop_right_move2.simps) |
|
4224 done |
|
4225 |
|
4226 lemma [simp]: "wadjust_loop_right_move2 m rs (c, Oc # list) = False" |
|
4227 apply(auto simp: wadjust_loop_right_move2.simps ) |
|
4228 apply(case_tac ln, simp_all add: exp_ind_def) |
|
4229 done |
|
4230 |
|
4231 lemma [simp]: "wadjust_erase2 m rs (c, Oc # list) |
|
4232 \<Longrightarrow> (c = [] \<longrightarrow> wadjust_erase2 m rs ([], Bk # list)) |
|
4233 \<and> (c \<noteq> [] \<longrightarrow> wadjust_erase2 m rs (c, Bk # list))" |
|
4234 apply(auto simp: wadjust_erase2.simps ) |
|
4235 done |
|
4236 |
|
4237 lemma [simp]: "wadjust_on_left_moving_B m rs (c, Oc # list) = False" |
|
4238 apply(auto simp: wadjust_on_left_moving_B.simps) |
|
4239 done |
|
4240 |
|
4241 lemma [simp]: "\<lbrakk>wadjust_on_left_moving_O m rs (c, Oc # list); hd c = Bk\<rbrakk> \<Longrightarrow> |
|
4242 wadjust_goon_left_moving_B m rs (tl c, Bk # Oc # list)" |
|
4243 apply(auto simp: wadjust_on_left_moving_O.simps |
|
4244 wadjust_goon_left_moving_B.simps exp_ind_def) |
|
4245 done |
|
4246 |
|
4247 lemma [simp]: "\<lbrakk>wadjust_on_left_moving_O m rs (c, Oc # list); hd c = Oc\<rbrakk> |
|
4248 \<Longrightarrow> wadjust_goon_left_moving_O m rs (tl c, Oc # Oc # list)" |
|
4249 apply(auto simp: wadjust_on_left_moving_O.simps |
|
4250 wadjust_goon_left_moving_O.simps exp_ind_def) |
|
4251 apply(rule_tac x = rs in exI, simp) |
|
4252 apply(auto simp: exp_ind_def numeral_2_eq_2) |
|
4253 done |
|
4254 |
|
4255 |
|
4256 lemma [simp]: "wadjust_on_left_moving m rs (c, Oc # list) \<Longrightarrow> |
|
4257 wadjust_goon_left_moving m rs (tl c, hd c # Oc # list)" |
|
4258 apply(simp add: wadjust_on_left_moving.simps |
|
4259 wadjust_goon_left_moving.simps) |
|
4260 apply(case_tac "hd c", simp_all) |
|
4261 done |
|
4262 |
|
4263 lemma [simp]: "wadjust_on_left_moving m rs (c, Oc # list) \<Longrightarrow> |
|
4264 wadjust_goon_left_moving m rs (tl c, hd c # Oc # list)" |
|
4265 apply(simp add: wadjust_on_left_moving.simps |
|
4266 wadjust_goon_left_moving.simps) |
|
4267 apply(case_tac "hd c", simp_all) |
|
4268 done |
|
4269 |
|
4270 lemma [simp]: "wadjust_goon_left_moving_B m rs (c, Oc # list) = False" |
|
4271 apply(auto simp: wadjust_goon_left_moving_B.simps) |
|
4272 done |
|
4273 |
|
4274 lemma [simp]: "\<lbrakk>wadjust_goon_left_moving_O m rs (c, Oc # list); hd c = Bk\<rbrakk> |
|
4275 \<Longrightarrow> wadjust_goon_left_moving_B m rs (tl c, Bk # Oc # list)" |
|
4276 apply(auto simp: wadjust_goon_left_moving_O.simps wadjust_goon_left_moving_B.simps) |
|
4277 apply(case_tac [!] ml, auto simp: exp_ind_def) |
|
4278 done |
|
4279 |
|
4280 lemma [simp]: "\<lbrakk>wadjust_goon_left_moving_O m rs (c, Oc # list); hd c = Oc\<rbrakk> \<Longrightarrow> |
|
4281 wadjust_goon_left_moving_O m rs (tl c, Oc # Oc # list)" |
|
4282 apply(auto simp: wadjust_goon_left_moving_O.simps wadjust_goon_left_moving_B.simps) |
|
4283 apply(rule_tac x = "ml - 1" in exI, simp) |
|
4284 apply(case_tac ml, simp_all add: exp_ind_def) |
|
4285 apply(rule_tac x = "Suc mr" in exI, auto simp: exp_ind_def) |
|
4286 done |
|
4287 |
|
4288 lemma [simp]: "wadjust_goon_left_moving m rs (c, Oc # list) \<Longrightarrow> |
|
4289 wadjust_goon_left_moving m rs (tl c, hd c # Oc # list)" |
|
4290 apply(simp add: wadjust_goon_left_moving.simps) |
|
4291 apply(case_tac "hd c", simp_all) |
|
4292 done |
|
4293 |
|
4294 lemma [simp]: "wadjust_backto_standard_pos_B m rs (c, Oc # list) = False" |
|
4295 apply(simp add: wadjust_backto_standard_pos_B.simps) |
|
4296 done |
|
4297 |
|
4298 lemma [simp]: "wadjust_backto_standard_pos_O m rs (c, Bk # xs) = False" |
|
4299 apply(simp add: wadjust_backto_standard_pos_O.simps, auto) |
|
4300 apply(case_tac mr, simp_all add: exp_ind_def) |
|
4301 done |
|
4302 |
|
4303 |
|
4304 |
|
4305 lemma [simp]: "wadjust_backto_standard_pos_O m rs ([], Oc # list) \<Longrightarrow> |
|
4306 wadjust_backto_standard_pos_B m rs ([], Bk # Oc # list)" |
|
4307 apply(auto simp: wadjust_backto_standard_pos_O.simps |
|
4308 wadjust_backto_standard_pos_B.simps) |
|
4309 apply(rule_tac x = rn in exI, simp) |
|
4310 apply(case_tac ml, simp_all add: exp_ind_def) |
|
4311 done |
|
4312 |
|
4313 |
|
4314 lemma [simp]: |
|
4315 "\<lbrakk>wadjust_backto_standard_pos_O m rs (c, Oc # list); c \<noteq> []; hd c = Bk\<rbrakk> |
|
4316 \<Longrightarrow> wadjust_backto_standard_pos_B m rs (tl c, Bk # Oc # list)" |
|
4317 apply(simp add:wadjust_backto_standard_pos_O.simps |
|
4318 wadjust_backto_standard_pos_B.simps, auto) |
|
4319 apply(case_tac [!] ml, simp_all add: exp_ind_def) |
|
4320 done |
|
4321 |
|
4322 lemma [simp]: "\<lbrakk>wadjust_backto_standard_pos_O m rs (c, Oc # list); c \<noteq> []; hd c = Oc\<rbrakk> |
|
4323 \<Longrightarrow> wadjust_backto_standard_pos_O m rs (tl c, Oc # Oc # list)" |
|
4324 apply(simp add: wadjust_backto_standard_pos_O.simps, auto) |
|
4325 apply(case_tac ml, simp_all add: exp_ind_def, auto) |
|
4326 apply(rule_tac x = nat in exI, auto simp: exp_ind_def) |
|
4327 done |
|
4328 |
|
4329 lemma [simp]: "wadjust_backto_standard_pos m rs (c, Oc # list) |
|
4330 \<Longrightarrow> (c = [] \<longrightarrow> wadjust_backto_standard_pos m rs ([], Bk # Oc # list)) \<and> |
|
4331 (c \<noteq> [] \<longrightarrow> wadjust_backto_standard_pos m rs (tl c, hd c # Oc # list))" |
|
4332 apply(auto simp: wadjust_backto_standard_pos.simps) |
|
4333 apply(case_tac "hd c", simp_all) |
|
4334 done |
|
4335 thm wadjust_loop_right_move.simps |
|
4336 |
|
4337 lemma [simp]: "wadjust_loop_right_move m rs (c, []) = False" |
|
4338 apply(simp only: wadjust_loop_right_move.simps) |
|
4339 apply(rule_tac iffI) |
|
4340 apply(erule_tac exE)+ |
|
4341 apply(case_tac nr, simp_all add: exp_ind_def) |
|
4342 apply(case_tac mr, simp_all add: exp_ind_def) |
|
4343 done |
|
4344 |
|
4345 lemma [simp]: "wadjust_loop_erase m rs (c, []) = False" |
|
4346 apply(simp only: wadjust_loop_erase.simps, auto) |
|
4347 apply(case_tac mr, simp_all add: exp_ind_def) |
|
4348 done |
|
4349 |
|
4350 lemma [simp]: "\<lbrakk>Suc (Suc rs) = a; wadjust_loop_erase m rs (c, Bk # list)\<rbrakk> |
|
4351 \<Longrightarrow> a - length (takeWhile (\<lambda>a. a = Oc) (tl (dropWhile (\<lambda>a. a = Oc) (rev (tl c) @ hd c # Bk # list)))) |
|
4352 < a - length (takeWhile (\<lambda>a. a = Oc) (tl (dropWhile (\<lambda>a. a = Oc) (rev c @ Bk # list)))) \<or> |
|
4353 a - length (takeWhile (\<lambda>a. a = Oc) (tl (dropWhile (\<lambda>a. a = Oc) (rev (tl c) @ hd c # Bk # list)))) = |
|
4354 a - length (takeWhile (\<lambda>a. a = Oc) (tl (dropWhile (\<lambda>a. a = Oc) (rev c @ Bk # list))))" |
|
4355 apply(simp only: wadjust_loop_erase.simps) |
|
4356 apply(rule_tac disjI2) |
|
4357 apply(case_tac c, simp, simp) |
|
4358 done |
|
4359 |
|
4360 lemma [simp]: |
|
4361 "\<lbrakk>Suc (Suc rs) = a; wadjust_loop_on_left_moving m rs (c, Bk # list)\<rbrakk> |
|
4362 \<Longrightarrow> a - length (takeWhile (\<lambda>a. a = Oc) (tl (dropWhile (\<lambda>a. a = Oc) (rev (tl c) @ hd c # Bk # list)))) |
|
4363 < a - length (takeWhile (\<lambda>a. a = Oc) (tl (dropWhile (\<lambda>a. a = Oc) (rev c @ Bk # list)))) \<or> |
|
4364 a - length (takeWhile (\<lambda>a. a = Oc) (tl (dropWhile (\<lambda>a. a = Oc) (rev (tl c) @ hd c # Bk # list)))) = |
|
4365 a - length (takeWhile (\<lambda>a. a = Oc) (tl (dropWhile (\<lambda>a. a = Oc) (rev c @ Bk # list))))" |
|
4366 apply(subgoal_tac "c \<noteq> []") |
|
4367 apply(case_tac c, simp_all) |
|
4368 done |
|
4369 |
|
4370 lemma dropWhile_exp1: "dropWhile (\<lambda>a. a = Oc) (Oc\<^bsup>n\<^esup> @ xs) = dropWhile (\<lambda>a. a = Oc) xs" |
|
4371 apply(induct n, simp_all add: exp_ind_def) |
|
4372 done |
|
4373 lemma takeWhile_exp1: "takeWhile (\<lambda>a. a = Oc) (Oc\<^bsup>n\<^esup> @ xs) = Oc\<^bsup>n\<^esup> @ takeWhile (\<lambda>a. a = Oc) xs" |
|
4374 apply(induct n, simp_all add: exp_ind_def) |
|
4375 done |
|
4376 |
|
4377 lemma [simp]: "\<lbrakk>Suc (Suc rs) = a; wadjust_loop_right_move2 m rs (c, Bk # list)\<rbrakk> |
|
4378 \<Longrightarrow> a - length (takeWhile (\<lambda>a. a = Oc) (tl (dropWhile (\<lambda>a. a = Oc) (rev c @ Oc # list)))) |
|
4379 < a - length (takeWhile (\<lambda>a. a = Oc) (tl (dropWhile (\<lambda>a. a = Oc) (rev c @ Bk # list))))" |
|
4380 apply(simp add: wadjust_loop_right_move2.simps, auto) |
|
4381 apply(simp add: dropWhile_exp1 takeWhile_exp1) |
|
4382 apply(case_tac ln, simp, simp add: exp_ind_def) |
|
4383 done |
|
4384 |
|
4385 lemma [simp]: "wadjust_loop_check m rs ([], b) = False" |
|
4386 apply(simp add: wadjust_loop_check.simps) |
|
4387 done |
|
4388 |
|
4389 lemma [simp]: "\<lbrakk>Suc (Suc rs) = a; wadjust_loop_check m rs (c, Oc # list)\<rbrakk> |
|
4390 \<Longrightarrow> a - length (takeWhile (\<lambda>a. a = Oc) (tl (dropWhile (\<lambda>a. a = Oc) (rev (tl c) @ hd c # Oc # list)))) |
|
4391 < a - length (takeWhile (\<lambda>a. a = Oc) (tl (dropWhile (\<lambda>a. a = Oc) (rev c @ Oc # list)))) \<or> |
|
4392 a - length (takeWhile (\<lambda>a. a = Oc) (tl (dropWhile (\<lambda>a. a = Oc) (rev (tl c) @ hd c # Oc # list)))) = |
|
4393 a - length (takeWhile (\<lambda>a. a = Oc) (tl (dropWhile (\<lambda>a. a = Oc) (rev c @ Oc # list))))" |
|
4394 apply(case_tac "c", simp_all) |
|
4395 done |
|
4396 |
|
4397 lemma [simp]: |
|
4398 "\<lbrakk>Suc (Suc rs) = a; wadjust_loop_erase m rs (c, Oc # list)\<rbrakk> |
|
4399 \<Longrightarrow> a - length (takeWhile (\<lambda>a. a = Oc) (tl (dropWhile (\<lambda>a. a = Oc) (rev c @ Bk # list)))) |
|
4400 < a - length (takeWhile (\<lambda>a. a = Oc) (tl (dropWhile (\<lambda>a. a = Oc) (rev c @ Oc # list)))) \<or> |
|
4401 a - length (takeWhile (\<lambda>a. a = Oc) (tl (dropWhile (\<lambda>a. a = Oc) (rev c @ Bk # list)))) = |
|
4402 a - length (takeWhile (\<lambda>a. a = Oc) (tl (dropWhile (\<lambda>a. a = Oc) (rev c @ Oc # list))))" |
|
4403 apply(simp add: wadjust_loop_erase.simps) |
|
4404 apply(rule_tac disjI2) |
|
4405 apply(auto) |
|
4406 apply(simp add: dropWhile_exp1 takeWhile_exp1) |
|
4407 done |
|
4408 |
|
4409 declare numeral_2_eq_2[simp del] |
|
4410 |
|
4411 lemma wadjust_correctness: |
|
4412 shows "let P = (\<lambda> (len, st, l, r). st = 0) in |
|
4413 let Q = (\<lambda> (len, st, l, r). wadjust_inv st m rs (l, r)) in |
|
4414 let f = (\<lambda> stp. (Suc (Suc rs), steps (Suc 0, Bk # Oc\<^bsup>Suc m\<^esup>, |
|
4415 Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>) t_wcode_adjust stp)) in |
|
4416 \<exists> n .P (f n) \<and> Q (f n)" |
|
4417 proof - |
|
4418 let ?P = "(\<lambda> (len, st, l, r). st = 0)" |
|
4419 let ?Q = "\<lambda> (len, st, l, r). wadjust_inv st m rs (l, r)" |
|
4420 let ?f = "\<lambda> stp. (Suc (Suc rs), steps (Suc 0, Bk # Oc\<^bsup>Suc m\<^esup>, |
|
4421 Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>) t_wcode_adjust stp)" |
|
4422 have "\<exists> n. ?P (?f n) \<and> ?Q (?f n)" |
|
4423 proof(rule_tac halt_lemma2) |
|
4424 show "wf wadjust_le" by auto |
|
4425 next |
|
4426 show "\<forall> n. \<not> ?P (?f n) \<and> ?Q (?f n) \<longrightarrow> |
|
4427 ?Q (?f (Suc n)) \<and> (?f (Suc n), ?f n) \<in> wadjust_le" |
|
4428 proof(rule_tac allI, rule_tac impI, case_tac "?f n", |
|
4429 simp add: tstep_red tstep.simps, rule_tac conjI, erule_tac conjE, |
|
4430 erule_tac conjE) |
|
4431 fix n a b c d |
|
4432 assume "0 < b" "wadjust_inv b m rs (c, d)" "Suc (Suc rs) = a" |
|
4433 thus "case case fetch t_wcode_adjust b (case d of [] \<Rightarrow> Bk | x # xs \<Rightarrow> x) |
|
4434 of (ac, ns) \<Rightarrow> (ns, new_tape ac (c, d)) of (st, x) \<Rightarrow> wadjust_inv st m rs x" |
|
4435 apply(case_tac d, simp, case_tac [2] aa) |
|
4436 apply(simp_all add: wadjust_inv.simps wadjust_le_def new_tape.simps |
|
4437 abacus.lex_triple_def abacus.lex_pair_def lex_square_def |
|
4438 split: if_splits) |
|
4439 done |
|
4440 next |
|
4441 fix n a b c d |
|
4442 assume "0 < b \<and> wadjust_inv b m rs (c, d)" |
|
4443 "Suc (Suc rs) = a \<and> steps (Suc 0, Bk # Oc\<^bsup>Suc m\<^esup>, |
|
4444 Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>rn\<^esup>) t_wcode_adjust n = (b, c, d)" |
|
4445 thus "((a, case fetch t_wcode_adjust b (case d of [] \<Rightarrow> Bk | x # xs \<Rightarrow> x) |
|
4446 of (ac, ns) \<Rightarrow> (ns, new_tape ac (c, d))), a, b, c, d) \<in> wadjust_le" |
|
4447 proof(erule_tac conjE, erule_tac conjE, erule_tac conjE) |
|
4448 assume "0 < b" "wadjust_inv b m rs (c, d)" "Suc (Suc rs) = a" |
|
4449 thus "?thesis" |
|
4450 apply(case_tac d, case_tac [2] aa) |
|
4451 apply(simp_all add: wadjust_inv.simps wadjust_le_def new_tape.simps |
|
4452 abacus.lex_triple_def abacus.lex_pair_def lex_square_def |
|
4453 split: if_splits) |
|
4454 done |
|
4455 qed |
|
4456 qed |
|
4457 next |
|
4458 show "?Q (?f 0)" |
|
4459 apply(simp add: steps.simps wadjust_inv.simps wadjust_start.simps) |
|
4460 apply(rule_tac x = ln in exI,auto) |
|
4461 done |
|
4462 next |
|
4463 show "\<not> ?P (?f 0)" |
|
4464 apply(simp add: steps.simps) |
|
4465 done |
|
4466 qed |
|
4467 thus "?thesis" |
|
4468 apply(auto) |
|
4469 done |
|
4470 qed |
|
4471 |
|
4472 lemma [intro]: "t_correct t_wcode_adjust" |
|
4473 apply(auto simp: t_wcode_adjust_def t_correct.simps iseven_def) |
|
4474 apply(rule_tac x = 11 in exI, simp) |
|
4475 done |
|
4476 |
|
4477 lemma wcode_lemma_pre': |
|
4478 "args \<noteq> [] \<Longrightarrow> |
|
4479 \<exists> stp rn. steps (Suc 0, [], <m # args>) |
|
4480 ((t_wcode_prepare |+| t_wcode_main) |+| t_wcode_adjust) stp |
|
4481 = (0, [Bk], Oc\<^bsup>Suc m\<^esup> @ Bk # Oc\<^bsup>Suc (bl_bin (<args>))\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
4482 proof - |
|
4483 let ?P1 = "\<lambda> (l, r). l = [] \<and> r = <m # args>" |
|
4484 let ?Q1 = "\<lambda>(l, r). l = Bk # Oc\<^bsup>Suc m\<^esup> \<and> |
|
4485 (\<exists>ln rn. r = Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin (<args>)\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
4486 let ?P2 = ?Q1 |
|
4487 let ?Q2 = "\<lambda> (l, r). (wadjust_stop m (bl_bin (<args>) - 1) (l, r))" |
|
4488 let ?P3 = "\<lambda> tp. False" |
|
4489 assume h: "args \<noteq> []" |
|
4490 have "?P1 \<turnstile>-> \<lambda> tp. (\<exists> stp tp'. steps (Suc 0, tp) |
|
4491 ((t_wcode_prepare |+| t_wcode_main) |+| t_wcode_adjust) stp = (0, tp') \<and> ?Q2 tp')" |
|
4492 proof(rule_tac turing_merge.t_merge_halt[of "t_wcode_prepare |+| t_wcode_main" |
|
4493 t_wcode_adjust ?P1 ?P2 ?P3 ?P3 ?Q1 ?Q2], |
|
4494 auto simp: turing_merge_def) |
|
4495 |
|
4496 show "\<exists>stp. case steps (Suc 0, [], <m # args>) (t_wcode_prepare |+| t_wcode_main) stp of |
|
4497 (st, tp') \<Rightarrow> st = 0 \<and> (case tp' of (l, r) \<Rightarrow> l = Bk # Oc\<^bsup>Suc m\<^esup> \<and> |
|
4498 (\<exists>ln rn. r = Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # Oc\<^bsup>bl_bin (<args>)\<^esup> @ Bk\<^bsup>rn\<^esup>))" |
|
4499 using h prepare_mainpart_lemma[of args m] |
|
4500 apply(auto) |
|
4501 apply(rule_tac x = stp in exI, simp) |
|
4502 apply(rule_tac x = ln in exI, auto) |
|
4503 done |
|
4504 next |
|
4505 fix ln rn |
|
4506 show "\<exists>stp. case steps (Suc 0, Bk # Oc\<^bsup>Suc m\<^esup>, Bk # Oc # Bk\<^bsup>ln\<^esup> @ Bk # Bk # |
|
4507 Oc\<^bsup>bl_bin (<args>)\<^esup> @ Bk\<^bsup>rn\<^esup>) t_wcode_adjust stp of |
|
4508 (st, tp') \<Rightarrow> st = 0 \<and> wadjust_stop m (bl_bin (<args>) - Suc 0) tp'" |
|
4509 using wadjust_correctness[of m "bl_bin (<args>) - 1" "Suc ln" rn] |
|
4510 apply(subgoal_tac "bl_bin (<args>) > 0", auto simp: wadjust_inv.simps) |
|
4511 apply(rule_tac x = n in exI, simp add: exp_ind) |
|
4512 using h |
|
4513 apply(case_tac args, simp_all, case_tac list, |
|
4514 simp_all add: tape_of_nl_abv tape_of_nat_list.simps exp_ind_def |
|
4515 bl_bin.simps) |
|
4516 done |
|
4517 next |
|
4518 show "?Q1 \<turnstile>-> ?P2" |
|
4519 by(simp add: t_imply_def) |
|
4520 qed |
|
4521 thus "\<exists>stp rn. steps (Suc 0, [], <m # args>) ((t_wcode_prepare |+| t_wcode_main) |+| |
|
4522 t_wcode_adjust) stp = (0, [Bk], Oc\<^bsup>Suc m\<^esup> @ Bk # Oc\<^bsup>Suc (bl_bin (<args>))\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
4523 apply(simp add: t_imply_def) |
|
4524 apply(erule_tac exE)+ |
|
4525 apply(subgoal_tac "bl_bin (<args>) > 0", auto simp: wadjust_stop.simps) |
|
4526 using h |
|
4527 apply(case_tac args, simp_all, case_tac list, |
|
4528 simp_all add: tape_of_nl_abv tape_of_nat_list.simps exp_ind_def |
|
4529 bl_bin.simps) |
|
4530 done |
|
4531 qed |
|
4532 |
|
4533 text {* |
|
4534 The initialization TM @{text "t_wcode"}. |
|
4535 *} |
|
4536 definition t_wcode :: "tprog" |
|
4537 where |
|
4538 "t_wcode = (t_wcode_prepare |+| t_wcode_main) |+| t_wcode_adjust" |
|
4539 |
|
4540 |
|
4541 text {* |
|
4542 The correctness of @{text "t_wcode"}. |
|
4543 *} |
|
4544 lemma wcode_lemma_1: |
|
4545 "args \<noteq> [] \<Longrightarrow> |
|
4546 \<exists> stp ln rn. steps (Suc 0, [], <m # args>) (t_wcode) stp = |
|
4547 (0, [Bk], Oc\<^bsup>Suc m\<^esup> @ Bk # Oc\<^bsup>Suc (bl_bin (<args>))\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
4548 apply(simp add: wcode_lemma_pre' t_wcode_def) |
|
4549 done |
|
4550 |
|
4551 lemma wcode_lemma: |
|
4552 "args \<noteq> [] \<Longrightarrow> |
|
4553 \<exists> stp ln rn. steps (Suc 0, [], <m # args>) (t_wcode) stp = |
|
4554 (0, [Bk], <[m ,bl_bin (<args>)]> @ Bk\<^bsup>rn\<^esup>)" |
|
4555 using wcode_lemma_1[of args m] |
|
4556 apply(simp add: t_wcode_def tape_of_nl_abv tape_of_nat_list.simps) |
|
4557 done |
|
4558 |
|
4559 section {* The universal TM *} |
|
4560 |
|
4561 text {* |
|
4562 This section gives the explicit construction of {\em Universal Turing Machine}, defined as @{text "UTM"} and proves its |
|
4563 correctness. It is pretty easy by composing the partial results we have got so far. |
|
4564 *} |
|
4565 |
|
4566 |
|
4567 definition UTM :: "tprog" |
|
4568 where |
|
4569 "UTM = (let (aprog, rs_pos, a_md) = rec_ci rec_F in |
|
4570 let abc_F = aprog [+] dummy_abc (Suc (Suc 0)) in |
|
4571 (t_wcode |+| (tm_of abc_F @ tMp (Suc (Suc 0)) (start_of (layout_of abc_F) |
|
4572 (length abc_F) - Suc 0))))" |
|
4573 |
|
4574 definition F_aprog :: "abc_prog" |
|
4575 where |
|
4576 "F_aprog \<equiv> (let (aprog, rs_pos, a_md) = rec_ci rec_F in |
|
4577 aprog [+] dummy_abc (Suc (Suc 0)))" |
|
4578 |
|
4579 definition F_tprog :: "tprog" |
|
4580 where |
|
4581 "F_tprog = tm_of (F_aprog)" |
|
4582 |
|
4583 definition t_utm :: "tprog" |
|
4584 where |
|
4585 "t_utm \<equiv> |
|
4586 (F_tprog) @ tMp (Suc (Suc 0)) (start_of (layout_of (F_aprog)) |
|
4587 (length (F_aprog)) - Suc 0)" |
|
4588 |
|
4589 definition UTM_pre :: "tprog" |
|
4590 where |
|
4591 "UTM_pre = t_wcode |+| t_utm" |
|
4592 |
|
4593 lemma F_abc_halt_eq: |
|
4594 "\<lbrakk>turing_basic.t_correct tp; |
|
4595 length lm = k; |
|
4596 steps (Suc 0, Bk\<^bsup>l\<^esup>, <lm>) tp stp = (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup>@Bk\<^bsup>n\<^esup>); |
|
4597 rs > 0\<rbrakk> |
|
4598 \<Longrightarrow> \<exists> stp m. abc_steps_l (0, [code tp, bl2wc (<lm>)]) (F_aprog) stp = |
|
4599 (length (F_aprog), code tp # bl2wc (<lm>) # (rs - 1) # 0\<^bsup>m\<^esup>)" |
|
4600 apply(drule_tac F_t_halt_eq, simp, simp, simp) |
|
4601 apply(case_tac "rec_ci rec_F") |
|
4602 apply(frule_tac abc_append_dummy_complie, simp, simp, erule_tac exE, |
|
4603 erule_tac exE) |
|
4604 apply(rule_tac x = stp in exI, rule_tac x = m in exI) |
|
4605 apply(simp add: F_aprog_def dummy_abc_def) |
|
4606 done |
|
4607 |
|
4608 lemma F_abc_utm_halt_eq: |
|
4609 "\<lbrakk>rs > 0; |
|
4610 abc_steps_l (0, [code tp, bl2wc (<lm>)]) F_aprog stp = |
|
4611 (length F_aprog, code tp # bl2wc (<lm>) # (rs - 1) # 0\<^bsup>m\<^esup>)\<rbrakk> |
|
4612 \<Longrightarrow> \<exists>stp m n.(steps (Suc 0, [Bk, Bk], <[code tp, bl2wc (<lm>)]>) t_utm stp = |
|
4613 (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>))" |
|
4614 thm abacus_turing_eq_halt |
|
4615 using abacus_turing_eq_halt |
|
4616 [of "layout_of F_aprog" "F_aprog" "F_tprog" "length (F_aprog)" |
|
4617 "[code tp, bl2wc (<lm>)]" stp "code tp # bl2wc (<lm>) # (rs - 1) # 0\<^bsup>m\<^esup>" "Suc (Suc 0)" |
|
4618 "start_of (layout_of (F_aprog)) (length (F_aprog))" "[]" 0] |
|
4619 apply(simp add: F_tprog_def t_utm_def abc_lm_v.simps nth_append) |
|
4620 apply(erule_tac exE)+ |
|
4621 apply(rule_tac x = stpa in exI, rule_tac x = "Suc (Suc ma)" in exI, |
|
4622 rule_tac x = l in exI, simp add: exp_ind) |
|
4623 done |
|
4624 |
|
4625 declare tape_of_nl_abv_cons[simp del] |
|
4626 |
|
4627 lemma t_utm_halt_eq': |
|
4628 "\<lbrakk>turing_basic.t_correct tp; |
|
4629 0 < rs; |
|
4630 steps (Suc 0, Bk\<^bsup>l\<^esup>, <lm::nat list>) tp stp = (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup>@Bk\<^bsup>n\<^esup>)\<rbrakk> |
|
4631 \<Longrightarrow> \<exists>stp m n. steps (Suc 0, [Bk, Bk], <[code tp, bl2wc (<lm>)]>) t_utm stp = |
|
4632 (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>)" |
|
4633 apply(drule_tac l = l in F_abc_halt_eq, simp, simp, simp) |
|
4634 apply(erule_tac exE, erule_tac exE) |
|
4635 apply(rule_tac F_abc_utm_halt_eq, simp_all) |
|
4636 done |
|
4637 |
|
4638 lemma [simp]: "tinres xs (xs @ Bk\<^bsup>i\<^esup>)" |
|
4639 apply(auto simp: tinres_def) |
|
4640 done |
|
4641 |
|
4642 lemma [elim]: "\<lbrakk>rs > 0; Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>na\<^esup> = c @ Bk\<^bsup>n\<^esup>\<rbrakk> |
|
4643 \<Longrightarrow> \<exists>n. c = Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>" |
|
4644 apply(case_tac "na > n") |
|
4645 apply(subgoal_tac "\<exists> d. na = d + n", auto simp: exp_add) |
|
4646 apply(rule_tac x = "na - n" in exI, simp) |
|
4647 apply(subgoal_tac "\<exists> d. n = d + na", auto simp: exp_add) |
|
4648 apply(case_tac rs, simp_all add: exp_ind, case_tac d, |
|
4649 simp_all add: exp_ind) |
|
4650 apply(rule_tac x = "n - na" in exI, simp) |
|
4651 done |
|
4652 |
|
4653 |
|
4654 lemma t_utm_halt_eq'': |
|
4655 "\<lbrakk>turing_basic.t_correct tp; |
|
4656 0 < rs; |
|
4657 steps (Suc 0, Bk\<^bsup>l\<^esup>, <lm::nat list>) tp stp = (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup>@Bk\<^bsup>n\<^esup>)\<rbrakk> |
|
4658 \<Longrightarrow> \<exists>stp m n. steps (Suc 0, [Bk, Bk], <[code tp, bl2wc (<lm>)]> @ Bk\<^bsup>i\<^esup>) t_utm stp = |
|
4659 (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>)" |
|
4660 apply(drule_tac t_utm_halt_eq', simp_all) |
|
4661 apply(erule_tac exE)+ |
|
4662 proof - |
|
4663 fix stpa ma na |
|
4664 assume "steps (Suc 0, [Bk, Bk], <[code tp, bl2wc (<lm>)]>) t_utm stpa = (0, Bk\<^bsup>ma\<^esup>, Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>na\<^esup>)" |
|
4665 and gr: "rs > 0" |
|
4666 thus "\<exists>stp m n. steps (Suc 0, [Bk, Bk], <[code tp, bl2wc (<lm>)]> @ Bk\<^bsup>i\<^esup>) t_utm stp = (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>)" |
|
4667 apply(rule_tac x = stpa in exI, rule_tac x = ma in exI, simp) |
|
4668 proof(case_tac "steps (Suc 0, [Bk, Bk], <[code tp, bl2wc (<lm>)]> @ Bk\<^bsup>i\<^esup>) t_utm stpa", simp) |
|
4669 fix a b c |
|
4670 assume "steps (Suc 0, [Bk, Bk], <[code tp, bl2wc (<lm>)]>) t_utm stpa = (0, Bk\<^bsup>ma\<^esup>, Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>na\<^esup>)" |
|
4671 "steps (Suc 0, [Bk, Bk], <[code tp, bl2wc (<lm>)]> @ Bk\<^bsup>i\<^esup>) t_utm stpa = (a, b, c)" |
|
4672 thus " a = 0 \<and> b = Bk\<^bsup>ma\<^esup> \<and> (\<exists>n. c = Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>)" |
|
4673 using tinres_steps2[of "<[code tp, bl2wc (<lm>)]>" "<[code tp, bl2wc (<lm>)]> @ Bk\<^bsup>i\<^esup>" |
|
4674 "Suc 0" " [Bk, Bk]" t_utm stpa 0 "Bk\<^bsup>ma\<^esup>" "Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>na\<^esup>" a b c] |
|
4675 apply(simp) |
|
4676 using gr |
|
4677 apply(simp only: tinres_def, auto) |
|
4678 apply(rule_tac x = "na + n" in exI, simp add: exp_add) |
|
4679 done |
|
4680 qed |
|
4681 qed |
|
4682 |
|
4683 lemma [simp]: "tinres [Bk, Bk] [Bk]" |
|
4684 apply(auto simp: tinres_def) |
|
4685 done |
|
4686 |
|
4687 lemma [elim]: "Bk\<^bsup>ma\<^esup> = b @ Bk\<^bsup>n\<^esup> \<Longrightarrow> \<exists>m. b = Bk\<^bsup>m\<^esup>" |
|
4688 apply(subgoal_tac "ma = length b + n") |
|
4689 apply(rule_tac x = "ma - n" in exI, simp add: exp_add) |
|
4690 apply(drule_tac length_equal) |
|
4691 apply(simp) |
|
4692 done |
|
4693 |
|
4694 lemma t_utm_halt_eq: |
|
4695 "\<lbrakk>turing_basic.t_correct tp; |
|
4696 0 < rs; |
|
4697 steps (Suc 0, Bk\<^bsup>l\<^esup>, <lm::nat list>) tp stp = (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup>@Bk\<^bsup>n\<^esup>)\<rbrakk> |
|
4698 \<Longrightarrow> \<exists>stp m n. steps (Suc 0, [Bk], <[code tp, bl2wc (<lm>)]> @ Bk\<^bsup>i\<^esup>) t_utm stp = |
|
4699 (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>)" |
|
4700 apply(drule_tac i = i in t_utm_halt_eq'', simp_all) |
|
4701 apply(erule_tac exE)+ |
|
4702 proof - |
|
4703 fix stpa ma na |
|
4704 assume "steps (Suc 0, [Bk, Bk], <[code tp, bl2wc (<lm>)]> @ Bk\<^bsup>i\<^esup>) t_utm stpa = (0, Bk\<^bsup>ma\<^esup>, Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>na\<^esup>)" |
|
4705 and gr: "rs > 0" |
|
4706 thus "\<exists>stp m n. steps (Suc 0, [Bk], <[code tp, bl2wc (<lm>)]> @ Bk\<^bsup>i\<^esup>) t_utm stp = (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>)" |
|
4707 apply(rule_tac x = stpa in exI) |
|
4708 proof(case_tac "steps (Suc 0, [Bk], <[code tp, bl2wc (<lm>)]> @ Bk\<^bsup>i\<^esup>) t_utm stpa", simp) |
|
4709 fix a b c |
|
4710 assume "steps (Suc 0, [Bk, Bk], <[code tp, bl2wc (<lm>)]> @ Bk\<^bsup>i\<^esup>) t_utm stpa = (0, Bk\<^bsup>ma\<^esup>, Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>na\<^esup>)" |
|
4711 "steps (Suc 0, [Bk], <[code tp, bl2wc (<lm>)]> @ Bk\<^bsup>i\<^esup>) t_utm stpa = (a, b, c)" |
|
4712 thus "a = 0 \<and> (\<exists>m. b = Bk\<^bsup>m\<^esup>) \<and> (\<exists>n. c = Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>)" |
|
4713 using tinres_steps[of "[Bk, Bk]" "[Bk]" "Suc 0" "<[code tp, bl2wc (<lm>)]> @ Bk\<^bsup>i\<^esup>" t_utm stpa 0 |
|
4714 "Bk\<^bsup>ma\<^esup>" "Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>na\<^esup>" a b c] |
|
4715 apply(simp) |
|
4716 apply(auto simp: tinres_def) |
|
4717 apply(rule_tac x = "ma + n" in exI, simp add: exp_add) |
|
4718 done |
|
4719 qed |
|
4720 qed |
|
4721 |
|
4722 lemma [intro]: "t_correct t_wcode" |
|
4723 apply(simp add: t_wcode_def) |
|
4724 apply(auto) |
|
4725 done |
|
4726 |
|
4727 lemma [intro]: "t_correct t_utm" |
|
4728 apply(simp add: t_utm_def F_tprog_def) |
|
4729 apply(rule_tac t_compiled_correct, auto) |
|
4730 done |
|
4731 |
|
4732 lemma UTM_halt_lemma_pre: |
|
4733 "\<lbrakk>turing_basic.t_correct tp; |
|
4734 0 < rs; |
|
4735 args \<noteq> []; |
|
4736 steps (Suc 0, Bk\<^bsup>i\<^esup>, <args::nat list>) tp stp = (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup>@Bk\<^bsup>k\<^esup>)\<rbrakk> |
|
4737 \<Longrightarrow> \<exists>stp m n. steps (Suc 0, [], <code tp # args>) UTM_pre stp = |
|
4738 (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>)" |
|
4739 proof - |
|
4740 let ?Q2 = "\<lambda> (l, r). (\<exists> ln rn. l = Bk\<^bsup>ln\<^esup> \<and> r = Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>rn\<^esup>)" |
|
4741 term ?Q2 |
|
4742 let ?P1 = "\<lambda> (l, r). l = [] \<and> r = <code tp # args>" |
|
4743 let ?Q1 = "\<lambda> (l, r). (l = [Bk] \<and> |
|
4744 (\<exists> rn. r = Oc\<^bsup>Suc (code tp)\<^esup> @ Bk # Oc\<^bsup>Suc (bl_bin (<args>))\<^esup> @ Bk\<^bsup>rn\<^esup>))" |
|
4745 let ?P2 = ?Q1 |
|
4746 let ?P3 = "\<lambda> (l, r). False" |
|
4747 assume h: "turing_basic.t_correct tp" "0 < rs" |
|
4748 "args \<noteq> []" "steps (Suc 0, Bk\<^bsup>i\<^esup>, <args::nat list>) tp stp = (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup>@Bk\<^bsup>k\<^esup>)" |
|
4749 have "?P1 \<turnstile>-> \<lambda> tp. (\<exists> stp tp'. steps (Suc 0, tp) |
|
4750 (t_wcode |+| t_utm) stp = (0, tp') \<and> ?Q2 tp')" |
|
4751 proof(rule_tac turing_merge.t_merge_halt [of "t_wcode" "t_utm" |
|
4752 ?P1 ?P2 ?P3 ?P3 ?Q1 ?Q2], auto simp: turing_merge_def) |
|
4753 show "\<exists>stp. case steps (Suc 0, [], <code tp # args>) t_wcode stp of (st, tp') \<Rightarrow> |
|
4754 st = 0 \<and> (case tp' of (l, r) \<Rightarrow> l = [Bk] \<and> |
|
4755 (\<exists>rn. r = Oc\<^bsup>Suc (code tp)\<^esup> @ Bk # Oc\<^bsup>Suc (bl_bin (<args>))\<^esup> @ Bk\<^bsup>rn\<^esup>))" |
|
4756 using wcode_lemma_1[of args "code tp"] h |
|
4757 apply(simp, auto) |
|
4758 apply(rule_tac x = stpa in exI, auto) |
|
4759 done |
|
4760 next |
|
4761 fix rn |
|
4762 show "\<exists>stp. case steps (Suc 0, [Bk], Oc\<^bsup>Suc (code tp)\<^esup> @ |
|
4763 Bk # Oc\<^bsup>Suc (bl_bin (<args>))\<^esup> @ Bk\<^bsup>rn\<^esup>) t_utm stp of |
|
4764 (st, tp') \<Rightarrow> st = 0 \<and> (case tp' of (l, r) \<Rightarrow> |
|
4765 (\<exists>ln. l = Bk\<^bsup>ln\<^esup>) \<and> (\<exists>rn. r = Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>rn\<^esup>))" |
|
4766 using t_utm_halt_eq[of tp rs i args stp m k rn] h |
|
4767 apply(auto) |
|
4768 apply(rule_tac x = stpa in exI, simp add: bin_wc_eq |
|
4769 tape_of_nat_list.simps tape_of_nl_abv) |
|
4770 apply(auto) |
|
4771 done |
|
4772 next |
|
4773 show "?Q1 \<turnstile>-> ?P2" |
|
4774 apply(simp add: t_imply_def) |
|
4775 done |
|
4776 qed |
|
4777 thus "?thesis" |
|
4778 apply(simp add: t_imply_def) |
|
4779 apply(auto simp: UTM_pre_def) |
|
4780 done |
|
4781 qed |
|
4782 |
|
4783 text {* |
|
4784 The correctness of @{text "UTM"}, the halt case. |
|
4785 *} |
|
4786 lemma UTM_halt_lemma: |
|
4787 "\<lbrakk>turing_basic.t_correct tp; |
|
4788 0 < rs; |
|
4789 args \<noteq> []; |
|
4790 steps (Suc 0, Bk\<^bsup>i\<^esup>, <args::nat list>) tp stp = (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup>@Bk\<^bsup>k\<^esup>)\<rbrakk> |
|
4791 \<Longrightarrow> \<exists>stp m n. steps (Suc 0, [], <code tp # args>) UTM stp = |
|
4792 (0, Bk\<^bsup>m\<^esup>, Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>)" |
|
4793 using UTM_halt_lemma_pre[of tp rs args i stp m k] |
|
4794 apply(simp add: UTM_pre_def t_utm_def UTM_def F_aprog_def F_tprog_def) |
|
4795 apply(case_tac "rec_ci rec_F", simp) |
|
4796 done |
|
4797 |
|
4798 definition TSTD:: "t_conf \<Rightarrow> bool" |
|
4799 where |
|
4800 "TSTD c = (let (st, l, r) = c in |
|
4801 st = 0 \<and> (\<exists> m. l = Bk\<^bsup>m\<^esup>) \<and> (\<exists> rs n. r = Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>))" |
|
4802 |
|
4803 thm abacus_turing_eq_uhalt |
|
4804 |
|
4805 lemma nstd_case1: "0 < a \<Longrightarrow> NSTD (trpl_code (a, b, c))" |
|
4806 apply(simp add: NSTD.simps trpl_code.simps) |
|
4807 done |
|
4808 |
|
4809 lemma [simp]: "\<forall>m. b \<noteq> Bk\<^bsup>m\<^esup> \<Longrightarrow> 0 < bl2wc b" |
|
4810 apply(rule classical, simp) |
|
4811 apply(induct b, erule_tac x = 0 in allE, simp) |
|
4812 apply(simp add: bl2wc.simps, case_tac a, simp_all |
|
4813 add: bl2nat.simps bl2nat_double) |
|
4814 apply(case_tac "\<exists> m. b = Bk\<^bsup>m\<^esup>", erule exE) |
|
4815 apply(erule_tac x = "Suc m" in allE, simp add: exp_ind_def, simp) |
|
4816 done |
|
4817 lemma nstd_case2: "\<forall>m. b \<noteq> Bk\<^bsup>m\<^esup> \<Longrightarrow> NSTD (trpl_code (a, b, c))" |
|
4818 apply(simp add: NSTD.simps trpl_code.simps) |
|
4819 done |
|
4820 |
|
4821 thm lg.simps |
|
4822 thm lgR.simps |
|
4823 |
|
4824 lemma [elim]: "Suc (2 * x) = 2 * y \<Longrightarrow> RR" |
|
4825 apply(induct x arbitrary: y, simp, simp) |
|
4826 apply(case_tac y, simp, simp) |
|
4827 done |
|
4828 |
|
4829 lemma bl2nat_zero_eq[simp]: "(bl2nat c 0 = 0) = (\<exists>n. c = Bk\<^bsup>n\<^esup>)" |
|
4830 apply(auto) |
|
4831 apply(induct c, simp add: bl2nat.simps) |
|
4832 apply(rule_tac x = 0 in exI, simp) |
|
4833 apply(case_tac a, auto simp: bl2nat.simps bl2nat_double) |
|
4834 done |
|
4835 |
|
4836 lemma bl2wc_exp_ex: |
|
4837 "\<lbrakk>Suc (bl2wc c) = 2 ^ m\<rbrakk> \<Longrightarrow> \<exists> rs n. c = Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>" |
|
4838 apply(induct c arbitrary: m, simp add: bl2wc.simps bl2nat.simps) |
|
4839 apply(case_tac a, auto) |
|
4840 apply(case_tac m, simp_all add: bl2wc.simps, auto) |
|
4841 apply(rule_tac x = 0 in exI, rule_tac x = "Suc n" in exI, |
|
4842 simp add: exp_ind_def) |
|
4843 apply(simp add: bl2wc.simps bl2nat.simps bl2nat_double) |
|
4844 apply(case_tac m, simp, simp) |
|
4845 proof - |
|
4846 fix c m nat |
|
4847 assume ind: |
|
4848 "\<And>m. Suc (bl2nat c 0) = 2 ^ m \<Longrightarrow> \<exists>rs n. c = Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>" |
|
4849 and h: |
|
4850 "Suc (Suc (2 * bl2nat c 0)) = 2 * 2 ^ nat" |
|
4851 have "\<exists>rs n. c = Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>" |
|
4852 apply(rule_tac m = nat in ind) |
|
4853 using h |
|
4854 apply(simp) |
|
4855 done |
|
4856 from this obtain rs n where " c = Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>" by blast |
|
4857 thus "\<exists>rs n. Oc # c = Oc\<^bsup>rs\<^esup> @ Bk\<^bsup>n\<^esup>" |
|
4858 apply(rule_tac x = "Suc rs" in exI, simp add: exp_ind_def) |
|
4859 apply(rule_tac x = n in exI, simp) |
|
4860 done |
|
4861 qed |
|
4862 |
|
4863 lemma [elim]: |
|
4864 "\<lbrakk>\<forall>rs n. c \<noteq> Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup>; |
|
4865 bl2wc c = 2 ^ lg (Suc (bl2wc c)) 2 - Suc 0\<rbrakk> \<Longrightarrow> bl2wc c = 0" |
|
4866 apply(subgoal_tac "\<exists> m. Suc (bl2wc c) = 2^m", erule_tac exE) |
|
4867 apply(drule_tac bl2wc_exp_ex, simp, erule_tac exE, erule_tac exE) |
|
4868 apply(case_tac rs, simp, simp, erule_tac x = nat in allE, |
|
4869 erule_tac x = n in allE, simp) |
|
4870 using bl2wc_exp_ex[of c "lg (Suc (bl2wc c)) 2"] |
|
4871 apply(case_tac "(2::nat) ^ lg (Suc (bl2wc c)) 2", |
|
4872 simp, simp, erule_tac exE, erule_tac exE, simp) |
|
4873 apply(simp add: bl2wc.simps) |
|
4874 apply(rule_tac x = rs in exI) |
|
4875 apply(case_tac "(2::nat)^rs", simp, simp) |
|
4876 done |
|
4877 |
|
4878 lemma nstd_case3: |
|
4879 "\<forall>rs n. c \<noteq> Oc\<^bsup>Suc rs\<^esup> @ Bk\<^bsup>n\<^esup> \<Longrightarrow> NSTD (trpl_code (a, b, c))" |
|
4880 apply(simp add: NSTD.simps trpl_code.simps) |
|
4881 apply(rule_tac impI) |
|
4882 apply(rule_tac disjI2, rule_tac disjI2, auto) |
|
4883 done |
|
4884 |
|
4885 lemma NSTD_1: "\<not> TSTD (a, b, c) |
|
4886 \<Longrightarrow> rec_exec rec_NSTD [trpl_code (a, b, c)] = Suc 0" |
|
4887 using NSTD_lemma1[of "trpl_code (a, b, c)"] |
|
4888 NSTD_lemma2[of "trpl_code (a, b, c)"] |
|
4889 apply(simp add: TSTD_def) |
|
4890 apply(erule_tac disjE, erule_tac nstd_case1) |
|
4891 apply(erule_tac disjE, erule_tac nstd_case2) |
|
4892 apply(erule_tac nstd_case3) |
|
4893 done |
|
4894 |
|
4895 lemma nonstop_t_uhalt_eq: |
|
4896 "\<lbrakk>turing_basic.t_correct tp; |
|
4897 steps (Suc 0, Bk\<^bsup>l\<^esup>, <lm>) tp stp = (a, b, c); |
|
4898 \<not> TSTD (a, b, c)\<rbrakk> |
|
4899 \<Longrightarrow> rec_exec rec_nonstop [code tp, bl2wc (<lm>), stp] = Suc 0" |
|
4900 apply(simp add: rec_nonstop_def rec_exec.simps) |
|
4901 apply(subgoal_tac |
|
4902 "rec_exec rec_conf [code tp, bl2wc (<lm>), stp] = |
|
4903 trpl_code (a, b, c)", simp) |
|
4904 apply(erule_tac NSTD_1) |
|
4905 using rec_t_eq_steps[of tp l lm stp] |
|
4906 apply(simp) |
|
4907 done |
|
4908 |
|
4909 lemma nonstop_true: |
|
4910 "\<lbrakk>turing_basic.t_correct tp; |
|
4911 \<forall> stp. (\<not> TSTD (steps (Suc 0, Bk\<^bsup>l\<^esup>, <lm>) tp stp))\<rbrakk> |
|
4912 \<Longrightarrow> \<forall>y. rec_calc_rel rec_nonstop |
|
4913 ([code tp, bl2wc (<lm>), y]) (Suc 0)" |
|
4914 apply(rule_tac allI, erule_tac x = y in allE) |
|
4915 apply(case_tac "steps (Suc 0, Bk\<^bsup>l\<^esup>, <lm>) tp y", simp) |
|
4916 apply(rule_tac nonstop_t_uhalt_eq, simp_all) |
|
4917 done |
|
4918 |
|
4919 (* |
|
4920 lemma [simp]: |
|
4921 "\<forall>j<Suc k. Ex (rec_calc_rel (get_fstn_args (Suc k) (Suc k) ! j) |
|
4922 (code tp # lm))" |
|
4923 apply(auto simp: get_fstn_args_nth) |
|
4924 apply(rule_tac x = "(code tp # lm) ! j" in exI) |
|
4925 apply(rule_tac calc_id, simp_all) |
|
4926 done |
|
4927 *) |
|
4928 declare ci_cn_para_eq[simp] |
|
4929 |
|
4930 lemma F_aprog_uhalt: |
|
4931 "\<lbrakk>turing_basic.t_correct tp; |
|
4932 \<forall> stp. (\<not> TSTD (steps (Suc 0, Bk\<^bsup>l\<^esup>, <lm>) tp stp)); |
|
4933 rec_ci rec_F = (F_ap, rs_pos, a_md)\<rbrakk> |
|
4934 \<Longrightarrow> \<forall> stp. case abc_steps_l (0, [code tp, bl2wc (<lm>)] @ 0\<^bsup>a_md - rs_pos \<^esup> |
|
4935 @ suflm) (F_ap) stp of (ss, e) \<Rightarrow> ss < length (F_ap)" |
|
4936 apply(case_tac "rec_ci (Cn (Suc (Suc 0)) rec_right [Cn (Suc (Suc 0)) rec_conf |
|
4937 ([id (Suc (Suc 0)) 0, id (Suc (Suc 0)) (Suc 0), rec_halt])])") |
|
4938 apply(simp only: rec_F_def, rule_tac i = 0 and ga = a and gb = b and |
|
4939 gc = c in cn_gi_uhalt, simp, simp, simp, simp, simp, simp, simp) |
|
4940 apply(simp add: ci_cn_para_eq) |
|
4941 apply(case_tac "rec_ci (Cn (Suc (Suc 0)) rec_conf |
|
4942 ([id (Suc (Suc 0)) 0, id (Suc (Suc 0)) (Suc 0), rec_halt]))") |
|
4943 apply(rule_tac rf = "(Cn (Suc (Suc 0)) rec_right [Cn (Suc (Suc 0)) rec_conf |
|
4944 ([id (Suc (Suc 0)) 0, id (Suc (Suc 0)) (Suc 0), rec_halt])])" |
|
4945 and n = "Suc (Suc 0)" and f = rec_right and |
|
4946 gs = "[Cn (Suc (Suc 0)) rec_conf |
|
4947 ([id (Suc (Suc 0)) 0, id (Suc (Suc 0)) (Suc 0), rec_halt])]" |
|
4948 and i = 0 and ga = aa and gb = ba and gc = ca in |
|
4949 cn_gi_uhalt) |
|
4950 apply(simp, simp, simp, simp, simp, simp, simp, |
|
4951 simp add: ci_cn_para_eq) |
|
4952 apply(case_tac "rec_ci rec_halt") |
|
4953 apply(rule_tac rf = "(Cn (Suc (Suc 0)) rec_conf |
|
4954 ([id (Suc (Suc 0)) 0, id (Suc (Suc 0)) (Suc 0), rec_halt]))" |
|
4955 and n = "Suc (Suc 0)" and f = "rec_conf" and |
|
4956 gs = "([id (Suc (Suc 0)) 0, id (Suc (Suc 0)) (Suc 0), rec_halt])" and |
|
4957 i = "Suc (Suc 0)" and gi = "rec_halt" and ga = ab and gb = bb and |
|
4958 gc = cb in cn_gi_uhalt) |
|
4959 apply(simp, simp, simp, simp, simp add: nth_append, simp, |
|
4960 simp add: nth_append, simp add: rec_halt_def) |
|
4961 apply(simp only: rec_halt_def) |
|
4962 apply(case_tac [!] "rec_ci ((rec_nonstop))") |
|
4963 apply(rule_tac allI, rule_tac impI, simp) |
|
4964 apply(case_tac j, simp) |
|
4965 apply(rule_tac x = "code tp" in exI, rule_tac calc_id, simp, simp, simp, simp) |
|
4966 apply(rule_tac x = "bl2wc (<lm>)" in exI, rule_tac calc_id, simp, simp, simp) |
|
4967 apply(rule_tac rf = "Mn (Suc (Suc 0)) (rec_nonstop)" |
|
4968 and f = "(rec_nonstop)" and n = "Suc (Suc 0)" |
|
4969 and aprog' = ac and rs_pos' = bc and a_md' = cc in Mn_unhalt) |
|
4970 apply(simp, simp add: rec_halt_def , simp, simp) |
|
4971 apply(drule_tac nonstop_true, simp_all) |
|
4972 apply(rule_tac allI) |
|
4973 apply(erule_tac x = y in allE)+ |
|
4974 apply(simp) |
|
4975 done |
|
4976 |
|
4977 thm abc_list_crsp_steps |
|
4978 |
|
4979 lemma uabc_uhalt': |
|
4980 "\<lbrakk>turing_basic.t_correct tp; |
|
4981 \<forall> stp. (\<not> TSTD (steps (Suc 0, Bk\<^bsup>l\<^esup>, <lm>) tp stp)); |
|
4982 rec_ci rec_F = (ap, pos, md)\<rbrakk> |
|
4983 \<Longrightarrow> \<forall> stp. case abc_steps_l (0, [code tp, bl2wc (<lm>)]) ap stp of (ss, e) |
|
4984 \<Rightarrow> ss < length ap" |
|
4985 proof(frule_tac F_ap = ap and rs_pos = pos and a_md = md |
|
4986 and suflm = "[]" in F_aprog_uhalt, auto) |
|
4987 fix stp a b |
|
4988 assume h: |
|
4989 "\<forall>stp. case abc_steps_l (0, code tp # bl2wc (<lm>) # 0\<^bsup>md - pos\<^esup>) ap stp of |
|
4990 (ss, e) \<Rightarrow> ss < length ap" |
|
4991 "abc_steps_l (0, [code tp, bl2wc (<lm>)]) ap stp = (a, b)" |
|
4992 "turing_basic.t_correct tp" |
|
4993 "rec_ci rec_F = (ap, pos, md)" |
|
4994 moreover have "ap \<noteq> []" |
|
4995 using h apply(rule_tac rec_ci_not_null, simp) |
|
4996 done |
|
4997 ultimately show "a < length ap" |
|
4998 proof(erule_tac x = stp in allE, |
|
4999 case_tac "abc_steps_l (0, code tp # bl2wc (<lm>) # 0\<^bsup>md - pos\<^esup>) ap stp", simp) |
|
5000 fix aa ba |
|
5001 assume g: "aa < length ap" |
|
5002 "abc_steps_l (0, code tp # bl2wc (<lm>) # 0\<^bsup>md - pos\<^esup>) ap stp = (aa, ba)" |
|
5003 "ap \<noteq> []" |
|
5004 thus "?thesis" |
|
5005 using abc_list_crsp_steps[of "[code tp, bl2wc (<lm>)]" |
|
5006 "md - pos" ap stp aa ba] h |
|
5007 apply(simp) |
|
5008 done |
|
5009 qed |
|
5010 qed |
|
5011 |
|
5012 lemma uabc_uhalt: |
|
5013 "\<lbrakk>turing_basic.t_correct tp; |
|
5014 \<forall> stp. (\<not> TSTD (steps (Suc 0, Bk\<^bsup>l\<^esup>, <lm>) tp stp))\<rbrakk> |
|
5015 \<Longrightarrow> \<forall> stp. case abc_steps_l (0, [code tp, bl2wc (<lm>)]) F_aprog |
|
5016 stp of (ss, e) \<Rightarrow> ss < length F_aprog" |
|
5017 apply(case_tac "rec_ci rec_F", simp add: F_aprog_def) |
|
5018 thm uabc_uhalt' |
|
5019 apply(drule_tac ap = a and pos = b and md = c in uabc_uhalt', simp_all) |
|
5020 proof - |
|
5021 fix a b c |
|
5022 assume |
|
5023 "\<forall>stp. case abc_steps_l (0, [code tp, bl2wc (<lm>)]) a stp of (ss, e) |
|
5024 \<Rightarrow> ss < length a" |
|
5025 "rec_ci rec_F = (a, b, c)" |
|
5026 thus |
|
5027 "\<forall>stp. case abc_steps_l (0, [code tp, bl2wc (<lm>)]) |
|
5028 (a [+] dummy_abc (Suc (Suc 0))) stp of (ss, e) \<Rightarrow> |
|
5029 ss < Suc (Suc (Suc (length a)))" |
|
5030 using abc_append_uhalt1[of a "[code tp, bl2wc (<lm>)]" |
|
5031 "a [+] dummy_abc (Suc (Suc 0))" "[]" "dummy_abc (Suc (Suc 0))"] |
|
5032 apply(simp) |
|
5033 done |
|
5034 qed |
|
5035 |
|
5036 lemma tutm_uhalt': |
|
5037 "\<lbrakk>turing_basic.t_correct tp; |
|
5038 \<forall> stp. (\<not> TSTD (steps (Suc 0, Bk\<^bsup>l\<^esup>, <lm>) tp stp))\<rbrakk> |
|
5039 \<Longrightarrow> \<forall> stp. \<not> isS0 (steps (Suc 0, [Bk, Bk], <[code tp, bl2wc (<lm>)]>) t_utm stp)" |
|
5040 using abacus_turing_eq_uhalt[of "layout_of (F_aprog)" |
|
5041 "F_aprog" "F_tprog" "[code tp, bl2wc (<lm>)]" |
|
5042 "start_of (layout_of (F_aprog )) (length (F_aprog))" |
|
5043 "Suc (Suc 0)"] |
|
5044 apply(simp add: F_tprog_def) |
|
5045 apply(subgoal_tac "\<forall>stp. case abc_steps_l (0, [code tp, bl2wc (<lm>)]) |
|
5046 (F_aprog) stp of (as, am) \<Rightarrow> as < length (F_aprog)", simp) |
|
5047 thm abacus_turing_eq_uhalt |
|
5048 apply(simp add: t_utm_def F_tprog_def) |
|
5049 apply(rule_tac uabc_uhalt, simp_all) |
|
5050 done |
|
5051 |
|
5052 lemma tinres_commute: "tinres r r' \<Longrightarrow> tinres r' r" |
|
5053 apply(auto simp: tinres_def) |
|
5054 done |
|
5055 |
|
5056 lemma inres_tape: |
|
5057 "\<lbrakk>steps (st, l, r) tp stp = (a, b, c); steps (st, l', r') tp stp = (a', b', c'); |
|
5058 tinres l l'; tinres r r'\<rbrakk> |
|
5059 \<Longrightarrow> a = a' \<and> tinres b b' \<and> tinres c c'" |
|
5060 proof(case_tac "steps (st, l', r) tp stp") |
|
5061 fix aa ba ca |
|
5062 assume h: "steps (st, l, r) tp stp = (a, b, c)" |
|
5063 "steps (st, l', r') tp stp = (a', b', c')" |
|
5064 "tinres l l'" "tinres r r'" |
|
5065 "steps (st, l', r) tp stp = (aa, ba, ca)" |
|
5066 have "tinres b ba \<and> c = ca \<and> a = aa" |
|
5067 using h |
|
5068 apply(rule_tac tinres_steps, auto) |
|
5069 done |
|
5070 |
|
5071 thm tinres_steps2 |
|
5072 moreover have "b' = ba \<and> tinres c' ca \<and> a' = aa" |
|
5073 using h |
|
5074 apply(rule_tac tinres_steps2, auto intro: tinres_commute) |
|
5075 done |
|
5076 ultimately show "?thesis" |
|
5077 apply(auto intro: tinres_commute) |
|
5078 done |
|
5079 qed |
|
5080 |
|
5081 lemma tape_normalize: "\<forall> stp. \<not> isS0 (steps (Suc 0, [Bk, Bk], <[code tp, bl2wc (<lm>)]>) t_utm stp) |
|
5082 \<Longrightarrow> \<forall> stp. \<not> isS0 (steps (Suc 0, Bk\<^bsup>m\<^esup>, <[code tp, bl2wc (<lm>)]> @ Bk\<^bsup>n\<^esup>) t_utm stp)" |
|
5083 apply(rule_tac allI, case_tac "(steps (Suc 0, Bk\<^bsup>m\<^esup>, |
|
5084 <[code tp, bl2wc (<lm>)]> @ Bk\<^bsup>n\<^esup>) t_utm stp)", simp add: isS0_def) |
|
5085 apply(erule_tac x = stp in allE) |
|
5086 apply(case_tac "steps (Suc 0, [Bk, Bk], <[code tp, bl2wc (<lm>)]>) t_utm stp", simp) |
|
5087 apply(drule_tac inres_tape, auto) |
|
5088 apply(auto simp: tinres_def) |
|
5089 apply(case_tac "m > Suc (Suc 0)") |
|
5090 apply(rule_tac x = "m - Suc (Suc 0)" in exI) |
|
5091 apply(case_tac m, simp_all add: exp_ind_def, case_tac nat, simp_all add: exp_ind_def) |
|
5092 apply(rule_tac x = "2 - m" in exI, simp add: exp_ind_def[THEN sym] exp_add[THEN sym]) |
|
5093 apply(simp only: numeral_2_eq_2, simp add: exp_ind_def) |
|
5094 done |
|
5095 |
|
5096 lemma tutm_uhalt: |
|
5097 "\<lbrakk>turing_basic.t_correct tp; |
|
5098 \<forall> stp. (\<not> TSTD (steps (Suc 0, Bk\<^bsup>l\<^esup>, <args>) tp stp))\<rbrakk> |
|
5099 \<Longrightarrow> \<forall> stp. \<not> isS0 (steps (Suc 0, Bk\<^bsup>m\<^esup>, <[code tp, bl2wc (<args>)]> @ Bk\<^bsup>n\<^esup>) t_utm stp)" |
|
5100 apply(rule_tac tape_normalize) |
|
5101 apply(rule_tac tutm_uhalt', simp_all) |
|
5102 done |
|
5103 |
|
5104 lemma UTM_uhalt_lemma_pre: |
|
5105 "\<lbrakk>turing_basic.t_correct tp; |
|
5106 \<forall> stp. (\<not> TSTD (steps (Suc 0, Bk\<^bsup>l\<^esup>, <args>) tp stp)); |
|
5107 args \<noteq> []\<rbrakk> |
|
5108 \<Longrightarrow> \<forall> stp. \<not> isS0 (steps (Suc 0, [], <code tp # args>) UTM_pre stp)" |
|
5109 proof - |
|
5110 let ?P1 = "\<lambda> (l, r). l = [] \<and> r = <code tp # args>" |
|
5111 let ?Q1 = "\<lambda> (l, r). (l = [Bk] \<and> |
|
5112 (\<exists> rn. r = Oc\<^bsup>Suc (code tp)\<^esup> @ Bk # Oc\<^bsup>Suc (bl_bin (<args>))\<^esup> @ Bk\<^bsup>rn\<^esup>))" |
|
5113 let ?P4 = ?Q1 |
|
5114 let ?P3 = "\<lambda> (l, r). False" |
|
5115 assume h: "turing_basic.t_correct tp" "\<forall>stp. \<not> TSTD (steps (Suc 0, Bk\<^bsup>l\<^esup>, <args>) tp stp)" |
|
5116 "args \<noteq> []" |
|
5117 have "?P1 \<turnstile>-> \<lambda> tp. \<not> (\<exists> stp. isS0 (steps (Suc 0, tp) (t_wcode |+| t_utm) stp))" |
|
5118 proof(rule_tac turing_merge.t_merge_uhalt [of "t_wcode" "t_utm" |
|
5119 ?P1 ?P3 ?P3 ?P4 ?Q1 ?P3], auto simp: turing_merge_def) |
|
5120 show "\<exists>stp. case steps (Suc 0, [], <code tp # args>) t_wcode stp of (st, tp') \<Rightarrow> |
|
5121 st = 0 \<and> (case tp' of (l, r) \<Rightarrow> l = [Bk] \<and> |
|
5122 (\<exists>rn. r = Oc\<^bsup>Suc (code tp)\<^esup> @ Bk # Oc\<^bsup>Suc (bl_bin (<args>))\<^esup> @ Bk\<^bsup>rn\<^esup>))" |
|
5123 using wcode_lemma_1[of args "code tp"] h |
|
5124 apply(simp, auto) |
|
5125 apply(rule_tac x = stp in exI, auto) |
|
5126 done |
|
5127 next |
|
5128 fix rn stp |
|
5129 show " isS0 (steps (Suc 0, [Bk], Oc\<^bsup>Suc (code tp)\<^esup> @ Bk # Oc\<^bsup>Suc (bl_bin (<args>))\<^esup> @ Bk\<^bsup>rn\<^esup>) t_utm stp) |
|
5130 \<Longrightarrow> False" |
|
5131 using tutm_uhalt[of tp l args "Suc 0" rn] h |
|
5132 apply(simp) |
|
5133 apply(erule_tac x = stp in allE) |
|
5134 apply(simp add: tape_of_nl_abv tape_of_nat_list.simps bin_wc_eq) |
|
5135 done |
|
5136 next |
|
5137 fix rn stp |
|
5138 show "isS0 (steps (Suc 0, [Bk], Oc\<^bsup>Suc (code tp)\<^esup> @ Bk # Oc\<^bsup>Suc (bl_bin (<args>))\<^esup> @ Bk\<^bsup>rn\<^esup>) t_utm stp) \<Longrightarrow> |
|
5139 isS0 (steps (Suc 0, [Bk], Oc\<^bsup>Suc (code tp)\<^esup> @ Bk # Oc\<^bsup>Suc (bl_bin (<args>))\<^esup> @ Bk\<^bsup>rn\<^esup>) t_utm stp)" |
|
5140 by simp |
|
5141 next |
|
5142 show "?Q1 \<turnstile>-> ?P4" |
|
5143 apply(simp add: t_imply_def) |
|
5144 done |
|
5145 qed |
|
5146 thus "?thesis" |
|
5147 apply(simp add: t_imply_def UTM_pre_def) |
|
5148 done |
|
5149 qed |
|
5150 |
|
5151 text {* |
|
5152 The correctness of @{text "UTM"}, the unhalt case. |
|
5153 *} |
|
5154 |
|
5155 lemma UTM_uhalt_lemma: |
|
5156 "\<lbrakk>turing_basic.t_correct tp; |
|
5157 \<forall> stp. (\<not> TSTD (steps (Suc 0, Bk\<^bsup>l\<^esup>, <args>) tp stp)); |
|
5158 args \<noteq> []\<rbrakk> |
|
5159 \<Longrightarrow> \<forall> stp. \<not> isS0 (steps (Suc 0, [], <code tp # args>) UTM stp)" |
|
5160 using UTM_uhalt_lemma_pre[of tp l args] |
|
5161 apply(simp add: UTM_pre_def t_utm_def UTM_def F_aprog_def F_tprog_def) |
|
5162 apply(case_tac "rec_ci rec_F", simp) |
|
5163 done |
|
5164 |
|
5165 end |