Tests/abacus-2.thy
changeset 232 8f89170bb076
equal deleted inserted replaced
231:b66578c08490 232:8f89170bb076
       
     1 header {* 
       
     2  {\em abacus} a kind of register machine
       
     3 *}
       
     4 
       
     5 theory abacus
       
     6 imports Main "../Separation_Algebra/Sep_Tactics"
       
     7 begin
       
     8 
       
     9 instantiation set :: (type)sep_algebra
       
    10 begin
       
    11 
       
    12 definition set_zero_def: "0 = {}"
       
    13 
       
    14 definition plus_set_def: "s1 + s2 = s1 \<union> s2"
       
    15 
       
    16 definition sep_disj_set_def: "sep_disj s1 s2 = (s1 \<inter> s2 = {})"
       
    17 
       
    18 lemmas set_ins_def = sep_disj_set_def plus_set_def set_zero_def
       
    19 
       
    20 instance
       
    21   apply(default)
       
    22   apply(simp add:set_ins_def)
       
    23   apply(simp add:sep_disj_set_def plus_set_def set_zero_def)
       
    24   apply (metis inf_commute)
       
    25   apply(simp add:sep_disj_set_def plus_set_def set_zero_def)
       
    26   apply(simp add:sep_disj_set_def plus_set_def set_zero_def)
       
    27   apply (metis sup_commute)
       
    28   apply(simp add:sep_disj_set_def plus_set_def set_zero_def)
       
    29   apply (metis (lifting) Un_assoc)
       
    30   apply(simp add:sep_disj_set_def plus_set_def set_zero_def)
       
    31   apply (metis (lifting) Int_Un_distrib Un_empty inf_sup_distrib1 sup_eq_bot_iff)
       
    32   apply(simp add:sep_disj_set_def plus_set_def set_zero_def)
       
    33   by (metis (lifting) Int_Un_distrib Int_Un_distrib2 sup_eq_bot_iff)
       
    34 end
       
    35 
       
    36 
       
    37 text {*
       
    38   {\em Abacus} instructions:
       
    39 *}
       
    40 
       
    41 datatype abc_inst =
       
    42   -- {* @{text "Inc n"} increments the memory cell (or register) 
       
    43          with address @{text "n"} by one.
       
    44      *}
       
    45      Inc nat
       
    46   -- {*
       
    47      @{text "Dec n label"} decrements the memory cell with address @{text "n"} by one. 
       
    48       If cell @{text "n"} is already zero, no decrements happens and the executio jumps to
       
    49       the instruction labeled by @{text "label"}.
       
    50      *}
       
    51    | Dec nat nat
       
    52   -- {*
       
    53   @{text "Goto label"} unconditionally jumps to the instruction labeled by @{text "label"}.
       
    54   *}
       
    55    | Goto nat
       
    56 
       
    57 datatype apg = 
       
    58    Instr abc_inst
       
    59  | Label nat
       
    60  | Seq apg apg
       
    61  | Local "(nat \<Rightarrow> apg)"
       
    62 
       
    63 notation Local (binder "L " 10)
       
    64 
       
    65 abbreviation prog_instr :: "abc_inst \<Rightarrow> apg" ("\<guillemotright>_" [61] 61)
       
    66 where "\<guillemotright>i \<equiv> Instr i"
       
    67 
       
    68 abbreviation prog_seq :: "apg \<Rightarrow> apg \<Rightarrow> apg" (infixr ";" 52)
       
    69 where "c1 ; c2 \<equiv> Seq c1 c2"
       
    70 
       
    71 type_synonym aconf = "((nat \<rightharpoonup> abc_inst) \<times> nat \<times> (nat \<rightharpoonup> nat) \<times> nat)"
       
    72 
       
    73 fun astep :: "aconf \<Rightarrow> aconf"
       
    74   where "astep (prog, pc, m, faults) = 
       
    75               (case (prog pc) of
       
    76                   Some (Inc i) \<Rightarrow> 
       
    77                          case m(i) of
       
    78                            Some n \<Rightarrow> (prog, pc + 1, m(i:= Some (n + 1)), faults)
       
    79                          | None \<Rightarrow> (prog, pc, m, faults + 1)
       
    80                 | Some (Dec i e) \<Rightarrow> 
       
    81                          case m(i) of
       
    82                            Some n \<Rightarrow> if (n = 0) then (prog, e, m, faults)
       
    83                                      else (prog, pc + 1, m(i:= Some (n - 1)), faults)
       
    84                          | None \<Rightarrow> (prog, pc, m, faults + 1)
       
    85                 | Some (Goto pc') \<Rightarrow> (prog, pc', m, faults)
       
    86                 | None \<Rightarrow> (prog, pc, m, faults + 1))"
       
    87 
       
    88 definition "run n = astep ^^ n"
       
    89 
       
    90 datatype aresource = 
       
    91     M nat nat
       
    92   | C nat abc_inst
       
    93   | At nat
       
    94   | Faults nat
       
    95 
       
    96 definition "prog_set prog = {C i inst | i inst. prog i = Some inst}"
       
    97 definition "pc_set pc = {At pc}"
       
    98 definition "mem_set m = {M i n | i n. m (i) = Some n} "
       
    99 definition "faults_set faults = {Faults faults}"
       
   100 
       
   101 lemmas cpn_set_def = prog_set_def pc_set_def mem_set_def faults_set_def
       
   102 
       
   103 fun rset_of :: "aconf \<Rightarrow> aresource set"
       
   104   where "rset_of (prog, pc, m, faults) = 
       
   105                prog_set prog \<union> pc_set pc \<union> mem_set m \<union> faults_set faults"
       
   106 
       
   107 definition "sg e = (\<lambda> s. s = e)"
       
   108 
       
   109 definition "pc l = sg (pc_set l)"
       
   110 
       
   111 definition "m a v =sg ({M a v})"
       
   112 
       
   113 declare rset_of.simps[simp del]
       
   114 
       
   115 type_synonym assert = "aresource set \<Rightarrow> bool"
       
   116 
       
   117 primrec assemble_to :: "apg \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> assert" 
       
   118   where 
       
   119   "assemble_to (Instr ai) i j = (sg ({C i ai}) ** \<langle>(j = i + 1)\<rangle>)" |
       
   120   "assemble_to (Seq p1 p2) i j = (EXS j'. (assemble_to p1 i j') ** (assemble_to p2 j' j))" |
       
   121   "assemble_to (Local fp) i j  = (EXS l. (assemble_to (fp l) i j))" | 
       
   122   "assemble_to (Label l) i j = \<langle>(i = j \<and> j = l)\<rangle>"
       
   123 
       
   124 abbreviation asmb_to :: "nat \<Rightarrow> apg \<Rightarrow> nat \<Rightarrow> assert" ("_ :[ _ ]: _" [60, 60, 60] 60)
       
   125   where "i :[ apg ]: j \<equiv> assemble_to apg i j"
       
   126 
       
   127 lemma stimes_sgD: "(sg x ** q) s \<Longrightarrow> q (s - x) \<and> x \<subseteq> s"
       
   128   apply(erule_tac sep_conjE)
       
   129   apply(unfold set_ins_def sg_def)
       
   130   by (metis Diff_Int2 Diff_Int_distrib2 Diff_Un Diff_cancel 
       
   131     Diff_empty Diff_idemp Diff_triv Int_Diff Un_Diff 
       
   132     Un_Diff_cancel inf_commute inf_idem sup_bot_right sup_commute sup_ge2)
       
   133 
       
   134 lemma pcD: "(pc i ** r) (rset_of (prog, i', mem, fault))
       
   135        \<Longrightarrow> i' = i"
       
   136 proof -
       
   137   assume "(pc i ** r) (rset_of (prog, i', mem, fault))"
       
   138   from stimes_sgD [OF this[unfolded pc_def], unfolded rset_of.simps]
       
   139   have "pc_set i \<subseteq> prog_set prog \<union> pc_set i' \<union> mem_set mem \<union> faults_set fault" by auto
       
   140   thus ?thesis 
       
   141     by (unfold cpn_set_def, auto)
       
   142 qed
       
   143 
       
   144 lemma codeD: "(pc i ** sg {C i inst} ** r) (rset_of (prog, pos, mem, fault))
       
   145        \<Longrightarrow> prog pos = Some inst"
       
   146 proof -
       
   147   assume "(pc i ** sg {C i inst} ** r) (rset_of (prog, pos, mem, fault))" 
       
   148   thus ?thesis
       
   149     apply(sep_subst pcD)
       
   150     apply(unfold sep_conj_def set_ins_def sg_def rset_of.simps cpn_set_def)
       
   151     by auto
       
   152 qed
       
   153 
       
   154 lemma memD: "((m a v) ** r) (rset_of (prog, pos, mem, fault))  \<Longrightarrow> mem a = Some v"
       
   155 proof -
       
   156   assume "((m a v) ** r) (rset_of (prog, pos, mem, fault))"
       
   157   from stimes_sgD[OF this[unfolded rset_of.simps cpn_set_def m_def]]
       
   158   have "{M a v} \<subseteq> {C i inst |i inst. prog i = Some inst} \<union> 
       
   159             {At pos} \<union> {M i n |i n. mem i = Some n} \<union> {Faults fault}" by auto
       
   160   thus ?thesis by auto
       
   161 qed
       
   162 
       
   163 definition
       
   164   Hoare_abc :: "assert \<Rightarrow> assert  \<Rightarrow> assert \<Rightarrow> bool" ("({(1_)}/ (_)/ {(1_)})" 50)
       
   165 where
       
   166   "{p} c {q} \<equiv> (\<forall> s r. (p**c**r) (rset_of s) \<longrightarrow>
       
   167     (\<exists> k. ((q ** c ** r) (rset_of (run k s)))))" 
       
   168 
       
   169 definition "dec_fun v j e = (if (v = 0) then (e, v) else (j, v - 1))"
       
   170 
       
   171 lemma disj_Diff: "a \<inter> b = {} \<Longrightarrow> a \<union> b - b = a"
       
   172 by (metis (lifting) Diff_cancel Un_Diff Un_Diff_Int)
       
   173 
       
   174 lemma diff_pc_set: "prog_set aa \<union> pc_set i \<union> mem_set ab \<union> faults_set b - pc_set i = 
       
   175          prog_set aa \<union> mem_set ab \<union> faults_set b"  (is "?L = ?R")
       
   176 proof -
       
   177   have "?L = (prog_set aa \<union> mem_set ab \<union> faults_set b \<union> pc_set i)  - pc_set i"
       
   178     by auto
       
   179   also have "\<dots> = ?R"
       
   180   proof(rule disj_Diff)
       
   181     show " (prog_set aa \<union> mem_set ab \<union> faults_set b) \<inter> pc_set i = {}"
       
   182       by (unfold cpn_set_def, auto)
       
   183   qed
       
   184   finally show ?thesis .
       
   185 qed
       
   186 
       
   187 lemma M_in_simp: "({M a v} \<subseteq> prog_set x \<union> pc_set y \<union> mem_set mem \<union> faults_set f) = 
       
   188         ({M a v} \<subseteq> mem_set mem)"
       
   189   by (unfold cpn_set_def, auto)
       
   190 
       
   191 lemma mem_set_upd: 
       
   192   "{M a v} \<subseteq> mem_set mem \<Longrightarrow> mem_set (mem(a:=Some v')) = ((mem_set mem) - {M a v}) \<union> {M a v'}"
       
   193   by (unfold cpn_set_def, auto)
       
   194 
       
   195 lemma mem_set_disj: "{M a v} \<subseteq> mem_set mem \<Longrightarrow> {M a v'} \<inter>  (mem_set mem - {M a v}) = {}"
       
   196   by (unfold cpn_set_def, auto)
       
   197 
       
   198 lemma smem_upd: "((m a v) ** r) (rset_of (x, y, mem, f))  \<Longrightarrow> 
       
   199                     ((m a v') ** r) (rset_of (x, y, mem(a := Some v'), f))"
       
   200 proof -
       
   201   have eq_s:"
       
   202     (prog_set x \<union> pc_set y \<union> mem_set mem \<union> faults_set f - {M a v}) =
       
   203     (prog_set x \<union> pc_set y \<union> (mem_set mem - {M a v}) \<union> faults_set f)"
       
   204     by (unfold cpn_set_def, auto)
       
   205   assume "(m a v \<and>* r) (rset_of (x, y, mem, f))"
       
   206   from this[unfolded rset_of.simps m_def]
       
   207   have h: "(sg {M a v} \<and>* r) (prog_set x \<union> pc_set y \<union> mem_set mem \<union> faults_set f)" .
       
   208   hence h0: "r (prog_set x \<union> pc_set y \<union> (mem_set mem - {M a v}) \<union> faults_set f)"
       
   209     by(sep_drule stimes_sgD, clarify, unfold eq_s, auto)
       
   210   from h M_in_simp have "{M a v} \<subseteq> mem_set mem"
       
   211     by(sep_drule stimes_sgD, auto)
       
   212   from mem_set_upd [OF this] mem_set_disj[OF this]
       
   213   have h2: "mem_set (mem(a \<mapsto> v')) = {M a v'} \<union> (mem_set mem - {M a v})" 
       
   214            "{M a v'} \<inter> (mem_set mem - {M a v}) = {}" by auto
       
   215   show ?thesis
       
   216   proof -
       
   217     have "(m a v' ** r) (mem_set (mem(a \<mapsto> v')) \<union>  prog_set x \<union> pc_set y \<union> faults_set f)"
       
   218     proof(rule sep_conjI)
       
   219       from h0 show "r (prog_set x \<union> pc_set y \<union> (mem_set mem - {M a v}) \<union> faults_set f)" .
       
   220     next
       
   221       show "m a v' ({M a v'})" by (unfold m_def sg_def, simp)
       
   222     next
       
   223       show "mem_set (mem(a \<mapsto> v')) \<union> prog_set x \<union> pc_set y \<union> faults_set f =
       
   224             {M a v'} + (prog_set x \<union> pc_set y \<union> (mem_set mem - {M a v}) \<union> faults_set f)"
       
   225         by (unfold h2(1) set_ins_def eq_s, auto)
       
   226     next
       
   227       from h2(2)
       
   228       show " {M a v'} ## prog_set x \<union> pc_set y \<union> (mem_set mem - {M a v}) \<union> faults_set f"
       
   229         by (unfold cpn_set_def set_ins_def, auto)
       
   230     qed
       
   231     thus ?thesis 
       
   232       apply (unfold rset_of.simps)
       
   233       by (metis sup_commute sup_left_commute)
       
   234   qed
       
   235 qed
       
   236 
       
   237 lemma pc_dest: "(pc i') (pc_set i) \<Longrightarrow> i = i'"
       
   238   sorry
       
   239 
       
   240 lemma spc_upd: "(pc i' ** r) (rset_of (x, i, y, z))  \<Longrightarrow> 
       
   241                 (pc i'' ** r) (rset_of (x, i'', y, z))"
       
   242 proof -
       
   243   assume h: "rset_of (x, i, y, z) \<in> pc i' * r"
       
   244   from stimes_sgD [OF h[unfolded rset_of.simps pc_set_def pc_def]]
       
   245   have h1: "prog_set x \<union> {At i} \<union> mem_set y \<union> faults_set z - {At i'} \<in> r" 
       
   246            "{At i'} \<subseteq> prog_set x \<union> {At i} \<union> mem_set y \<union> faults_set z" by auto
       
   247   from h1(2) have eq_i: "i' = i" by (unfold cpn_set_def, auto)
       
   248   have "prog_set x \<union> {At i} \<union> mem_set y \<union> faults_set z - {At i'} =
       
   249         prog_set x  \<union> mem_set y \<union> faults_set z "
       
   250     apply (unfold eq_i)
       
   251     by (metis (full_types) Un_insert_left Un_insert_right 
       
   252          diff_pc_set faults_set_def insert_commute insert_is_Un 
       
   253           pc_set_def sup_assoc sup_bot_left sup_commute)
       
   254   with h1(1) have in_r: "prog_set x \<union>  mem_set y \<union> faults_set z \<in> r" by auto
       
   255   show ?thesis
       
   256   proof(unfold rset_of.simps, rule stimesI[OF _ _ _ in_r])
       
   257     show "{At i''} \<in> pc i''" by (unfold pc_def pc_set_def, simp)
       
   258   next
       
   259     show "prog_set x \<union> pc_set i'' \<union> mem_set y \<union> faults_set z =
       
   260     {At i''} \<union> (prog_set x \<union> mem_set y \<union> faults_set z)"
       
   261       by (unfold pc_set_def, auto)
       
   262   next
       
   263     show "{At i''} \<inter> (prog_set x \<union> mem_set y \<union> faults_set z) = {}"
       
   264       by (auto simp:cpn_set_def)
       
   265   qed
       
   266 qed
       
   267 
       
   268 lemma condD: "s \<in> <b>*r \<Longrightarrow> b"
       
   269   by (unfold st_def pasrt_def, auto)
       
   270 
       
   271 lemma condD1: "s \<in> <b>*r \<Longrightarrow> s \<in> r"
       
   272   by (unfold st_def pasrt_def, auto)
       
   273 
       
   274 lemma hoare_dec_suc: "{(pc i * m a v) * <(v > 0)>} 
       
   275                           i:[\<guillemotright>(Dec a e) ]:j  
       
   276                       {pc j * m a (v - 1)}"
       
   277 proof(unfold Hoare_abc_def, clarify)
       
   278   fix prog i' ab b r 
       
   279   assume h: "rset_of (prog, i', ab, b) \<in> ((pc i * m a v) * <(0 < v)>) * (i :[ \<guillemotright>Dec a e ]: j) * r"
       
   280                            (is "?r \<in> ?S")
       
   281   show "\<exists>k. rset_of (run k (prog, i', ab, b)) \<in> (pc j * m a (v - 1)) * (i :[ \<guillemotright>Dec a e ]: j) * r"
       
   282   proof -
       
   283     from h [unfolded assemble_to.simps]
       
   284     have h1: "?r \<in> pc i * {{C i (Dec a e)}} * m a v * <(0 < v)> *  <(j = i + 1)> * r"
       
   285              "?r \<in>  m a v * pc i * {{C i (Dec a e)}} * <(0 < v)> *  <(j = i + 1)> * r"
       
   286              "?r \<in>   <(0 < v)> *  <(j = i + 1)> * m a v * pc i * {{C i (Dec a e)}} * r"
       
   287              "?r \<in>   <(j = i + 1)> * <(0 < v)> *   m a v * pc i * {{C i (Dec a e)}} * r"
       
   288       by ((metis stimes_ac)+)
       
   289     note h2 =  condD [OF h1(3)] condD[OF h1(4)] pcD[OF h1(1)] codeD[OF h1(1)] memD[OF h1(2)]
       
   290     hence stp: "run 1 (prog, i', ab, b) = (prog, Suc i, ab(a \<mapsto> v - Suc 0), b)" (is "?x = ?y")
       
   291       by (unfold run_def, auto)
       
   292     have "rset_of ?x \<in> (pc j * m a (v - 1)) * (i :[ \<guillemotright>Dec a e ]: j) * r"
       
   293     proof -
       
   294       have "rset_of ?y \<in> (pc j * m a (v - 1)) * (i :[ \<guillemotright>Dec a e ]: j) * r"
       
   295       proof -
       
   296         from spc_upd[OF h1(1), of "Suc i"]
       
   297         have "rset_of (prog, (Suc i), ab, b) \<in> 
       
   298                 m a v * pc (Suc i) * {{C i (Dec a e)}} * <(0 < v)> * <(j = i + 1)> * r" 
       
   299           by (metis stimes_ac)
       
   300         from smem_upd[OF this, of "v - (Suc 0)"]
       
   301         have "rset_of ?y \<in> 
       
   302            m a (v - Suc 0) * pc (Suc i) * {{C i (Dec a e)}} * <(0 < v)> * <(j = i + 1)> * r" .
       
   303         hence "rset_of ?y \<in> <(0 < v)> *
       
   304                 (pc (Suc i) * m a (v - Suc 0)) * ({{C i (Dec a e)}} * <(j = i + 1)>) * r"
       
   305           by (metis stimes_ac)
       
   306         from condD1[OF this] 
       
   307         have "rset_of ?y \<in> (pc (Suc i) * m a (v - Suc 0)) * ({{C i (Dec a e)}} * <(j = i + 1)>) * r" .
       
   308         thus ?thesis
       
   309           by (unfold h2(2) assemble_to.simps, simp)
       
   310       qed
       
   311       with stp show ?thesis by simp
       
   312     qed
       
   313     thus ?thesis by blast
       
   314   qed
       
   315 qed
       
   316 
       
   317 lemma hoare_dec_fail: "{pc i * m a 0} 
       
   318                           i:[ \<guillemotright>(Dec a e) ]:j   
       
   319                        {pc e * m a 0}"
       
   320 proof(unfold Hoare_abc_def, clarify)
       
   321   fix prog i' ab b r 
       
   322   assume h: "rset_of (prog, i', ab, b) \<in> (pc i * m a 0) * (i :[ \<guillemotright>Dec a e ]: j) * r"
       
   323                            (is "?r \<in> ?S")
       
   324   show "\<exists>k. rset_of (run k (prog, i', ab, b)) \<in> (pc e * m a 0) * (i :[ \<guillemotright>Dec a e ]: j) * r"
       
   325   proof -
       
   326     from h [unfolded assemble_to.simps]
       
   327     have h1: "?r \<in> pc i * {{C i (Dec a e)}} * m a 0  *  <(j = i + 1)> * r"
       
   328              "?r \<in>  m a 0 * pc i * {{C i (Dec a e)}} *  <(j = i + 1)> * r"
       
   329              "?r \<in> <(j = i + 1)> * m a 0 * pc i * {{C i (Dec a e)}} * r"
       
   330       by ((metis stimes_ac)+)
       
   331     note h2 =  condD [OF h1(3)]  pcD[OF h1(1)] codeD[OF h1(1)] memD[OF h1(2)]
       
   332     hence stp: "run 1 (prog, i', ab, b) = (prog, e, ab, b)" (is "?x = ?y")
       
   333       by (unfold run_def, auto)
       
   334     have "rset_of ?x \<in> (pc e * m a 0) * (i :[ \<guillemotright>Dec a e ]: j) * r"
       
   335     proof -
       
   336       have "rset_of ?y \<in> (pc e * m a 0) * (i :[ \<guillemotright>Dec a e ]: j) * r"
       
   337       proof -
       
   338         from spc_upd[OF h1(1), of "e"]
       
   339         have "rset_of ?y \<in> pc e * {{C i (Dec a e)}} * m a 0 * <(j = i + 1)> * r" .
       
   340         thus ?thesis
       
   341           by (unfold assemble_to.simps, metis stimes_ac)
       
   342       qed
       
   343       with stp show ?thesis by simp
       
   344     qed
       
   345     thus ?thesis by blast
       
   346   qed
       
   347 qed
       
   348 
       
   349 lemma pasrtD_p: "\<lbrakk>{p*<b>} c {q}\<rbrakk> \<Longrightarrow> (b \<longrightarrow> {p} c {q})"
       
   350   apply (unfold Hoare_abc_def pasrt_def, auto)
       
   351   by (fold emp_def, simp add:emp_unit_r)
       
   352 
       
   353 lemma hoare_dec: "dec_fun v j e = (pc', v') \<Longrightarrow> 
       
   354                     {pc i * m a v} 
       
   355                        i:[ \<guillemotright>(Dec a e) ]:j   
       
   356                     {pc pc' * m a v'}"
       
   357 proof -
       
   358   assume "dec_fun v j e = (pc', v')"
       
   359   thus  "{pc i * m a v} 
       
   360                        i:[ \<guillemotright>(Dec a e) ]:j   
       
   361                     {pc pc' * m a v'}"
       
   362     apply (auto split:if_splits simp:dec_fun_def)
       
   363     apply (insert hoare_dec_fail, auto)[1]
       
   364     apply (insert hoare_dec_suc, auto)
       
   365     apply (atomize)
       
   366     apply (erule_tac x = i in allE, erule_tac x = a in allE,
       
   367            erule_tac x = v in allE, erule_tac x = e in allE, erule_tac x = pc' in allE)
       
   368     by (drule_tac pasrtD_p, clarify)
       
   369 qed
       
   370 
       
   371 lemma hoare_inc: "{pc i * m a v} 
       
   372                       i:[ \<guillemotright>(Inc a) ]:j   
       
   373                   {pc j * m a (v + 1)}"
       
   374 proof(unfold Hoare_abc_def, clarify)
       
   375   fix prog i' ab b r 
       
   376   assume h: "rset_of (prog, i', ab, b) \<in> (pc i * m a v) * (i :[ \<guillemotright>Inc a ]: j) * r"
       
   377                            (is "?r \<in> ?S")
       
   378   show "\<exists>k. rset_of (run k (prog, i', ab, b)) \<in> (pc j * m a (v + 1)) * (i :[ \<guillemotright>Inc a ]: j) * r"
       
   379   proof -
       
   380     from h [unfolded assemble_to.simps]
       
   381     have h1: "?r \<in> pc i * {{C i (Inc a)}} * m a v *  <(j = i + 1)> * r"
       
   382              "?r \<in>  m a v * pc i * {{C i (Inc a)}} * <(j = i + 1)> * r"
       
   383              "?r \<in>   <(j = i + 1)> * m a v * pc i * {{C i (Inc a)}} * r"
       
   384       by ((metis stimes_ac)+)
       
   385     note h2 =  condD [OF h1(3)] pcD[OF h1(1)] codeD[OF h1(1)] memD[OF h1(2)]
       
   386     hence stp: "run 1 (prog, i', ab, b) = (prog, Suc i, ab(a \<mapsto> Suc v), b)" (is "?x = ?y")
       
   387       by (unfold run_def, auto)
       
   388     have "rset_of ?x \<in> (pc j * m a (v + 1)) * (i :[ \<guillemotright>Inc a]: j) * r"
       
   389     proof -
       
   390       have "rset_of ?y \<in> (pc j * m a (v + 1)) * (i :[ \<guillemotright>Inc a ]: j) * r"
       
   391       proof -
       
   392         from spc_upd[OF h1(1), of "Suc i"]
       
   393         have "rset_of (prog, (Suc i), ab, b) \<in> 
       
   394                 m a v * pc (Suc i) * {{C i (Inc a)}} * <(j = i + 1)> * r" 
       
   395           by (metis stimes_ac)
       
   396         from smem_upd[OF this, of "Suc v"]
       
   397         have "rset_of ?y \<in> 
       
   398            m a (v + 1) * pc (i + 1) * {{C i (Inc a)}} * <(j = i + 1)> * r" by simp
       
   399         thus ?thesis
       
   400           by (unfold h2(1) assemble_to.simps, metis stimes_ac)
       
   401       qed
       
   402       with stp show ?thesis by simp
       
   403     qed
       
   404     thus ?thesis by blast
       
   405   qed
       
   406 qed
       
   407 
       
   408 lemma hoare_goto: "{pc i} 
       
   409                       i:[ \<guillemotright>(Goto e) ]:j   
       
   410                    {pc e}"
       
   411 proof(unfold Hoare_abc_def, clarify)
       
   412   fix prog i' ab b r 
       
   413   assume h: "rset_of (prog, i', ab, b) \<in> pc i * (i :[ \<guillemotright>Goto e ]: j) * r"
       
   414                            (is "?r \<in> ?S")
       
   415   show "\<exists>k. rset_of (run k (prog, i', ab, b)) \<in> pc e * (i :[ \<guillemotright>Goto e ]: j) * r"
       
   416   proof -
       
   417     from h [unfolded assemble_to.simps]
       
   418     have h1: "?r \<in> pc i * {{C i (Goto e)}} *  <(j = i + 1)> * r"
       
   419       by ((metis stimes_ac)+)
       
   420     note h2 = pcD[OF h1(1)] codeD[OF h1(1)] 
       
   421     hence stp: "run 1 (prog, i', ab, b) = (prog, e, ab, b)" (is "?x = ?y")
       
   422       by (unfold run_def, auto)
       
   423     have "rset_of ?x \<in> pc e * (i :[ \<guillemotright>Goto e]: j) * r"
       
   424     proof -
       
   425       from spc_upd[OF h1(1), of "e"] 
       
   426       show ?thesis
       
   427         by (unfold stp assemble_to.simps, metis stimes_ac)
       
   428     qed
       
   429     thus ?thesis by blast
       
   430   qed
       
   431 qed
       
   432 
       
   433 no_notation stimes (infixr "*" 70)
       
   434 
       
   435 interpretation foo: comm_monoid_mult 
       
   436   "stimes :: 'a set set => 'a set set => 'a set set" "emp::'a set set"
       
   437 apply(default)
       
   438 apply(simp add: stimes_assoc)
       
   439 apply(simp add: stimes_comm)
       
   440 apply(simp add: emp_def[symmetric])
       
   441 done
       
   442 
       
   443 
       
   444 notation stimes (infixr "*" 70)
       
   445 
       
   446 (*used by simplifier for numbers *)
       
   447 thm mult_cancel_left
       
   448 
       
   449 (*
       
   450 interpretation foo: comm_ring_1 "op * :: 'a set set => 'a set set => 'a set set" "{{}}::'a set set" 
       
   451 apply(default)
       
   452 *)
       
   453 
       
   454 lemma frame: "{p} c {q} \<Longrightarrow>  \<forall> r. {p * r} c {q * r}"
       
   455 apply (unfold Hoare_abc_def, clarify)
       
   456 apply (erule_tac x = "(a, aa, ab, b)" in allE)
       
   457 apply (erule_tac x = "r * ra" in allE) 
       
   458 apply(metis stimes_ac)
       
   459 done
       
   460 
       
   461 lemma code_extension: "\<lbrakk>{p} c {q}\<rbrakk> \<Longrightarrow> (\<forall> e. {p} c * e {q})"
       
   462   apply (unfold Hoare_abc_def, clarify)
       
   463   apply (erule_tac x = "(a, aa, ab, b)" in allE)
       
   464   apply (erule_tac x = "e * r" in allE)
       
   465   apply(metis stimes_ac)
       
   466   done
       
   467 
       
   468 lemma run_add: "run (n1 + n2) s = run n1 (run n2 s)"
       
   469 apply (unfold run_def)
       
   470 by (metis funpow_add o_apply)
       
   471 
       
   472 lemma composition: "\<lbrakk>{p} c1 {q}; {q} c2 {r}\<rbrakk> \<Longrightarrow> {p} c1 * c2 {r}"
       
   473 proof -
       
   474   assume h: "{p} c1 {q}" "{q} c2 {r}"
       
   475   from code_extension [OF h(1), rule_format, of "c2"] 
       
   476   have "{p} c1 * c2 {q}" .
       
   477   moreover from code_extension [OF h(2), rule_format, of "c1"] and stimes_comm
       
   478   have "{q} c1 * c2 {r}" by metis
       
   479   ultimately show "{p} c1 * c2 {r}"
       
   480     apply (unfold Hoare_abc_def, clarify)
       
   481     proof -
       
   482       fix a aa ab b ra
       
   483       assume h1: "\<forall>s r. rset_of s \<in> p * (c1 * c2) * r \<longrightarrow>
       
   484                        (\<exists>k. rset_of (run k s) \<in> q * (c1 * c2) * r)"
       
   485         and h2: "\<forall>s ra. rset_of s \<in> q * (c1 * c2) * ra \<longrightarrow>
       
   486                        (\<exists>k. rset_of (run k s) \<in> r * (c1 * c2) * ra)"
       
   487         and h3: "rset_of (a, aa, ab, b) \<in> p * (c1 * c2) * ra"
       
   488       show "\<exists>k. rset_of (run k (a, aa, ab, b)) \<in> r * (c1 * c2) * ra"
       
   489       proof -
       
   490         let ?s = "(a, aa, ab, b)"
       
   491         from h1 [rule_format, of ?s, OF h3]
       
   492         obtain n1 where "rset_of (run n1 ?s) \<in> q * (c1 * c2) * ra" by blast
       
   493         from h2 [rule_format, OF this]
       
   494         obtain n2 where "rset_of (run n2 (run n1 ?s)) \<in> r * (c1 * c2) * ra" by blast
       
   495         with run_add show ?thesis by metis
       
   496       qed
       
   497     qed
       
   498 qed
       
   499 
       
   500 lemma stimes_simp: "s \<in> x * y = (\<exists> s1 s2. (s = s1 \<union> s2 \<and> s1 \<inter> s2 = {} \<and> s1 \<in> x \<and> s2 \<in> y))"
       
   501 by (metis (lifting) stimesE stimesI)
       
   502 
       
   503 lemma hoare_seq: 
       
   504   "\<lbrakk>\<forall> i j. {pc i * p} i:[c1]:j {pc j * q}; 
       
   505     \<forall> j k. {pc j * q} j:[c2]:k {pc k * r}\<rbrakk> \<Longrightarrow>  {pc i * p} i:[(c1 ; c2)]:k {pc k *r}"
       
   506 proof -
       
   507   assume h: "\<forall>i j. {pc i * p} i :[ c1 ]: j {pc j * q}" "\<forall> j k. {pc j * q} j:[c2]:k {pc k * r}"
       
   508   show "{pc i * p} i:[(c1 ; c2)]:k {pc k *r}"
       
   509   proof(subst Hoare_abc_def, clarify)
       
   510     fix a aa ab b ra
       
   511     assume "rset_of (a, aa, ab, b) \<in> (pc i * p) * (i :[ (c1 ; c2) ]: k) * ra"
       
   512     hence "rset_of (a, aa, ab, b) \<in> (i :[ (c1 ; c2) ]: k) * (pc i * p * ra)" (is "?s \<in> ?X * ?Y")
       
   513       by (metis stimes_ac)
       
   514     from stimesE[OF this] obtain s1 s2 where
       
   515       sp: "rset_of(a, aa, ab, b) = s1 \<union> s2" "s1 \<inter> s2 = {}" "s1 \<in> ?X" "s2 \<in> ?Y" by blast
       
   516     from sp (3) obtain j' where 
       
   517       "s1 \<in> (i:[c1]:j') * (j':[c2]:k)" (is "s1 \<in> ?Z")
       
   518       by (auto simp:assemble_to.simps)
       
   519     from stimesI[OF sp(1, 2) this sp(4)]
       
   520     have "?s \<in>  (pc i * p) * (i :[ c1 ]: j') * (j' :[ c2 ]: k) * ra" by (metis stimes_ac)
       
   521     from h(1)[unfolded Hoare_abc_def, rule_format, OF this]
       
   522     obtain ka where 
       
   523       "rset_of (run ka (a, aa, ab, b)) \<in> (pc j' * q) * (j' :[ c2 ]: k) * ((i :[ c1 ]: j') * ra)" 
       
   524       sorry
       
   525     from h(2)[unfolded Hoare_abc_def, rule_format, OF this]
       
   526     obtain kb where 
       
   527       "rset_of (run kb (run ka (a, aa, ab, b)))
       
   528       \<in>  (pc k * r) * (j' :[ c2 ]: k) * (i :[ c1 ]: j') * ra" by blast
       
   529     hence h3: "rset_of (run (kb + ka) (a, aa, ab, b))
       
   530       \<in> pc k * r * (j' :[ c2 ]: k) * ((i :[ c1 ]: j') * ra)" 
       
   531       sorry
       
   532     hence "rset_of (run (kb + ka) (a, aa, ab, b)) \<in> pc k * r * (i :[ (c1 ; c2) ]: k) * ra"
       
   533     proof -
       
   534       have "rset_of (run (kb + ka) (a, aa, ab, b)) \<in> (i :[ (c1 ; c2) ]: k) * (pc k * r * ra)"
       
   535       proof -
       
   536         from h3 have "rset_of (run (kb + ka) (a, aa, ab, b))
       
   537           \<in> ((j' :[ c2 ]: k) * ((i :[ c1 ]: j'))) * (pc k * r *  ra)"
       
   538           by (metis stimes_ac)
       
   539         then obtain 
       
   540           s1 s2 where h4: "rset_of (run (kb + ka) (a, aa, ab, b)) = s1 \<union> s2"
       
   541           " s1 \<inter> s2 = {}" "s1 \<in> (j' :[ c2 ]: k) * (i :[ c1 ]: j')"
       
   542           "s2 \<in>  pc k * r * ra" by (rule stimesE, blast)
       
   543         from h4(3) have "s1 \<in> (i :[ (c1 ; c2) ]: k)"
       
   544           sorry
       
   545         from stimesI [OF h4(1, 2) this h4(4)]
       
   546         show ?thesis .
       
   547       qed
       
   548       thus ?thesis by (metis stimes_ac)
       
   549     qed
       
   550     thus "\<exists>ka. rset_of (run ka (a, aa, ab, b)) \<in> (pc k * r) * (i :[ (c1 ; c2) ]: k) * ra"
       
   551       by (metis stimes_ac)
       
   552   qed
       
   553 qed
       
   554   
       
   555 lemma hoare_local: 
       
   556   "\<forall> l i j. {pc i*p} i:[c(l)]:j {pc j * q} 
       
   557   \<Longrightarrow> {pc i * p} i:[Local c]:j {pc j * q}"
       
   558 proof -
       
   559   assume h: "\<forall> l i j. {pc i*p} i:[c(l)]:j {pc j * q} "
       
   560   show "{pc i * p} i:[Local c]:j {pc j * q}"
       
   561   proof(unfold assemble_to.simps Hoare_abc_def, clarify)
       
   562     fix a aa ab b r
       
   563     assume h1: "rset_of (a, aa, ab, b) \<in> (pc i * p) * (\<Union>l. i :[ c l ]: j) * r"
       
   564     hence "rset_of (a, aa, ab, b) \<in> (\<Union>l. i :[ c l ]: j) * (pc i * p * r)" 
       
   565       by (metis stimes_ac)
       
   566     then obtain s1 s2 l 
       
   567       where "rset_of (a, aa, ab, b) = s1 \<union> s2"
       
   568                 "s1 \<inter> s2 = {}"
       
   569                 "s1 \<in> (i :[ c l ]: j)"
       
   570                 "s2 \<in> pc i * p * r"
       
   571       by (rule stimesE, auto)
       
   572     from stimesI[OF this]
       
   573     have "rset_of (a, aa, ab, b) \<in> (pc i * p) * (i :[ c l ]: j) * r" 
       
   574       by (metis stimes_ac)
       
   575     from h[unfolded Hoare_abc_def, rule_format, OF this]
       
   576     obtain k where "rset_of (run k (a, aa, ab, b)) \<in> (i :[ c l ]: j) * (pc j * q * r)" 
       
   577       sorry
       
   578     then obtain s1 s2
       
   579       where h3: "rset_of (run k (a, aa, ab, b)) = s1 \<union> s2"
       
   580                 " s1 \<inter> s2 = {}" "s1 \<in> (\<Union> l. (i :[ c l ]: j))" "s2 \<in> pc j * q * r" 
       
   581       by(rule stimesE, auto)
       
   582     from stimesI[OF this]
       
   583     show "\<exists>k. rset_of (run k (a, aa, ab, b)) \<in> (pc j * q) * (\<Union>l. i :[ c l ]: j) * r"
       
   584       by (metis stimes_ac)
       
   585   qed
       
   586 qed
       
   587 
       
   588 lemma move_pure: "{p*<b>} c {q} = (b \<longrightarrow> {p} c {q})"
       
   589 proof(unfold Hoare_abc_def, default, clarify)
       
   590   fix prog i' mem ft r
       
   591   assume h: "\<forall>s r. rset_of s \<in> (p * <b>) * c * r \<longrightarrow> (\<exists>k. rset_of (run k s) \<in> q * c * r)"
       
   592             "b" "rset_of (prog, i', mem, ft) \<in> p * c * r"
       
   593   show "\<exists>k. rset_of (run k (prog, i', mem, ft)) \<in> q * c * r"
       
   594   proof(rule h(1)[rule_format])
       
   595     have "(p * <b>) * c * r = <b> * p * c * r" by (metis stimes_ac)
       
   596     moreover have "rset_of (prog, i', mem, ft) \<in> \<dots>"
       
   597     proof(rule stimesI[OF _ _ _ h(3)])
       
   598       from h(2) show "{} \<in> <b>" by (auto simp:pasrt_def)
       
   599     qed auto
       
   600     ultimately show "rset_of (prog, i', mem, ft) \<in> (p * <b>) * c * r"
       
   601       by (simp)
       
   602   qed
       
   603 next
       
   604   assume h: "b \<longrightarrow> (\<forall>s r. rset_of s \<in> p * c * r \<longrightarrow> (\<exists>k. rset_of (run k s) \<in> q * c * r))"
       
   605   show "\<forall>s r. rset_of s \<in> (p * <b>) * c * r \<longrightarrow> (\<exists>k. rset_of (run k s) \<in> q * c * r)"
       
   606   proof -
       
   607     { fix s r 
       
   608       assume "rset_of s \<in> (p * <b>) * c * r"
       
   609       hence h1: "rset_of s \<in> <b> * p * c * r" by (metis stimes_ac)
       
   610       have "(\<exists>k. rset_of (run k s) \<in> q * c * r)"
       
   611       proof(rule h[rule_format])
       
   612         from condD[OF h1] show b .
       
   613       next
       
   614         from condD1[OF h1] show "rset_of s \<in> p * c * r" .
       
   615       qed
       
   616     } thus ?thesis by blast
       
   617   qed
       
   618 qed
       
   619 
       
   620 lemma precond_ex: "{\<Union> x. p x} c {q} = (\<forall> x. {p x} c {q})"
       
   621 proof(unfold Hoare_abc_def, default, clarify)
       
   622   fix x prog i' mem ft r
       
   623   assume h: "\<forall>s r. rset_of s \<in> UNION UNIV p * c * r \<longrightarrow> (\<exists>k. rset_of (run k s) \<in> q * c * r)"
       
   624             "rset_of (prog, i', mem, ft) \<in> p x * c * r"
       
   625   show "\<exists>k. rset_of (run k (prog, i', mem, ft)) \<in> q * c * r"
       
   626   proof(rule h[rule_format])
       
   627     from h(2) show "rset_of (prog, i', mem, ft) \<in> UNION UNIV p * c * r" by (auto simp:stimes_def)
       
   628   qed
       
   629 next
       
   630   assume h: "\<forall>x s r. rset_of s \<in> p x * c * r \<longrightarrow> (\<exists>k. rset_of (run k s) \<in> q * c * r)"
       
   631   show "\<forall>s r. rset_of s \<in> UNION UNIV p * c * r \<longrightarrow> (\<exists>k. rset_of (run k s) \<in> q * c * r)"
       
   632   proof -
       
   633     { fix s r
       
   634       assume "rset_of s \<in> UNION UNIV p * c * r"
       
   635       then obtain x where "rset_of s \<in> p x * c * r" 
       
   636         by (unfold st_def, auto, metis)
       
   637       hence "(\<exists>k. rset_of (run k s) \<in> q * c * r)"
       
   638         by(rule h[rule_format])
       
   639     } thus ?thesis by blast
       
   640   qed
       
   641 qed
       
   642 
       
   643 lemma code_exI: "\<lbrakk>\<And>l. {p} c l * c' {q}\<rbrakk> \<Longrightarrow> {p} (\<Union> l. c l) * c' {q}"
       
   644 proof(unfold Hoare_abc_def, default, clarify)
       
   645   fix prog i' mem ft r
       
   646   assume h: "\<And>l. \<forall>s r. rset_of s \<in> p * (c l * c') * r \<longrightarrow> (\<exists>k. rset_of (run k s) \<in> q * (c l * c') * r)"
       
   647             "rset_of (prog, i', mem, ft) \<in> p * (UNION UNIV c * c') * r"
       
   648   show " \<exists>k. rset_of (run k (prog, i', mem, ft)) \<in> q * (UNION UNIV c * c') * r"
       
   649   proof -
       
   650     from h(2) obtain l where "rset_of (prog, i', mem, ft) \<in> p * (c l * c') * r"
       
   651       apply (unfold st_def, auto)
       
   652       by metis
       
   653     from h(1)[rule_format, OF this]
       
   654     obtain k where " rset_of (run k (prog, i', mem, ft)) \<in> q * (c l * c') * r" by blast
       
   655     thus ?thesis by (unfold st_def, auto, metis)
       
   656   qed
       
   657 qed
       
   658 
       
   659 lemma code_exIe: "\<lbrakk>\<And>l. {p} c l{q}\<rbrakk> \<Longrightarrow> {p} \<Union> l. (c l) {q}"
       
   660 proof -
       
   661   assume "\<And>l. {p} c l {q}"
       
   662   thus "{p} \<Union>l. c l {q}"
       
   663     by(rule code_exI[where c'= "emp", unfolded emp_unit_r])
       
   664 qed
       
   665 
       
   666 lemma pre_stren: "\<lbrakk>{p} c {q}; r \<subseteq> p\<rbrakk> \<Longrightarrow> {r} c {q}"
       
   667 proof(unfold Hoare_abc_def, clarify)
       
   668   fix prog i' mem ft r'
       
   669   assume h: "\<forall>s r. rset_of s \<in> p * c * r \<longrightarrow> (\<exists>k. rset_of (run k s) \<in> q * c * r)"
       
   670             " r \<subseteq> p" " rset_of (prog, i', mem, ft) \<in> r * c * r'"
       
   671   show "\<exists>k. rset_of (run k (prog, i', mem, ft)) \<in> q * c * r'"
       
   672   proof(rule h(1)[rule_format])
       
   673     from stimes_mono[OF h(2), of "c * r'"] h(3)
       
   674     show "rset_of (prog, i', mem, ft) \<in> p * c * r'" by auto
       
   675   qed
       
   676 qed
       
   677 
       
   678 lemma post_weaken: "\<lbrakk>{p} c {q}; q \<subseteq> r\<rbrakk> \<Longrightarrow> {p} c {r}"
       
   679 proof(unfold Hoare_abc_def, clarify)
       
   680   fix prog i' mem ft r'
       
   681   assume h: "\<forall>s r. rset_of s \<in> p * c * r \<longrightarrow> (\<exists>k. rset_of (run k s) \<in> q * c * r)"
       
   682             " q \<subseteq> r" "rset_of (prog, i', mem, ft) \<in> p * c * r'"
       
   683   show "\<exists>k. rset_of (run k (prog, i', mem, ft)) \<in> r * c * r'"
       
   684   proof -
       
   685     from h(1)[rule_format, OF h(3)]
       
   686     obtain k where "rset_of (run k (prog, i', mem, ft)) \<in> q * c * r'" by auto
       
   687     moreover from h(2) have "\<dots> \<subseteq> r * c * r'" by (metis stimes_mono)
       
   688     ultimately show ?thesis by auto
       
   689   qed
       
   690 qed
       
   691 
       
   692 definition "clear a = (L start exit. Label start; \<guillemotright>Dec a exit; \<guillemotright> Goto start; Label exit)"
       
   693 
       
   694 lemma "{pc i * m a v} i:[clear a]:j {pc j*m a 0}"
       
   695 proof (unfold clear_def, rule hoare_local, default+)
       
   696   fix l i j
       
   697   show "{pc i * m a v} i :[ (L exit. Label l ; \<guillemotright>Dec a exit ; \<guillemotright>Goto l ; Label exit) ]: j
       
   698             {pc j * m a 0}"
       
   699   proof(rule hoare_local, default+)
       
   700     fix la i j 
       
   701     show "{pc i * m a v} i :[ (Label l ; \<guillemotright>Dec a la ; \<guillemotright>Goto l ; Label la) ]: j {pc j * m a 0}"
       
   702     proof(subst assemble_to.simps, rule code_exIe)
       
   703       have "\<And>j'. {pc i * m a v}  (j' :[ (\<guillemotright>Dec a la ; \<guillemotright>Goto l ; Label la) ]: j) * (i :[ Label l ]: j')
       
   704          {pc j * m a 0}" 
       
   705       proof(subst assemble_to.simps, rule code_exI)
       
   706         fix j' j'a
       
   707         show "{pc i * m a v}
       
   708        ((j' :[ \<guillemotright>Dec a la ]: j'a) * (j'a :[ (\<guillemotright>Goto l ; Label la) ]: j)) * (i :[ Label l ]: j')
       
   709        {pc j * m a 0}"
       
   710         proof(unfold assemble_to.simps)
       
   711           have "{pc i * m a v}
       
   712     ((\<Union>j'. ({{C j'a (Goto l)}} * <(j' = j'a + 1)>) * ({{C j' (Dec a la)}} * <(j'a = j' + 1)>) 
       
   713       * <(j' = j \<and> j = la)>)) *
       
   714     <(i = j' \<and> j' = l)>
       
   715     {pc j * m a 0}"
       
   716           proof(rule code_exI, fold assemble_to.simps, unfold assemble_to.simps(4))
       
   717             thm assemble_to.simps
       
   718           qed
       
   719           thus "{pc i * m a v}
       
   720     (({{C j' (Dec a la)}} * <(j'a = j' + 1)>) *
       
   721      (\<Union>j'. ({{C j'a (Goto l)}} * <(j' = j'a + 1)>) * <(j' = j \<and> j = la)>)) *
       
   722     <(i = j' \<and> j' = l)>
       
   723     {pc j * m a 0}" sorry
       
   724         qed
       
   725       qed
       
   726       thus "\<And>j'. {pc i * m a v} (i :[ Label l ]: j') * (j' :[ (\<guillemotright>Dec a la ; \<guillemotright>Goto l ; Label la) ]: j)
       
   727          {pc j * m a 0}" by (metis stimes_ac)
       
   728     qed
       
   729   qed
       
   730 qed
       
   731 
       
   732 end