Paper.thy
changeset 35 839e37b75d9a
parent 34 22e5804b135c
child 36 4b35e0e0784b
equal deleted inserted replaced
34:22e5804b135c 35:839e37b75d9a
    69   shows "tshift p n == (map (\<lambda> (a, s). (a, (if s = 0 then 0 else s + n))) p)"
    69   shows "tshift p n == (map (\<lambda> (a, s). (a, (if s = 0 then 0 else s + n))) p)"
    70 apply(rule eq_reflection)
    70 apply(rule eq_reflection)
    71 apply(auto simp add: tshift.simps)
    71 apply(auto simp add: tshift.simps)
    72 done
    72 done
    73 
    73 
       
    74 lemma change_termi_state_def2:
       
    75  "change_termi_state p  == 
       
    76   (map (\<lambda> (a, s). (a, if s = 0 then Suc ((length s) div 2)) else s) t)"
       
    77 apply(rule eq_reflection)
       
    78 apply(auto simp add: change_termi_state.simps)
       
    79 done
       
    80 
       
    81 
    74 
    82 
    75 consts DUMMY::'a
    83 consts DUMMY::'a
    76 
    84 
    77 notation (latex output)
    85 notation (latex output)
    78   Cons ("_::_" [78,77] 73) and
    86   Cons ("_::_" [78,77] 73) and
    83   tstep ("step") and
    91   tstep ("step") and
    84   steps ("nsteps") and
    92   steps ("nsteps") and
    85   abc_lm_v ("lookup") and
    93   abc_lm_v ("lookup") and
    86   abc_lm_s ("set") and
    94   abc_lm_s ("set") and
    87   haltP ("stdhalt") and 
    95   haltP ("stdhalt") and 
    88   change-termi-state ("adjust") and
    96   change_termi_state ("adjust") and
    89   tape_of_nat_list ("\<ulcorner>_\<urcorner>") and 
    97   tape_of_nat_list ("\<ulcorner>_\<urcorner>") and 
    90   DUMMY  ("\<^raw:\mbox{$\_$}>")
    98   DUMMY  ("\<^raw:\mbox{$\_$}>")
    91 
    99 
    92 declare [[show_question_marks = false]]
   100 declare [[show_question_marks = false]]
    93 (*>*)
   101 (*>*)