Paper/document/root.tex
changeset 48 559e5c6e5113
parent 42 00ae320bb804
child 49 b388dceee892
equal deleted inserted replaced
47:251e192339b7 48:559e5c6e5113
       
     1 \documentclass[runningheads]{llncs}
       
     2 %\documentclass[10pt, conference, compsocconf]{IEEEtran}
       
     3 \usepackage{isabelle}
       
     4 \usepackage{isabellesym}
       
     5 \usepackage{times}
       
     6 \usepackage{amssymb}
       
     7 \usepackage{amsmath}
       
     8 \usepackage{mathpartir}
       
     9 \usepackage{pdfsetup}
       
    10 \usepackage{tikz}
       
    11 \usepackage{pgf}
       
    12 
       
    13 % urls in roman style, theory text in math-similar italics
       
    14 \urlstyle{rm}
       
    15 \isabellestyle{it}
       
    16 
       
    17 % for uniform font size
       
    18 %\renewcommand{\isastyle}{\isastyleminor}
       
    19 
       
    20 \def\dn{\,\stackrel{\mbox{\scriptsize def}}{=}\,}
       
    21 \renewcommand{\isasymequiv}{$\dn$}
       
    22 \renewcommand{\isasymemptyset}{$\varnothing$}
       
    23 \renewcommand{\isacharunderscore}{\mbox{$\_$}}
       
    24 \renewcommand{\isasymiota}{}
       
    25 \newcommand{\isasymulcorner}{$\ulcorner$}
       
    26 \newcommand{\isasymurcorner}{$\urcorner$}
       
    27 \begin{document}
       
    28 
       
    29 
       
    30 \title{Formalising Computability Theory in Isabelle/HOL}
       
    31 \author{Jian Xu\inst{1} \and Xingyuan Zhang\inst{1} \and Christian Urban\inst{2}}
       
    32 \institute{PLA University of Science and Technology, China \and King's College London, UK}
       
    33 
       
    34 \maketitle
       
    35 
       
    36 
       
    37 \begin{abstract}
       
    38 We present a formalised theory of computability in the 
       
    39 theorem prover Isabelle/HOL. This theorem prover is based on classical 
       
    40 logic which precludes \emph{direct} reasoning about computability: every 
       
    41 boolean predicate is either true or false because of the law of excluded 
       
    42 middle. The only way to reason about computability in a classical theorem 
       
    43 prover is to formalise a concrete model for computation. 
       
    44 We formalise Turing machines and relate them to abacus machines and recursive
       
    45 functions. Our theory can be used to formalise other computability results:
       
    46 {\it we give one example about the undecidability of Wang's tiling problem, whose proof uses
       
    47 the notion of a universal Turing machine.}
       
    48 \end{abstract}
       
    49 
       
    50 % generated text of all theories
       
    51 \input{session}
       
    52 
       
    53 % optional bibliography
       
    54 \bibliographystyle{abbrv}
       
    55 \bibliography{root}
       
    56 
       
    57 \end{document}
       
    58 
       
    59 %%% Local Variables:
       
    60 %%% mode: latex
       
    61 %%% TeX-master: t
       
    62 %%% End: