1 header {* |
|
2 {\em abacus} a kind of register machine |
|
3 *} |
|
4 |
|
5 theory abacus |
|
6 imports Main turing_basic |
|
7 begin |
|
8 |
|
9 text {* |
|
10 {\em Abacus} instructions: |
|
11 *} |
|
12 |
|
13 datatype abc_inst = |
|
14 -- {* @{text "Inc n"} increments the memory cell (or register) with address @{text "n"} by one. |
|
15 *} |
|
16 Inc nat |
|
17 -- {* |
|
18 @{text "Dec n label"} decrements the memory cell with address @{text "n"} by one. |
|
19 If cell @{text "n"} is already zero, no decrements happens and the executio jumps to |
|
20 the instruction labeled by @{text "label"}. |
|
21 *} |
|
22 | Dec nat nat |
|
23 -- {* |
|
24 @{text "Goto label"} unconditionally jumps to the instruction labeled by @{text "label"}. |
|
25 *} |
|
26 | Goto nat |
|
27 |
|
28 |
|
29 text {* |
|
30 Abacus programs are defined as lists of Abacus instructions. |
|
31 *} |
|
32 type_synonym abc_prog = "abc_inst list" |
|
33 |
|
34 section {* |
|
35 Sample Abacus programs |
|
36 *} |
|
37 |
|
38 text {* |
|
39 Abacus for addition and clearance. |
|
40 *} |
|
41 fun plus_clear :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> abc_prog" |
|
42 where |
|
43 "plus_clear m n e = [Dec m e, Inc n, Goto 0]" |
|
44 |
|
45 text {* |
|
46 Abacus for clearing memory untis. |
|
47 *} |
|
48 fun clear :: "nat \<Rightarrow> nat \<Rightarrow> abc_prog" |
|
49 where |
|
50 "clear n e = [Dec n e, Goto 0]" |
|
51 |
|
52 fun plus:: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> abc_prog" |
|
53 where |
|
54 "plus m n p e = [Dec m 4, Inc n, Inc p, |
|
55 Goto 0, Dec p e, Inc m, Goto 4]" |
|
56 |
|
57 fun mult :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> abc_prog" |
|
58 where |
|
59 "mult m1 m2 n p e = [Dec m1 e]@ plus m1 m2 p 1" |
|
60 |
|
61 fun expo :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> abc_prog" |
|
62 where |
|
63 "expo n m1 m2 p e = [Inc n, Dec m1 e] @ mult m2 n n p 2" |
|
64 |
|
65 |
|
66 text {* |
|
67 The state of Abacus machine. |
|
68 *} |
|
69 type_synonym abc_state = nat |
|
70 |
|
71 (* text {* |
|
72 The memory of Abacus machine is defined as a function from address to contents. |
|
73 *} |
|
74 type_synonym abc_mem = "nat \<Rightarrow> nat" *) |
|
75 |
|
76 text {* |
|
77 The memory of Abacus machine is defined as a list of contents, with |
|
78 every units addressed by index into the list. |
|
79 *} |
|
80 type_synonym abc_lm = "nat list" |
|
81 |
|
82 text {* |
|
83 Fetching contents out of memory. Units not represented by list elements are considered |
|
84 as having content @{text "0"}. |
|
85 *} |
|
86 fun abc_lm_v :: "abc_lm \<Rightarrow> nat \<Rightarrow> nat" |
|
87 where |
|
88 "abc_lm_v lm n = (if (n < length lm) then (lm!n) else 0)" |
|
89 |
|
90 (* |
|
91 fun abc_l2m :: "abc_lm \<Rightarrow> abc_mem" |
|
92 where |
|
93 "abc_l2m lm = abc_lm_v lm" |
|
94 *) |
|
95 |
|
96 text {* |
|
97 Set the content of memory unit @{text "n"} to value @{text "v"}. |
|
98 @{text "am"} is the Abacus memory before setting. |
|
99 If address @{text "n"} is outside to scope of @{text "am"}, @{text "am"} |
|
100 is extended so that @{text "n"} becomes in scope. |
|
101 *} |
|
102 fun abc_lm_s :: "abc_lm \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> abc_lm" |
|
103 where |
|
104 "abc_lm_s am n v = (if (n < length am) then (am[n:=v]) else |
|
105 am@ (replicate (n - length am) 0) @ [v])" |
|
106 |
|
107 |
|
108 text {* |
|
109 The configuration of Abaucs machines consists of its current state and its |
|
110 current memory: |
|
111 *} |
|
112 type_synonym abc_conf_l = "abc_state \<times> abc_lm" |
|
113 |
|
114 text {* |
|
115 Fetch instruction out of Abacus program: |
|
116 *} |
|
117 |
|
118 fun abc_fetch :: "nat \<Rightarrow> abc_prog \<Rightarrow> abc_inst option" |
|
119 where |
|
120 "abc_fetch s p = (if (s < length p) then Some (p ! s) |
|
121 else None)" |
|
122 |
|
123 text {* |
|
124 Single step execution of Abacus machine. If no instruction is feteched, |
|
125 configuration does not change. |
|
126 *} |
|
127 fun abc_step_l :: "abc_conf_l \<Rightarrow> abc_inst option \<Rightarrow> abc_conf_l" |
|
128 where |
|
129 "abc_step_l (s, lm) a = (case a of |
|
130 None \<Rightarrow> (s, lm) | |
|
131 Some (Inc n) \<Rightarrow> (let nv = abc_lm_v lm n in |
|
132 (s + 1, abc_lm_s lm n (nv + 1))) | |
|
133 Some (Dec n e) \<Rightarrow> (let nv = abc_lm_v lm n in |
|
134 if (nv = 0) then (e, abc_lm_s lm n 0) |
|
135 else (s + 1, abc_lm_s lm n (nv - 1))) | |
|
136 Some (Goto n) \<Rightarrow> (n, lm) |
|
137 )" |
|
138 |
|
139 text {* |
|
140 Multi-step execution of Abacus machine. |
|
141 *} |
|
142 fun abc_steps_l :: "abc_conf_l \<Rightarrow> abc_prog \<Rightarrow> nat \<Rightarrow> abc_conf_l" |
|
143 where |
|
144 "abc_steps_l (s, lm) p 0 = (s, lm)" | |
|
145 "abc_steps_l (s, lm) p (Suc n) = abc_steps_l (abc_step_l (s, lm) (abc_fetch s p)) p n" |
|
146 |
|
147 section {* |
|
148 Compiling Abacus machines into Truing machines |
|
149 *} |
|
150 |
|
151 |
|
152 subsection {* |
|
153 Compiling functions |
|
154 *} |
|
155 |
|
156 text {* |
|
157 @{text "findnth n"} returns the TM which locates the represention of |
|
158 memory cell @{text "n"} on the tape and changes representation of zero |
|
159 on the way. |
|
160 *} |
|
161 |
|
162 fun findnth :: "nat \<Rightarrow> tprog" |
|
163 where |
|
164 "findnth 0 = []" | |
|
165 "findnth (Suc n) = (findnth n @ [(W1, 2 * n + 1), |
|
166 (R, 2 * n + 2), (R, 2 * n + 3), (R, 2 * n + 2)])" |
|
167 |
|
168 text {* |
|
169 @{text "tinc_b"} returns the TM which increments the representation |
|
170 of the memory cell under rw-head by one and move the representation |
|
171 of cells afterwards to the right accordingly. |
|
172 *} |
|
173 |
|
174 definition tinc_b :: "tprog" |
|
175 where |
|
176 "tinc_b \<equiv> [(W1, 1), (R, 2), (W1, 3), (R, 2), (W1, 3), (R, 4), |
|
177 (L, 7), (W0, 5), (R, 6), (W0, 5), (W1, 3), (R, 6), |
|
178 (L, 8), (L, 7), (R, 9), (L, 7), (R, 10), (W0, 9)]" |
|
179 |
|
180 (* FIXME: doubly defined |
|
181 text {* |
|
182 @{text "tshift tm off"} shifts @{text "tm"} by offset @{text "off"}, leaving |
|
183 instructions concerning state @{text "0"} unchanged, because state @{text "0"} |
|
184 is the end state, which needs not be changed with shift operation. |
|
185 *} |
|
186 |
|
187 fun tshift :: "tprog \<Rightarrow> nat \<Rightarrow> tprog" |
|
188 where |
|
189 "tshift tp off = (map (\<lambda> (action, state). |
|
190 (action, (if state = 0 then 0 |
|
191 else state + off))) tp)" |
|
192 *) |
|
193 |
|
194 text {* |
|
195 @{text "tinc ss n"} returns the TM which simulates the execution of |
|
196 Abacus instruction @{text "Inc n"}, assuming that TM is located at |
|
197 location @{text "ss"} in the final TM complied from the whole |
|
198 Abacus program. |
|
199 *} |
|
200 |
|
201 fun tinc :: "nat \<Rightarrow> nat \<Rightarrow> tprog" |
|
202 where |
|
203 "tinc ss n = tshift (findnth n @ tshift tinc_b (2 * n)) (ss - 1)" |
|
204 |
|
205 text {* |
|
206 @{text "tinc_b"} returns the TM which decrements the representation |
|
207 of the memory cell under rw-head by one and move the representation |
|
208 of cells afterwards to the left accordingly. |
|
209 *} |
|
210 |
|
211 definition tdec_b :: "tprog" |
|
212 where |
|
213 "tdec_b \<equiv> [(W1, 1), (R, 2), (L, 14), (R, 3), (L, 4), (R, 3), |
|
214 (R, 5), (W0, 4), (R, 6), (W0, 5), (L, 7), (L, 8), |
|
215 (L, 11), (W0, 7), (W1, 8), (R, 9), (L, 10), (R, 9), |
|
216 (R, 5), (W0, 10), (L, 12), (L, 11), (R, 13), (L, 11), |
|
217 (R, 17), (W0, 13), (L, 15), (L, 14), (R, 16), (L, 14), |
|
218 (R, 0), (W0, 16)]" |
|
219 |
|
220 text {* |
|
221 @{text "sete tp e"} attaches the termination edges (edges leading to state @{text "0"}) |
|
222 of TM @{text "tp"} to the intruction labelled by @{text "e"}. |
|
223 *} |
|
224 |
|
225 fun sete :: "tprog \<Rightarrow> nat \<Rightarrow> tprog" |
|
226 where |
|
227 "sete tp e = map (\<lambda> (action, state). (action, if state = 0 then e else state)) tp" |
|
228 |
|
229 text {* |
|
230 @{text "tdec ss n label"} returns the TM which simulates the execution of |
|
231 Abacus instruction @{text "Dec n label"}, assuming that TM is located at |
|
232 location @{text "ss"} in the final TM complied from the whole |
|
233 Abacus program. |
|
234 *} |
|
235 |
|
236 fun tdec :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> tprog" |
|
237 where |
|
238 "tdec ss n e = sete (tshift (findnth n @ tshift tdec_b (2 * n)) |
|
239 (ss - 1)) e" |
|
240 |
|
241 text {* |
|
242 @{text "tgoto f(label)"} returns the TM simulating the execution of Abacus instruction |
|
243 @{text "Goto label"}, where @{text "f(label)"} is the corresponding location of |
|
244 @{text "label"} in the final TM compiled from the overall Abacus program. |
|
245 *} |
|
246 |
|
247 fun tgoto :: "nat \<Rightarrow> tprog" |
|
248 where |
|
249 "tgoto n = [(Nop, n), (Nop, n)]" |
|
250 |
|
251 text {* |
|
252 The layout of the final TM compiled from an Abacus program is represented |
|
253 as a list of natural numbers, where the list element at index @{text "n"} represents the |
|
254 starting state of the TM simulating the execution of @{text "n"}-th instruction |
|
255 in the Abacus program. |
|
256 *} |
|
257 |
|
258 type_synonym layout = "nat list" |
|
259 |
|
260 text {* |
|
261 @{text "length_of i"} is the length of the |
|
262 TM simulating the Abacus instruction @{text "i"}. |
|
263 *} |
|
264 fun length_of :: "abc_inst \<Rightarrow> nat" |
|
265 where |
|
266 "length_of i = (case i of |
|
267 Inc n \<Rightarrow> 2 * n + 9 | |
|
268 Dec n e \<Rightarrow> 2 * n + 16 | |
|
269 Goto n \<Rightarrow> 1)" |
|
270 |
|
271 text {* |
|
272 @{text "layout_of ap"} returns the layout of Abacus program @{text "ap"}. |
|
273 *} |
|
274 fun layout_of :: "abc_prog \<Rightarrow> layout" |
|
275 where "layout_of ap = map length_of ap" |
|
276 |
|
277 |
|
278 text {* |
|
279 @{text "start_of layout n"} looks out the starting state of @{text "n"}-th |
|
280 TM in the finall TM. |
|
281 *} |
|
282 |
|
283 fun start_of :: "nat list \<Rightarrow> nat \<Rightarrow> nat" |
|
284 where |
|
285 "start_of ly 0 = Suc 0" | |
|
286 "start_of ly (Suc as) = |
|
287 (if as < length ly then start_of ly as + (ly ! as) |
|
288 else start_of ly as)" |
|
289 |
|
290 text {* |
|
291 @{text "ci lo ss i"} complies Abacus instruction @{text "i"} |
|
292 assuming the TM of @{text "i"} starts from state @{text "ss"} |
|
293 within the overal layout @{text "lo"}. |
|
294 *} |
|
295 |
|
296 fun ci :: "layout \<Rightarrow> nat \<Rightarrow> abc_inst \<Rightarrow> tprog" |
|
297 where |
|
298 "ci ly ss i = (case i of |
|
299 Inc n \<Rightarrow> tinc ss n | |
|
300 Dec n e \<Rightarrow> tdec ss n (start_of ly e) | |
|
301 Goto n \<Rightarrow> tgoto (start_of ly n))" |
|
302 |
|
303 text {* |
|
304 @{text "tpairs_of ap"} transfroms Abacus program @{text "ap"} pairing |
|
305 every instruction with its starting state. |
|
306 *} |
|
307 fun tpairs_of :: "abc_prog \<Rightarrow> (nat \<times> abc_inst) list" |
|
308 where "tpairs_of ap = (zip (map (start_of (layout_of ap)) |
|
309 [0..<(length ap)]) ap)" |
|
310 |
|
311 |
|
312 text {* |
|
313 @{text "tms_of ap"} returns the list of TMs, where every one of them simulates |
|
314 the corresponding Abacus intruction in @{text "ap"}. |
|
315 *} |
|
316 |
|
317 fun tms_of :: "abc_prog \<Rightarrow> tprog list" |
|
318 where "tms_of ap = map (\<lambda> (n, tm). ci (layout_of ap) n tm) |
|
319 (tpairs_of ap)" |
|
320 |
|
321 text {* |
|
322 @{text "tm_of ap"} returns the final TM machine compiled from Abacus program @{text "ap"}. |
|
323 *} |
|
324 fun tm_of :: "abc_prog \<Rightarrow> tprog" |
|
325 where "tm_of ap = concat (tms_of ap)" |
|
326 |
|
327 text {* |
|
328 The following two functions specify the well-formedness of complied TM. |
|
329 *} |
|
330 fun t_ncorrect :: "tprog \<Rightarrow> bool" |
|
331 where |
|
332 "t_ncorrect tp = (length tp mod 2 = 0)" |
|
333 |
|
334 fun abc2t_correct :: "abc_prog \<Rightarrow> bool" |
|
335 where |
|
336 "abc2t_correct ap = list_all (\<lambda> (n, tm). |
|
337 t_ncorrect (ci (layout_of ap) n tm)) (tpairs_of ap)" |
|
338 |
|
339 lemma findnth_length: "length (findnth n) div 2 = 2 * n" |
|
340 apply(induct n, simp, simp) |
|
341 done |
|
342 |
|
343 lemma ci_length : "length (ci ns n ai) div 2 = length_of ai" |
|
344 apply(auto simp: ci.simps tinc_b_def tdec_b_def findnth_length |
|
345 split: abc_inst.splits) |
|
346 done |
|
347 |
|
348 subsection {* |
|
349 Representation of Abacus memory by TM tape |
|
350 *} |
|
351 |
|
352 consts tape_of :: "'a \<Rightarrow> block list" ("<_>" 100) |
|
353 |
|
354 text {* |
|
355 @{text "tape_of_nat_list am"} returns the TM tape representing |
|
356 Abacus memory @{text "am"}. |
|
357 *} |
|
358 |
|
359 fun tape_of_nat_list :: "nat list \<Rightarrow> block list" |
|
360 where |
|
361 "tape_of_nat_list [] = []" | |
|
362 "tape_of_nat_list [n] = Oc\<^bsup>n+1\<^esup>" | |
|
363 "tape_of_nat_list (n#ns) = (Oc\<^bsup>n+1\<^esup>) @ [Bk] @ (tape_of_nat_list ns)" |
|
364 |
|
365 defs (overloaded) |
|
366 tape_of_nl_abv: "<am> \<equiv> tape_of_nat_list am" |
|
367 tape_of_nat_abv : "<(n::nat)> \<equiv> Oc\<^bsup>n+1\<^esup>" |
|
368 |
|
369 text {* |
|
370 @{text "crsp_l acf tcf"} meams the abacus configuration @{text "acf"} |
|
371 is corretly represented by the TM configuration @{text "tcf"}. |
|
372 *} |
|
373 |
|
374 fun crsp_l :: "layout \<Rightarrow> abc_conf_l \<Rightarrow> t_conf \<Rightarrow> block list \<Rightarrow> bool" |
|
375 where |
|
376 "crsp_l ly (as, lm) (ts, (l, r)) inres = |
|
377 (ts = start_of ly as \<and> (\<exists> rn. r = <lm> @ Bk\<^bsup>rn\<^esup>) |
|
378 \<and> l = Bk # Bk # inres)" |
|
379 |
|
380 declare crsp_l.simps[simp del] |
|
381 |
|
382 subsection {* |
|
383 A more general definition of TM execution. |
|
384 *} |
|
385 |
|
386 (* |
|
387 fun nnth_of :: "(taction \<times> nat) list \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> (taction \<times> nat)" |
|
388 where |
|
389 "nnth_of p s b = (if 2*s < length p |
|
390 then (p ! (2*s + b)) else (Nop, 0))" |
|
391 |
|
392 thm nth_of.simps |
|
393 |
|
394 fun nfetch :: "tprog \<Rightarrow> nat \<Rightarrow> block \<Rightarrow> taction \<times> nat" |
|
395 where |
|
396 "nfetch p 0 b = (Nop, 0)" | |
|
397 "nfetch p (Suc s) b = |
|
398 (case b of |
|
399 Bk \<Rightarrow> nnth_of p s 0 | |
|
400 Oc \<Rightarrow> nnth_of p s 1)" |
|
401 *) |
|
402 |
|
403 text {* |
|
404 @{text "t_step tcf (tp, ss)"} returns the result of one step exection of TM @{text "tp"} |
|
405 assuming @{text "tp"} starts from instial state @{text "ss"}. |
|
406 *} |
|
407 |
|
408 fun t_step :: "t_conf \<Rightarrow> (tprog \<times> nat) \<Rightarrow> t_conf" |
|
409 where |
|
410 "t_step c (p, off) = |
|
411 (let (state, leftn, rightn) = c in |
|
412 let (action, next_state) = fetch p (state-off) |
|
413 (case rightn of |
|
414 [] \<Rightarrow> Bk | |
|
415 Bk # xs \<Rightarrow> Bk | |
|
416 Oc # xs \<Rightarrow> Oc |
|
417 ) |
|
418 in |
|
419 (next_state, new_tape action (leftn, rightn)))" |
|
420 |
|
421 |
|
422 text {* |
|
423 @{text "t_steps tcf (tp, ss) n"} returns the result of @{text "n"}-step exection |
|
424 of TM @{text "tp"} assuming @{text "tp"} starts from instial state @{text "ss"}. |
|
425 *} |
|
426 |
|
427 fun t_steps :: "t_conf \<Rightarrow> (tprog \<times> nat) \<Rightarrow> nat \<Rightarrow> t_conf" |
|
428 where |
|
429 "t_steps c (p, off) 0 = c" | |
|
430 "t_steps c (p, off) (Suc n) = t_steps |
|
431 (t_step c (p, off)) (p, off) n" |
|
432 |
|
433 lemma stepn: "t_steps c (p, off) (Suc n) = |
|
434 t_step (t_steps c (p, off) n) (p, off)" |
|
435 apply(induct n arbitrary: c, simp add: t_steps.simps) |
|
436 apply(simp add: t_steps.simps) |
|
437 done |
|
438 |
|
439 text {* |
|
440 The type of invarints expressing correspondence between |
|
441 Abacus configuration and TM configuration. |
|
442 *} |
|
443 |
|
444 type_synonym inc_inv_t = "abc_conf_l \<Rightarrow> t_conf \<Rightarrow> block list \<Rightarrow> bool" |
|
445 |
|
446 declare tms_of.simps[simp del] tm_of.simps[simp del] |
|
447 layout_of.simps[simp del] abc_fetch.simps [simp del] |
|
448 t_step.simps[simp del] t_steps.simps[simp del] |
|
449 tpairs_of.simps[simp del] start_of.simps[simp del] |
|
450 fetch.simps [simp del] t_ncorrect.simps[simp del] |
|
451 new_tape.simps [simp del] ci.simps [simp del] length_of.simps[simp del] |
|
452 layout_of.simps[simp del] crsp_l.simps[simp del] |
|
453 abc2t_correct.simps[simp del] |
|
454 |
|
455 lemma tct_div2: "t_ncorrect tp \<Longrightarrow> (length tp) mod 2 = 0" |
|
456 apply(simp add: t_ncorrect.simps) |
|
457 done |
|
458 |
|
459 lemma t_shift_fetch: |
|
460 "\<lbrakk>t_ncorrect tp1; t_ncorrect tp; |
|
461 length tp1 div 2 < a \<and> a \<le> length tp1 div 2 + length tp div 2\<rbrakk> |
|
462 \<Longrightarrow> fetch tp (a - length tp1 div 2) b = |
|
463 fetch (tp1 @ tp @ tp2) a b" |
|
464 apply(subgoal_tac "\<exists> x. a = length tp1 div 2 + x", erule exE, simp) |
|
465 apply(case_tac x, simp) |
|
466 apply(subgoal_tac "length tp1 div 2 + Suc nat = |
|
467 Suc (length tp1 div 2 + nat)") |
|
468 apply(simp only: fetch.simps nth_of.simps, auto) |
|
469 apply(case_tac b, simp) |
|
470 apply(subgoal_tac "2 * (length tp1 div 2) = length tp1", simp) |
|
471 apply(subgoal_tac "2 * nat < length tp", simp add: nth_append, simp) |
|
472 apply(simp add: t_ncorrect.simps, auto) |
|
473 apply(subgoal_tac "2 * (length tp1 div 2) = length tp1", simp) |
|
474 apply(subgoal_tac "2 * nat < length tp", simp add: nth_append, auto) |
|
475 apply(simp add: t_ncorrect.simps, auto) |
|
476 apply(rule_tac x = "a - length tp1 div 2" in exI, simp) |
|
477 done |
|
478 |
|
479 lemma t_shift_in_step: |
|
480 "\<lbrakk>t_step (a, aa, ba) (tp, length tp1 div 2) = (s, l, r); |
|
481 t_ncorrect tp1; t_ncorrect tp; |
|
482 length tp1 div 2 < a \<and> a \<le> length tp1 div 2 + length tp div 2\<rbrakk> |
|
483 \<Longrightarrow> t_step (a, aa, ba) (tp1 @ tp @ tp2, 0) = (s, l, r)" |
|
484 apply(simp add: t_step.simps) |
|
485 apply(subgoal_tac "fetch tp (a - length tp1 div 2) (case ba of [] \<Rightarrow> |
|
486 Bk | x # xs \<Rightarrow> x) |
|
487 = fetch (tp1 @ tp @ tp2) a (case ba of [] \<Rightarrow> Bk | x # xs |
|
488 \<Rightarrow> x)") |
|
489 apply(case_tac "fetch tp (a - length tp1 div 2) (case ba of [] \<Rightarrow> Bk |
|
490 | x # xs \<Rightarrow> x)") |
|
491 apply(auto intro: t_shift_fetch) |
|
492 apply(case_tac ba, simp, simp) |
|
493 apply(case_tac aaa, simp, simp) |
|
494 done |
|
495 |
|
496 declare add_Suc_right[simp del] |
|
497 lemma t_step_add: "t_steps c (p, off) (m + n) = |
|
498 t_steps (t_steps c (p, off) m) (p, off) n" |
|
499 apply(induct m arbitrary: n, simp add: t_steps.simps, simp) |
|
500 apply(subgoal_tac "t_steps c (p, off) (Suc (m + n)) = |
|
501 t_steps c (p, off) (m + Suc n)", simp) |
|
502 apply(subgoal_tac "t_steps (t_steps c (p, off) m) (p, off) (Suc n) = |
|
503 t_steps (t_step (t_steps c (p, off) m) (p, off)) |
|
504 (p, off) n") |
|
505 apply(simp, simp add: stepn) |
|
506 apply(simp only: t_steps.simps) |
|
507 apply(simp only: add_Suc_right) |
|
508 done |
|
509 declare add_Suc_right[simp] |
|
510 |
|
511 lemma s_out_fetch: "\<lbrakk>t_ncorrect tp; |
|
512 \<not> (length tp1 div 2 < a \<and> a \<le> length tp1 div 2 + |
|
513 length tp div 2)\<rbrakk> |
|
514 \<Longrightarrow> fetch tp (a - length tp1 div 2) b = (Nop, 0)" |
|
515 apply(auto) |
|
516 apply(simp add: fetch.simps) |
|
517 apply(subgoal_tac "\<exists> x. a - length tp1 div 2 = length tp div 2 + x") |
|
518 apply(erule exE, simp) |
|
519 apply(case_tac x, simp) |
|
520 apply(auto simp add: fetch.simps) |
|
521 apply(subgoal_tac "2 * (length tp div 2) = length tp") |
|
522 apply(auto simp: t_ncorrect.simps split: block.splits) |
|
523 apply(rule_tac x = "a - length tp1 div 2 - length tp div 2" in exI |
|
524 , simp) |
|
525 done |
|
526 |
|
527 lemma conf_keep_step: |
|
528 "\<lbrakk>t_ncorrect tp; |
|
529 \<not> (length tp1 div 2 < a \<and> a \<le> length tp1 div 2 + |
|
530 length tp div 2)\<rbrakk> |
|
531 \<Longrightarrow> t_step (a, aa, ba) (tp, length tp1 div 2) = (0, aa, ba)" |
|
532 apply(simp add: t_step.simps) |
|
533 apply(subgoal_tac "fetch tp (a - length tp1 div 2) (case ba of [] \<Rightarrow> |
|
534 Bk | Bk # xs \<Rightarrow> Bk | Oc # xs \<Rightarrow> Oc) = (Nop, 0)") |
|
535 apply(simp add: new_tape.simps) |
|
536 apply(rule s_out_fetch, simp, simp) |
|
537 done |
|
538 |
|
539 lemma conf_keep: |
|
540 "\<lbrakk>t_ncorrect tp; |
|
541 \<not> (length tp1 div 2 < a \<and> |
|
542 a \<le> length tp1 div 2 + length tp div 2); n > 0\<rbrakk> |
|
543 \<Longrightarrow> t_steps (a, aa, ba) (tp, length tp1 div 2) n = (0, aa, ba)" |
|
544 apply(induct n, simp) |
|
545 apply(case_tac n, simp add: t_steps.simps) |
|
546 apply(rule_tac conf_keep_step, simp+) |
|
547 apply(subgoal_tac " t_steps (a, aa, ba) |
|
548 (tp, length tp1 div 2) (Suc (Suc nat)) |
|
549 = t_step (t_steps (a, aa, ba) |
|
550 (tp, length tp1 div 2) (Suc nat)) (tp, length tp1 div 2)") |
|
551 apply(simp) |
|
552 apply(rule_tac conf_keep_step, simp, simp) |
|
553 apply(rule stepn) |
|
554 done |
|
555 |
|
556 lemma state_bef_inside: |
|
557 "\<lbrakk>t_ncorrect tp1; t_ncorrect tp; |
|
558 t_steps (s0, l0, r0) (tp, length tp1 div 2) stp = (s, l, r); |
|
559 length tp1 div 2 < s0 \<and> |
|
560 s0 \<le> length tp1 div 2 + length tp div 2; |
|
561 length tp1 div 2 < s \<and> s \<le> length tp1 div 2 + length tp div 2; |
|
562 n < stp; t_steps (s0, l0, r0) (tp, length tp1 div 2) n = |
|
563 (a, aa, ba)\<rbrakk> |
|
564 \<Longrightarrow> length tp1 div 2 < a \<and> |
|
565 a \<le> length tp1 div 2 + length tp div 2" |
|
566 apply(subgoal_tac "\<exists> x. stp = n + x", erule exE) |
|
567 apply(simp only: t_step_add) |
|
568 apply(rule classical) |
|
569 apply(subgoal_tac "t_steps (a, aa, ba) |
|
570 (tp, length tp1 div 2) x = (0, aa, ba)") |
|
571 apply(simp) |
|
572 apply(rule conf_keep, simp, simp, simp) |
|
573 apply(rule_tac x = "stp - n" in exI, simp) |
|
574 done |
|
575 |
|
576 lemma turing_shift_inside: |
|
577 "\<lbrakk>t_steps (s0, l0, r0) (tp, length tp1 div 2) stp = (s, l, r); |
|
578 length tp1 div 2 < s0 \<and> |
|
579 s0 \<le> length tp1 div 2 + length tp div 2; |
|
580 t_ncorrect tp1; t_ncorrect tp; |
|
581 length tp1 div 2 < s \<and> |
|
582 s \<le> length tp1 div 2 + length tp div 2\<rbrakk> |
|
583 \<Longrightarrow> t_steps (s0, l0, r0) (tp1 @ tp @ tp2, 0) stp = (s, l, r)" |
|
584 apply(induct stp arbitrary: s l r) |
|
585 apply(simp add: t_steps.simps) |
|
586 apply(subgoal_tac " t_steps (s0, l0, r0) |
|
587 (tp, length tp1 div 2) (Suc stp) |
|
588 = t_step (t_steps (s0, l0, r0) |
|
589 (tp, length tp1 div 2) stp) (tp, length tp1 div 2)") |
|
590 apply(case_tac "t_steps (s0, l0, r0) (tp, length tp1 div 2) stp") |
|
591 apply(subgoal_tac "length tp1 div 2 < a \<and> |
|
592 a \<le> length tp1 div 2 + length tp div 2") |
|
593 apply(subgoal_tac "t_steps (s0, l0, r0) |
|
594 (tp1 @ tp @ tp2, 0) stp = (a, b, c)") |
|
595 apply(simp only: stepn, simp) |
|
596 apply(rule_tac t_shift_in_step, simp+) |
|
597 defer |
|
598 apply(rule stepn) |
|
599 apply(rule_tac n = stp and stp = "Suc stp" and a = a |
|
600 and aa = b and ba = c in state_bef_inside, simp+) |
|
601 done |
|
602 |
|
603 lemma take_Suc_last[elim]: "Suc as \<le> length xs \<Longrightarrow> |
|
604 take (Suc as) xs = take as xs @ [xs ! as]" |
|
605 apply(induct xs arbitrary: as, simp, simp) |
|
606 apply(case_tac as, simp, simp) |
|
607 done |
|
608 |
|
609 lemma concat_suc: "Suc as \<le> length xs \<Longrightarrow> |
|
610 concat (take (Suc as) xs) = concat (take as xs) @ xs! as" |
|
611 apply(subgoal_tac "take (Suc as) xs = take as xs @ [xs ! as]", simp) |
|
612 by auto |
|
613 |
|
614 lemma concat_take_suc_iff: "Suc n \<le> length tps \<Longrightarrow> |
|
615 concat (take n tps) @ (tps ! n) = concat (take (Suc n) tps)" |
|
616 apply(drule_tac concat_suc, simp) |
|
617 done |
|
618 |
|
619 lemma concat_drop_suc_iff: |
|
620 "Suc n < length tps \<Longrightarrow> concat (drop (Suc n) tps) = |
|
621 tps ! Suc n @ concat (drop (Suc (Suc n)) tps)" |
|
622 apply(induct tps arbitrary: n, simp, simp) |
|
623 apply(case_tac tps, simp, simp) |
|
624 apply(case_tac n, simp, simp) |
|
625 done |
|
626 |
|
627 declare append_assoc[simp del] |
|
628 |
|
629 lemma tm_append: "\<lbrakk>n < length tps; tp = tps ! n\<rbrakk> \<Longrightarrow> |
|
630 \<exists> tp1 tp2. concat tps = tp1 @ tp @ tp2 \<and> tp1 = |
|
631 concat (take n tps) \<and> tp2 = concat (drop (Suc n) tps)" |
|
632 apply(rule_tac x = "concat (take n tps)" in exI) |
|
633 apply(rule_tac x = "concat (drop (Suc n) tps)" in exI) |
|
634 apply(auto) |
|
635 apply(induct n, simp) |
|
636 apply(case_tac tps, simp, simp, simp) |
|
637 apply(subgoal_tac "concat (take n tps) @ (tps ! n) = |
|
638 concat (take (Suc n) tps)") |
|
639 apply(simp only: append_assoc[THEN sym], simp only: append_assoc) |
|
640 apply(subgoal_tac " concat (drop (Suc n) tps) = tps ! Suc n @ |
|
641 concat (drop (Suc (Suc n)) tps)", simp) |
|
642 apply(rule_tac concat_drop_suc_iff, simp) |
|
643 apply(rule_tac concat_take_suc_iff, simp) |
|
644 done |
|
645 |
|
646 declare append_assoc[simp] |
|
647 |
|
648 lemma map_of: "n < length xs \<Longrightarrow> (map f xs) ! n = f (xs ! n)" |
|
649 by(auto) |
|
650 |
|
651 lemma [simp]: "length (tms_of aprog) = length aprog" |
|
652 apply(auto simp: tms_of.simps tpairs_of.simps) |
|
653 done |
|
654 |
|
655 lemma ci_nth: "\<lbrakk>ly = layout_of aprog; as < length aprog; |
|
656 abc_fetch as aprog = Some ins\<rbrakk> |
|
657 \<Longrightarrow> ci ly (start_of ly as) ins = tms_of aprog ! as" |
|
658 apply(simp add: tms_of.simps tpairs_of.simps |
|
659 abc_fetch.simps map_of del: map_append) |
|
660 done |
|
661 |
|
662 lemma t_split:"\<lbrakk> |
|
663 ly = layout_of aprog; |
|
664 as < length aprog; abc_fetch as aprog = Some ins\<rbrakk> |
|
665 \<Longrightarrow> \<exists> tp1 tp2. concat (tms_of aprog) = |
|
666 tp1 @ (ci ly (start_of ly as) ins) @ tp2 |
|
667 \<and> tp1 = concat (take as (tms_of aprog)) \<and> |
|
668 tp2 = concat (drop (Suc as) (tms_of aprog))" |
|
669 apply(insert tm_append[of "as" "tms_of aprog" |
|
670 "ci ly (start_of ly as) ins"], simp) |
|
671 apply(subgoal_tac "ci ly (start_of ly as) ins = (tms_of aprog) ! as") |
|
672 apply(subgoal_tac "length (tms_of aprog) = length aprog", simp, simp) |
|
673 apply(rule_tac ci_nth, auto) |
|
674 done |
|
675 |
|
676 lemma math_sub: "\<lbrakk>x >= Suc 0; x - 1 = z\<rbrakk> \<Longrightarrow> x + y - Suc 0 = z + y" |
|
677 by auto |
|
678 |
|
679 lemma start_more_one: "as \<noteq> 0 \<Longrightarrow> start_of ly as >= Suc 0" |
|
680 apply(induct as, simp add: start_of.simps) |
|
681 apply(case_tac as, auto simp: start_of.simps) |
|
682 done |
|
683 |
|
684 lemma tm_ct: "\<lbrakk>abc2t_correct aprog; tp \<in> set (tms_of aprog)\<rbrakk> \<Longrightarrow> |
|
685 t_ncorrect tp" |
|
686 apply(simp add: abc2t_correct.simps tms_of.simps) |
|
687 apply(auto) |
|
688 apply(simp add:list_all_iff, auto) |
|
689 done |
|
690 |
|
691 lemma div_apart: "\<lbrakk>x mod (2::nat) = 0; y mod 2 = 0\<rbrakk> |
|
692 \<Longrightarrow> (x + y) div 2 = x div 2 + y div 2" |
|
693 apply(drule mod_eqD)+ |
|
694 apply(auto) |
|
695 done |
|
696 |
|
697 lemma div_apart_iff: "\<lbrakk>x mod (2::nat) = 0; y mod 2 = 0\<rbrakk> \<Longrightarrow> |
|
698 (x + y) mod 2 = 0" |
|
699 apply(auto) |
|
700 done |
|
701 |
|
702 lemma tms_ct: "\<lbrakk>abc2t_correct aprog; n < length aprog\<rbrakk> \<Longrightarrow> |
|
703 t_ncorrect (concat (take n (tms_of aprog)))" |
|
704 apply(induct n, simp add: t_ncorrect.simps, simp) |
|
705 apply(subgoal_tac "concat (take (Suc n) (tms_of aprog)) = |
|
706 concat (take n (tms_of aprog)) @ (tms_of aprog ! n)", simp) |
|
707 apply(simp add: t_ncorrect.simps) |
|
708 apply(rule_tac div_apart_iff, simp) |
|
709 apply(subgoal_tac "t_ncorrect (tms_of aprog ! n)", |
|
710 simp add: t_ncorrect.simps) |
|
711 apply(rule_tac tm_ct, simp) |
|
712 apply(rule_tac nth_mem, simp add: tms_of.simps tpairs_of.simps) |
|
713 apply(rule_tac concat_suc, simp add: tms_of.simps tpairs_of.simps) |
|
714 done |
|
715 |
|
716 lemma tcorrect_div2: "\<lbrakk>abc2t_correct aprog; Suc as < length aprog\<rbrakk> |
|
717 \<Longrightarrow> (length (concat (take as (tms_of aprog))) + length (tms_of aprog |
|
718 ! as)) div 2 = length (concat (take as (tms_of aprog))) div 2 + |
|
719 length (tms_of aprog ! as) div 2" |
|
720 apply(subgoal_tac "t_ncorrect (tms_of aprog ! as)") |
|
721 apply(subgoal_tac "t_ncorrect (concat (take as (tms_of aprog)))") |
|
722 apply(rule_tac div_apart) |
|
723 apply(rule tct_div2, simp)+ |
|
724 apply(erule_tac tms_ct, simp) |
|
725 apply(rule_tac tm_ct, simp) |
|
726 apply(rule_tac nth_mem) |
|
727 apply(simp add: tms_of.simps tpairs_of.simps) |
|
728 done |
|
729 |
|
730 lemma [simp]: "length (layout_of aprog) = length aprog" |
|
731 apply(auto simp: layout_of.simps) |
|
732 done |
|
733 |
|
734 lemma start_of_ind: "\<lbrakk>as < length aprog; ly = layout_of aprog\<rbrakk> \<Longrightarrow> |
|
735 start_of ly (Suc as) = start_of ly as + |
|
736 length ((tms_of aprog) ! as) div 2" |
|
737 apply(simp only: start_of.simps, simp) |
|
738 apply(auto simp: start_of.simps tms_of.simps layout_of.simps |
|
739 tpairs_of.simps) |
|
740 apply(simp add: ci_length) |
|
741 done |
|
742 |
|
743 lemma concat_take_suc: "Suc n \<le> length xs \<Longrightarrow> |
|
744 concat (take (Suc n) xs) = concat (take n xs) @ (xs ! n)" |
|
745 apply(subgoal_tac "take (Suc n) xs = |
|
746 take n xs @ [xs ! n]") |
|
747 apply(auto) |
|
748 done |
|
749 |
|
750 lemma ci_length_not0: "Suc 0 <= length (ci ly as i) div 2" |
|
751 apply(subgoal_tac "length (ci ly as i) div 2 = length_of i") |
|
752 apply(simp add: length_of.simps split: abc_inst.splits) |
|
753 apply(rule ci_length) |
|
754 done |
|
755 |
|
756 lemma findnth_length2: "length (findnth n) = 4 * n" |
|
757 apply(induct n, simp) |
|
758 apply(simp) |
|
759 done |
|
760 |
|
761 lemma ci_length2: "length (ci ly as i) = 2 * (length_of i)" |
|
762 apply(simp add: ci.simps length_of.simps tinc_b_def tdec_b_def |
|
763 split: abc_inst.splits, auto) |
|
764 apply(simp add: findnth_length2)+ |
|
765 done |
|
766 |
|
767 lemma tm_mod2: "as < length aprog \<Longrightarrow> |
|
768 length (tms_of aprog ! as) mod 2 = 0" |
|
769 apply(simp add: tms_of.simps) |
|
770 apply(subgoal_tac "map (\<lambda>(x, y). ci (layout_of aprog) x y) |
|
771 (tpairs_of aprog) ! as |
|
772 = (\<lambda>(x, y). ci (layout_of aprog) x y) |
|
773 ((tpairs_of aprog) ! as)", simp) |
|
774 apply(case_tac "(tpairs_of aprog ! as)", simp) |
|
775 apply(subgoal_tac "length (ci (layout_of aprog) a b) = |
|
776 2 * (length_of b)", simp) |
|
777 apply(rule ci_length2) |
|
778 apply(rule map_of, simp add: tms_of.simps tpairs_of.simps) |
|
779 done |
|
780 |
|
781 lemma tms_mod2: "as \<le> length aprog \<Longrightarrow> |
|
782 length (concat (take as (tms_of aprog))) mod 2 = 0" |
|
783 apply(induct as, simp, simp) |
|
784 apply(subgoal_tac "concat (take (Suc as) (tms_of aprog)) |
|
785 = concat (take as (tms_of aprog)) @ |
|
786 (tms_of aprog ! as)", auto) |
|
787 apply(rule div_apart_iff, simp, rule tm_mod2, simp) |
|
788 apply(rule concat_take_suc, simp add: tms_of.simps tpairs_of.simps) |
|
789 done |
|
790 |
|
791 lemma [simp]: "\<lbrakk>as < length aprog; (abc_fetch as aprog) = Some ins\<rbrakk> |
|
792 \<Longrightarrow> ci (layout_of aprog) |
|
793 (start_of (layout_of aprog) as) (ins) \<in> set (tms_of aprog)" |
|
794 apply(insert ci_nth[of "layout_of aprog" aprog as], simp) |
|
795 done |
|
796 |
|
797 lemma startof_not0: "start_of ly as > 0" |
|
798 apply(induct as, simp add: start_of.simps) |
|
799 apply(case_tac as, auto simp: start_of.simps) |
|
800 done |
|
801 |
|
802 declare abc_step_l.simps[simp del] |
|
803 lemma pre_lheq: "\<lbrakk>tp = concat (take as (tms_of aprog)); |
|
804 abc2t_correct aprog; as \<le> length aprog\<rbrakk> \<Longrightarrow> |
|
805 start_of (layout_of aprog) as - Suc 0 = length tp div 2" |
|
806 apply(induct as arbitrary: tp, simp add: start_of.simps, simp) |
|
807 proof - |
|
808 fix as tp |
|
809 assume h1: "\<And>tp. tp = concat (take as (tms_of aprog)) \<Longrightarrow> |
|
810 start_of (layout_of aprog) as - Suc 0 = |
|
811 length (concat (take as (tms_of aprog))) div 2" |
|
812 and h2: " abc2t_correct aprog" "Suc as \<le> length aprog" |
|
813 from h2 show "start_of (layout_of aprog) (Suc as) - Suc 0 = |
|
814 length (concat (take (Suc as) (tms_of aprog))) div 2" |
|
815 apply(insert h1[of "concat (take as (tms_of aprog))"], simp) |
|
816 apply(insert start_of_ind[of as aprog "layout_of aprog"], simp) |
|
817 apply(subgoal_tac "(take (Suc as) (tms_of aprog)) = |
|
818 take as (tms_of aprog) @ [(tms_of aprog) ! as]", simp) |
|
819 apply(subgoal_tac "(length (concat (take as (tms_of aprog))) + |
|
820 length (tms_of aprog ! as)) div 2 |
|
821 = length (concat (take as (tms_of aprog))) div 2 + |
|
822 length (tms_of aprog ! as) div 2", simp) |
|
823 apply(subgoal_tac "start_of (layout_of aprog) as = |
|
824 length (concat (take as (tms_of aprog))) div 2 + Suc 0", simp) |
|
825 apply(subgoal_tac "start_of (layout_of aprog) as > 0", simp, |
|
826 rule_tac startof_not0) |
|
827 apply(insert tm_mod2[of as aprog], simp) |
|
828 apply(insert tms_mod2[of as aprog], simp, arith) |
|
829 apply(rule take_Suc_last, simp) |
|
830 done |
|
831 qed |
|
832 |
|
833 lemma crsp2stateq: |
|
834 "\<lbrakk>as < length aprog; abc2t_correct aprog; |
|
835 crsp_l (layout_of aprog) (as, am) (a, aa, ba) inres\<rbrakk> \<Longrightarrow> |
|
836 a = length (concat (take as (tms_of aprog))) div 2 + 1" |
|
837 apply(simp add: crsp_l.simps) |
|
838 apply(insert pre_lheq[of "(concat (take as (tms_of aprog)))" as aprog] |
|
839 , simp) |
|
840 apply(subgoal_tac "start_of (layout_of aprog) as > 0", |
|
841 auto intro: startof_not0) |
|
842 done |
|
843 |
|
844 lemma turing_shift_outside: |
|
845 "\<lbrakk>t_steps (s0, l0, r0) (tp, length tp1 div 2) stp = (s, l, r); |
|
846 s \<noteq> 0; stp > 0; |
|
847 length tp1 div 2 < s0 \<and> |
|
848 s0 \<le> length tp1 div 2 + length tp div 2; |
|
849 t_ncorrect tp1; t_ncorrect tp; |
|
850 \<not> (length tp1 div 2 < s \<and> |
|
851 s \<le> length tp1 div 2 + length tp div 2)\<rbrakk> |
|
852 \<Longrightarrow> \<exists>stp' > 0. t_steps (s0, l0, r0) (tp1 @ tp @ tp2, 0) stp' |
|
853 = (s, l, r)" |
|
854 apply(rule_tac x = stp in exI) |
|
855 apply(case_tac stp, simp add: t_steps.simps) |
|
856 apply(simp only: stepn) |
|
857 apply(case_tac "t_steps (s0, l0, r0) (tp, length tp1 div 2) nat") |
|
858 apply(subgoal_tac "length tp1 div 2 < a \<and> |
|
859 a \<le> length tp1 div 2 + length tp div 2") |
|
860 apply(subgoal_tac "t_steps (s0, l0, r0) (tp1 @ tp @ tp2, 0) nat |
|
861 = (a, b, c)", simp) |
|
862 apply(rule_tac t_shift_in_step, simp+) |
|
863 apply(rule_tac turing_shift_inside, simp+) |
|
864 apply(rule classical) |
|
865 apply(subgoal_tac "t_step (a,b,c) |
|
866 (tp, length tp1 div 2) = (0, b, c)", simp) |
|
867 apply(rule_tac conf_keep_step, simp+) |
|
868 done |
|
869 |
|
870 lemma turing_shift: |
|
871 "\<lbrakk>t_steps (s0, (l0, r0)) (tp, (length tp1 div 2)) stp |
|
872 = (s, (l, r)); s \<noteq> 0; stp > 0; |
|
873 (length tp1 div 2 < s0 \<and> s0 <= length tp1 div 2 + length tp div 2); |
|
874 t_ncorrect tp1; t_ncorrect tp\<rbrakk> \<Longrightarrow> |
|
875 \<exists> stp' > 0. t_steps (s0, (l0, r0)) (tp1 @ tp @ tp2, 0) stp' = |
|
876 (s, (l, r))" |
|
877 apply(case_tac "s > length tp1 div 2 \<and> |
|
878 s <= length tp1 div 2 + length tp div 2") |
|
879 apply(subgoal_tac " t_steps (s0, l0, r0) (tp1 @ tp @ tp2, 0) stp = |
|
880 (s, l, r)") |
|
881 apply(rule_tac x = stp in exI, simp) |
|
882 apply(rule_tac turing_shift_inside, simp+) |
|
883 apply(rule_tac turing_shift_outside, simp+) |
|
884 done |
|
885 |
|
886 lemma inc_startof_not0: "start_of ly as \<ge> Suc 0" |
|
887 apply(induct as, simp add: start_of.simps) |
|
888 apply(simp add: start_of.simps) |
|
889 done |
|
890 |
|
891 lemma s_crsp: |
|
892 "\<lbrakk>as < length aprog; abc_fetch as aprog = Some ins; |
|
893 abc2t_correct aprog; |
|
894 crsp_l (layout_of aprog) (as, am) (a, aa, ba) inres\<rbrakk> \<Longrightarrow> |
|
895 length (concat (take as (tms_of aprog))) div 2 < a |
|
896 \<and> a \<le> length (concat (take as (tms_of aprog))) div 2 + |
|
897 length (ci (layout_of aprog) (start_of (layout_of aprog) as) |
|
898 ins) div 2" |
|
899 apply(subgoal_tac "a = length (concat (take as (tms_of aprog))) div |
|
900 2 + 1", simp) |
|
901 apply(rule_tac ci_length_not0) |
|
902 apply(rule crsp2stateq, simp+) |
|
903 done |
|
904 |
|
905 lemma tms_out_ex: |
|
906 "\<lbrakk>ly = layout_of aprog; tprog = tm_of aprog; |
|
907 abc2t_correct aprog; |
|
908 crsp_l ly (as, am) tc inres; as < length aprog; |
|
909 abc_fetch as aprog = Some ins; |
|
910 t_steps tc (ci ly (start_of ly as) ins, |
|
911 (start_of ly as) - 1) n = (s, l, r); |
|
912 n > 0; |
|
913 abc_step_l (as, am) (abc_fetch as aprog) = (as', am'); |
|
914 s = start_of ly as' |
|
915 \<rbrakk> |
|
916 \<Longrightarrow> \<exists> stp > 0. (t_steps tc (tprog, 0) stp = (s, (l, r)))" |
|
917 apply(simp only: tm_of.simps) |
|
918 apply(subgoal_tac "\<exists> tp1 tp2. concat (tms_of aprog) = |
|
919 tp1 @ (ci ly (start_of ly as) ins) @ tp2 |
|
920 \<and> tp1 = concat (take as (tms_of aprog)) \<and> |
|
921 tp2 = concat (drop (Suc as) (tms_of aprog))") |
|
922 apply(erule exE, erule exE, erule conjE, erule conjE, |
|
923 case_tac tc, simp) |
|
924 apply(rule turing_shift) |
|
925 apply(subgoal_tac "start_of (layout_of aprog) as - Suc 0 |
|
926 = length tp1 div 2", simp) |
|
927 apply(rule_tac pre_lheq, simp, simp, simp) |
|
928 apply(simp add: startof_not0, simp) |
|
929 apply(rule_tac s_crsp, simp, simp, simp, simp) |
|
930 apply(rule tms_ct, simp, simp) |
|
931 apply(rule tm_ct, simp) |
|
932 apply(subgoal_tac "ci (layout_of aprog) |
|
933 (start_of (layout_of aprog) as) ins |
|
934 = (tms_of aprog ! as)", simp) |
|
935 apply(simp add: tms_of.simps tpairs_of.simps) |
|
936 apply(simp add: tms_of.simps tpairs_of.simps abc_fetch.simps) |
|
937 apply(erule_tac t_split, auto simp: tm_of.simps) |
|
938 done |
|
939 |
|
940 (* |
|
941 subsection {* The compilation of @{text "Inc n"} *} |
|
942 *) |
|
943 |
|
944 text {* |
|
945 The lemmas in this section lead to the correctness of |
|
946 the compilation of @{text "Inc n"} instruction. |
|
947 *} |
|
948 |
|
949 fun at_begin_fst_bwtn :: "inc_inv_t" |
|
950 where |
|
951 "at_begin_fst_bwtn (as, lm) (s, l, r) ires = |
|
952 (\<exists> lm1 tn rn. lm1 = (lm @ (0\<^bsup>tn\<^esup>)) \<and> length lm1 = s \<and> |
|
953 (if lm1 = [] then l = Bk # Bk # ires |
|
954 else l = [Bk]@<rev lm1>@Bk#Bk#ires) \<and> r = (Bk\<^bsup>rn\<^esup>))" |
|
955 |
|
956 |
|
957 fun at_begin_fst_awtn :: "inc_inv_t" |
|
958 where |
|
959 "at_begin_fst_awtn (as, lm) (s, l, r) ires = |
|
960 (\<exists> lm1 tn rn. lm1 = (lm @ (0\<^bsup>tn\<^esup>)) \<and> length lm1 = s \<and> |
|
961 (if lm1 = [] then l = Bk # Bk # ires |
|
962 else l = [Bk]@<rev lm1>@Bk#Bk#ires) \<and> r = [Oc]@Bk\<^bsup>rn\<^esup> |
|
963 )" |
|
964 |
|
965 fun at_begin_norm :: "inc_inv_t" |
|
966 where |
|
967 "at_begin_norm (as, lm) (s, l, r) ires= |
|
968 (\<exists> lm1 lm2 rn. lm = lm1 @ lm2 \<and> length lm1 = s \<and> |
|
969 (if lm1 = [] then l = Bk # Bk # ires |
|
970 else l = Bk # <rev lm1> @ Bk# Bk # ires ) \<and> r = <lm2> @ (Bk\<^bsup>rn\<^esup>))" |
|
971 |
|
972 fun in_middle :: "inc_inv_t" |
|
973 where |
|
974 "in_middle (as, lm) (s, l, r) ires = |
|
975 (\<exists> lm1 lm2 tn m ml mr rn. lm @ 0\<^bsup>tn\<^esup> = lm1 @ [m] @ lm2 |
|
976 \<and> length lm1 = s \<and> m + 1 = ml + mr \<and> |
|
977 ml \<noteq> 0 \<and> tn = s + 1 - length lm \<and> |
|
978 (if lm1 = [] then l = Oc\<^bsup>ml\<^esup> @ Bk # Bk # ires |
|
979 else l = (Oc\<^bsup>ml\<^esup>)@[Bk]@<rev lm1>@ |
|
980 Bk # Bk # ires) \<and> (r = (Oc\<^bsup>mr\<^esup>) @ [Bk] @ <lm2>@ (Bk\<^bsup>rn\<^esup>) \<or> |
|
981 (lm2 = [] \<and> r = (Oc\<^bsup>mr\<^esup>))) |
|
982 )" |
|
983 |
|
984 fun inv_locate_a :: "inc_inv_t" |
|
985 where "inv_locate_a (as, lm) (s, l, r) ires = |
|
986 (at_begin_norm (as, lm) (s, l, r) ires \<or> |
|
987 at_begin_fst_bwtn (as, lm) (s, l, r) ires \<or> |
|
988 at_begin_fst_awtn (as, lm) (s, l, r) ires |
|
989 )" |
|
990 |
|
991 fun inv_locate_b :: "inc_inv_t" |
|
992 where "inv_locate_b (as, lm) (s, l, r) ires = |
|
993 (in_middle (as, lm) (s, l, r)) ires " |
|
994 |
|
995 fun inv_after_write :: "inc_inv_t" |
|
996 where "inv_after_write (as, lm) (s, l, r) ires = |
|
997 (\<exists> rn m lm1 lm2. lm = lm1 @ m # lm2 \<and> |
|
998 (if lm1 = [] then l = Oc\<^bsup>m\<^esup> @ Bk # Bk # ires |
|
999 else Oc # l = Oc\<^bsup>Suc m \<^esup>@ Bk # <rev lm1> @ |
|
1000 Bk # Bk # ires) \<and> r = [Oc] @ <lm2> @ (Bk\<^bsup>rn\<^esup>))" |
|
1001 |
|
1002 fun inv_after_move :: "inc_inv_t" |
|
1003 where "inv_after_move (as, lm) (s, l, r) ires = |
|
1004 (\<exists> rn m lm1 lm2. lm = lm1 @ m # lm2 \<and> |
|
1005 (if lm1 = [] then l = Oc\<^bsup>Suc m\<^esup> @ Bk # Bk # ires |
|
1006 else l = Oc\<^bsup>Suc m\<^esup>@ Bk # <rev lm1> @ Bk # Bk # ires) \<and> |
|
1007 r = <lm2> @ (Bk\<^bsup>rn\<^esup>))" |
|
1008 |
|
1009 fun inv_after_clear :: "inc_inv_t" |
|
1010 where "inv_after_clear (as, lm) (s, l, r) ires = |
|
1011 (\<exists> rn m lm1 lm2 r'. lm = lm1 @ m # lm2 \<and> |
|
1012 (if lm1 = [] then l = Oc\<^bsup>Suc m\<^esup> @ Bk # Bk # ires |
|
1013 else l = Oc\<^bsup>Suc m\<^esup>@ Bk # <rev lm1> @ Bk # Bk # ires) \<and> |
|
1014 r = Bk # r' \<and> Oc # r' = <lm2> @ (Bk\<^bsup>rn\<^esup>))" |
|
1015 |
|
1016 fun inv_on_right_moving :: "inc_inv_t" |
|
1017 where "inv_on_right_moving (as, lm) (s, l, r) ires = |
|
1018 (\<exists> lm1 lm2 m ml mr rn. lm = lm1 @ [m] @ lm2 \<and> |
|
1019 ml + mr = m \<and> |
|
1020 (if lm1 = [] then l = Oc\<^bsup>ml\<^esup> @ Bk # Bk # ires |
|
1021 else l = (Oc\<^bsup>ml\<^esup>) @ [Bk] @ <rev lm1> @ Bk # Bk # ires) \<and> |
|
1022 ((r = (Oc\<^bsup>mr\<^esup>) @ [Bk] @ <lm2> @ (Bk\<^bsup>rn\<^esup>)) \<or> |
|
1023 (r = (Oc\<^bsup>mr\<^esup>) \<and> lm2 = [])))" |
|
1024 |
|
1025 fun inv_on_left_moving_norm :: "inc_inv_t" |
|
1026 where "inv_on_left_moving_norm (as, lm) (s, l, r) ires = |
|
1027 (\<exists> lm1 lm2 m ml mr rn. lm = lm1 @ [m] @ lm2 \<and> |
|
1028 ml + mr = Suc m \<and> mr > 0 \<and> (if lm1 = [] then l = Oc\<^bsup>ml\<^esup> @ Bk # Bk # ires |
|
1029 else l = (Oc\<^bsup>ml\<^esup>) @ Bk # <rev lm1> @ Bk # Bk # ires) |
|
1030 \<and> (r = (Oc\<^bsup>mr\<^esup>) @ Bk # <lm2> @ (Bk\<^bsup>rn\<^esup>) \<or> |
|
1031 (lm2 = [] \<and> r = Oc\<^bsup>mr\<^esup>)))" |
|
1032 |
|
1033 fun inv_on_left_moving_in_middle_B:: "inc_inv_t" |
|
1034 where "inv_on_left_moving_in_middle_B (as, lm) (s, l, r) ires = |
|
1035 (\<exists> lm1 lm2 rn. lm = lm1 @ lm2 \<and> |
|
1036 (if lm1 = [] then l = Bk # ires |
|
1037 else l = <rev lm1> @ Bk # Bk # ires) \<and> |
|
1038 r = Bk # <lm2> @ (Bk\<^bsup>rn\<^esup>))" |
|
1039 |
|
1040 fun inv_on_left_moving :: "inc_inv_t" |
|
1041 where "inv_on_left_moving (as, lm) (s, l, r) ires = |
|
1042 (inv_on_left_moving_norm (as, lm) (s, l, r) ires \<or> |
|
1043 inv_on_left_moving_in_middle_B (as, lm) (s, l, r) ires)" |
|
1044 |
|
1045 |
|
1046 fun inv_check_left_moving_on_leftmost :: "inc_inv_t" |
|
1047 where "inv_check_left_moving_on_leftmost (as, lm) (s, l, r) ires = |
|
1048 (\<exists> rn. l = ires \<and> r = [Bk, Bk] @ <lm> @ (Bk\<^bsup>rn\<^esup>))" |
|
1049 |
|
1050 fun inv_check_left_moving_in_middle :: "inc_inv_t" |
|
1051 where "inv_check_left_moving_in_middle (as, lm) (s, l, r) ires = |
|
1052 |
|
1053 (\<exists> lm1 lm2 r' rn. lm = lm1 @ lm2 \<and> |
|
1054 (Oc # l = <rev lm1> @ Bk # Bk # ires) \<and> r = Oc # Bk # r' \<and> |
|
1055 r' = <lm2> @ (Bk\<^bsup>rn\<^esup>))" |
|
1056 |
|
1057 fun inv_check_left_moving :: "inc_inv_t" |
|
1058 where "inv_check_left_moving (as, lm) (s, l, r) ires = |
|
1059 (inv_check_left_moving_on_leftmost (as, lm) (s, l, r) ires \<or> |
|
1060 inv_check_left_moving_in_middle (as, lm) (s, l, r) ires)" |
|
1061 |
|
1062 fun inv_after_left_moving :: "inc_inv_t" |
|
1063 where "inv_after_left_moving (as, lm) (s, l, r) ires= |
|
1064 (\<exists> rn. l = Bk # ires \<and> r = Bk # <lm> @ (Bk\<^bsup>rn\<^esup>))" |
|
1065 |
|
1066 fun inv_stop :: "inc_inv_t" |
|
1067 where "inv_stop (as, lm) (s, l, r) ires= |
|
1068 (\<exists> rn. l = Bk # Bk # ires \<and> r = <lm> @ (Bk\<^bsup>rn\<^esup>))" |
|
1069 |
|
1070 |
|
1071 fun inc_inv :: "layout \<Rightarrow> nat \<Rightarrow> inc_inv_t" |
|
1072 where |
|
1073 "inc_inv ly n (as, lm) (s, l, r) ires = |
|
1074 (let ss = start_of ly as in |
|
1075 let lm' = abc_lm_s lm n ((abc_lm_v lm n)+1) in |
|
1076 if s = 0 then False |
|
1077 else if s < ss then False |
|
1078 else if s < ss + 2 * n then |
|
1079 if (s - ss) mod 2 = 0 then |
|
1080 inv_locate_a (as, lm) ((s - ss) div 2, l, r) ires |
|
1081 else inv_locate_b (as, lm) ((s - ss) div 2, l, r) ires |
|
1082 else if s = ss + 2 * n then |
|
1083 inv_locate_a (as, lm) (n, l, r) ires |
|
1084 else if s = ss + 2 * n + 1 then |
|
1085 inv_locate_b (as, lm) (n, l, r) ires |
|
1086 else if s = ss + 2 * n + 2 then |
|
1087 inv_after_write (as, lm') (s - ss, l, r) ires |
|
1088 else if s = ss + 2 * n + 3 then |
|
1089 inv_after_move (as, lm') (s - ss, l, r) ires |
|
1090 else if s = ss + 2 * n + 4 then |
|
1091 inv_after_clear (as, lm') (s - ss, l, r) ires |
|
1092 else if s = ss + 2 * n + 5 then |
|
1093 inv_on_right_moving (as, lm') (s - ss, l, r) ires |
|
1094 else if s = ss + 2 * n + 6 then |
|
1095 inv_on_left_moving (as, lm') (s - ss, l, r) ires |
|
1096 else if s = ss + 2 * n + 7 then |
|
1097 inv_check_left_moving (as, lm') (s - ss, l, r) ires |
|
1098 else if s = ss + 2 * n + 8 then |
|
1099 inv_after_left_moving (as, lm') (s - ss, l, r) ires |
|
1100 else if s = ss + 2 * n + 9 then |
|
1101 inv_stop (as, lm') (s - ss, l, r) ires |
|
1102 else False) " |
|
1103 |
|
1104 lemma fetch_intro: |
|
1105 "\<lbrakk>\<And>xs.\<lbrakk>ba = Oc # xs\<rbrakk> \<Longrightarrow> P (fetch prog i Oc); |
|
1106 \<And>xs.\<lbrakk>ba = Bk # xs\<rbrakk> \<Longrightarrow> P (fetch prog i Bk); |
|
1107 ba = [] \<Longrightarrow> P (fetch prog i Bk) |
|
1108 \<rbrakk> \<Longrightarrow> P (fetch prog i |
|
1109 (case ba of [] \<Rightarrow> Bk | Bk # xs \<Rightarrow> Bk | Oc # xs \<Rightarrow> Oc))" |
|
1110 by (auto split:list.splits block.splits) |
|
1111 |
|
1112 lemma length_findnth[simp]: "length (findnth n) = 4 * n" |
|
1113 apply(induct n, simp) |
|
1114 apply(simp) |
|
1115 done |
|
1116 |
|
1117 declare tshift.simps[simp del] |
|
1118 declare findnth.simps[simp del] |
|
1119 |
|
1120 lemma findnth_nth: |
|
1121 "\<lbrakk>n > q; x < 4\<rbrakk> \<Longrightarrow> |
|
1122 (findnth n) ! (4 * q + x) = (findnth (Suc q) ! (4 * q + x))" |
|
1123 apply(induct n, simp) |
|
1124 apply(case_tac "q < n", simp add: findnth.simps, auto) |
|
1125 apply(simp add: nth_append) |
|
1126 apply(subgoal_tac "q = n", simp) |
|
1127 apply(arith) |
|
1128 done |
|
1129 |
|
1130 lemma Suc_pre[simp]: "\<not> a < start_of ly as \<Longrightarrow> |
|
1131 (Suc a - start_of ly as) = Suc (a - start_of ly as)" |
|
1132 apply(arith) |
|
1133 done |
|
1134 |
|
1135 lemma fetch_locate_a_o: " |
|
1136 \<And>a q xs. |
|
1137 \<lbrakk>\<not> a < start_of (layout_of aprog) as; |
|
1138 a < start_of (layout_of aprog) as + 2 * n; |
|
1139 a - start_of (layout_of aprog) as = 2 * q; |
|
1140 start_of (layout_of aprog) as > 0\<rbrakk> |
|
1141 \<Longrightarrow> (fetch (ci (layout_of aprog) (start_of (layout_of aprog) as) |
|
1142 (Inc n)) (Suc (2 * q)) Oc) = (R, a+1)" |
|
1143 apply(auto simp: ci.simps findnth.simps fetch.simps |
|
1144 nth_of.simps tshift.simps nth_append Suc_pre) |
|
1145 apply(subgoal_tac "(findnth n ! Suc (4 * q)) = |
|
1146 findnth (Suc q) ! (4 * q + 1)") |
|
1147 apply(simp add: findnth.simps nth_append) |
|
1148 apply(subgoal_tac " findnth n !(4 * q + 1) = |
|
1149 findnth (Suc q) ! (4 * q + 1)", simp) |
|
1150 apply(rule_tac findnth_nth, auto) |
|
1151 done |
|
1152 |
|
1153 lemma fetch_locate_a_b: " |
|
1154 \<And>a q xs. |
|
1155 \<lbrakk>abc_fetch as aprog = Some (Inc n); |
|
1156 \<not> a < start_of (layout_of aprog) as; |
|
1157 a < start_of (layout_of aprog) as + 2 * n; |
|
1158 a - start_of (layout_of aprog) as = 2 * q; |
|
1159 start_of (layout_of aprog) as > 0\<rbrakk> |
|
1160 \<Longrightarrow> (fetch (ci (layout_of aprog) |
|
1161 (start_of (layout_of aprog) as) (Inc n)) (Suc (2 * q)) Bk) |
|
1162 = (W1, a)" |
|
1163 apply(auto simp: ci.simps findnth.simps fetch.simps |
|
1164 tshift.simps nth_append) |
|
1165 apply(subgoal_tac "(findnth n ! (4 * q)) = |
|
1166 findnth (Suc q) ! (4 * q )") |
|
1167 apply(simp add: findnth.simps nth_append) |
|
1168 apply(subgoal_tac " findnth n !(4 * q + 0) = |
|
1169 findnth (Suc q) ! (4 * q + 0)", simp) |
|
1170 apply(rule_tac findnth_nth, auto) |
|
1171 done |
|
1172 |
|
1173 lemma [intro]: "x mod 2 = Suc 0 \<Longrightarrow> \<exists> q. x = Suc (2 * q)" |
|
1174 apply(drule mod_eqD, auto) |
|
1175 done |
|
1176 |
|
1177 lemma add3_Suc: "x + 3 = Suc (Suc (Suc x))" |
|
1178 apply(arith) |
|
1179 done |
|
1180 |
|
1181 declare start_of.simps[simp] |
|
1182 (* |
|
1183 lemma layout_not0: "start_of ly as > 0" |
|
1184 by(induct as, auto) |
|
1185 *) |
|
1186 lemma [simp]: |
|
1187 "\<lbrakk>\<not> a < start_of (layout_of aprog) as; |
|
1188 a - start_of (layout_of aprog) as = Suc (2 * q); |
|
1189 abc_fetch as aprog = Some (Inc n); |
|
1190 start_of (layout_of aprog) as > 0\<rbrakk> |
|
1191 \<Longrightarrow> Suc (Suc (2 * q + start_of (layout_of aprog) as - Suc 0)) = a" |
|
1192 apply(subgoal_tac |
|
1193 "Suc (Suc (2 * q + start_of (layout_of aprog) as - Suc 0)) |
|
1194 = 2 + 2 * q + start_of (layout_of aprog) as - Suc 0", |
|
1195 simp, simp add: inc_startof_not0) |
|
1196 done |
|
1197 |
|
1198 lemma fetch_locate_b_o: " |
|
1199 \<And>a xs. |
|
1200 \<lbrakk>0 < a; \<not> a < start_of (layout_of aprog) as; |
|
1201 a < start_of (layout_of aprog) as + 2 * n; |
|
1202 (a - start_of (layout_of aprog) as) mod 2 = Suc 0; |
|
1203 start_of (layout_of aprog) as > 0\<rbrakk> |
|
1204 \<Longrightarrow> (fetch (ci (layout_of aprog) (start_of (layout_of aprog) as) |
|
1205 (Inc n)) (Suc (a - start_of (layout_of aprog) as)) Oc) = (R, a)" |
|
1206 apply(auto simp: ci.simps findnth.simps fetch.simps |
|
1207 nth_of.simps tshift.simps nth_append) |
|
1208 apply(subgoal_tac "\<exists> q. (a - start_of (layout_of aprog) as) = |
|
1209 2 * q + 1", auto) |
|
1210 apply(subgoal_tac "(findnth n ! Suc (Suc (Suc (4 * q)))) |
|
1211 = findnth (Suc q) ! (4 * q + 3)") |
|
1212 apply(simp add: findnth.simps nth_append) |
|
1213 apply(subgoal_tac " findnth n ! (4 * q + 3) = |
|
1214 findnth (Suc q) ! (4 * q + 3)", simp add: add3_Suc) |
|
1215 apply(rule_tac findnth_nth, auto) |
|
1216 done |
|
1217 |
|
1218 lemma fetch_locate_b_b: " |
|
1219 \<And>a xs. |
|
1220 \<lbrakk>0 < a; \<not> a < start_of (layout_of aprog) as; |
|
1221 a < start_of (layout_of aprog) as + 2 * n; |
|
1222 (a - start_of (layout_of aprog) as) mod 2 = Suc 0; |
|
1223 start_of (layout_of aprog) as > 0\<rbrakk> |
|
1224 \<Longrightarrow> (fetch (ci (layout_of aprog) (start_of (layout_of aprog) as) |
|
1225 (Inc n)) (Suc (a - start_of (layout_of aprog) as)) Bk) |
|
1226 = (R, a + 1)" |
|
1227 apply(auto simp: ci.simps findnth.simps fetch.simps |
|
1228 nth_of.simps tshift.simps nth_append) |
|
1229 apply(subgoal_tac "\<exists> q. (a - start_of (layout_of aprog) as) = |
|
1230 2 * q + 1", auto) |
|
1231 apply(subgoal_tac "(findnth n ! Suc ((Suc (4 * q)))) = |
|
1232 findnth (Suc q) ! (4 * q + 2)") |
|
1233 apply(simp add: findnth.simps nth_append) |
|
1234 apply(subgoal_tac " findnth n ! (4 * q + 2) = |
|
1235 findnth (Suc q) ! (4 * q + 2)", simp) |
|
1236 apply(rule_tac findnth_nth, auto) |
|
1237 done |
|
1238 |
|
1239 lemma fetch_locate_n_a_o: |
|
1240 "start_of (layout_of aprog) as > 0 |
|
1241 \<Longrightarrow> (fetch (ci (layout_of aprog) |
|
1242 (start_of (layout_of aprog) as) (Inc n)) (Suc (2 * n)) Oc) = |
|
1243 (R, start_of (layout_of aprog) as + 2 * n + 1)" |
|
1244 apply(auto simp: ci.simps findnth.simps fetch.simps |
|
1245 nth_of.simps tshift.simps nth_append tinc_b_def) |
|
1246 done |
|
1247 |
|
1248 lemma fetch_locate_n_a_b: " |
|
1249 start_of (layout_of aprog) as > 0 |
|
1250 \<Longrightarrow> (fetch (ci (layout_of aprog) |
|
1251 (start_of (layout_of aprog) as) (Inc n)) (Suc (2 * n)) Bk) |
|
1252 = (W1, start_of (layout_of aprog) as + 2 * n)" |
|
1253 apply(auto simp: ci.simps findnth.simps fetch.simps |
|
1254 nth_of.simps tshift.simps nth_append tinc_b_def) |
|
1255 done |
|
1256 |
|
1257 lemma fetch_locate_n_b_o: " |
|
1258 start_of (layout_of aprog) as > 0 |
|
1259 \<Longrightarrow> (fetch (ci (layout_of aprog) (start_of (layout_of aprog) as) |
|
1260 (Inc n)) (Suc (Suc (2 * n))) Oc) = |
|
1261 (R, start_of (layout_of aprog) as + 2 * n + 1)" |
|
1262 apply(auto simp: ci.simps findnth.simps fetch.simps |
|
1263 nth_of.simps tshift.simps nth_append tinc_b_def) |
|
1264 done |
|
1265 |
|
1266 lemma fetch_locate_n_b_b: " |
|
1267 start_of (layout_of aprog) as > 0 |
|
1268 \<Longrightarrow> (fetch (ci (layout_of aprog) (start_of (layout_of aprog) as) |
|
1269 (Inc n)) (Suc (Suc (2 * n))) Bk) = |
|
1270 (W1, start_of (layout_of aprog) as + 2 * n + 2)" |
|
1271 apply(auto simp: ci.simps findnth.simps fetch.simps |
|
1272 nth_of.simps tshift.simps nth_append tinc_b_def) |
|
1273 done |
|
1274 |
|
1275 lemma fetch_after_write_o: " |
|
1276 start_of (layout_of aprog) as > 0 |
|
1277 \<Longrightarrow> (fetch (ci (layout_of aprog) (start_of (layout_of aprog) as) |
|
1278 (Inc n)) (Suc (Suc (Suc (2 * n)))) Oc) = |
|
1279 (R, start_of (layout_of aprog) as + 2*n + 3)" |
|
1280 apply(auto simp: ci.simps findnth.simps fetch.simps |
|
1281 nth_of.simps tshift.simps nth_append tinc_b_def) |
|
1282 done |
|
1283 |
|
1284 lemma fetch_after_move_o: " |
|
1285 start_of (layout_of aprog) as > 0 |
|
1286 \<Longrightarrow> (fetch (ci (layout_of aprog) |
|
1287 (start_of (layout_of aprog) as) (Inc n)) (4 + 2 * n) Oc) |
|
1288 = (W0, start_of (layout_of aprog) as + 2 * n + 4)" |
|
1289 apply(auto simp: ci.simps findnth.simps tshift.simps |
|
1290 tinc_b_def add3_Suc) |
|
1291 apply(subgoal_tac "4 + 2*n = Suc (2*n + 3)", simp only: fetch.simps) |
|
1292 apply(auto simp: nth_of.simps nth_append) |
|
1293 done |
|
1294 |
|
1295 lemma fetch_after_move_b: " |
|
1296 start_of (layout_of aprog) as > 0 |
|
1297 \<Longrightarrow>(fetch (ci (layout_of aprog) |
|
1298 (start_of (layout_of aprog) as) (Inc n)) (4 + 2 * n) Bk) |
|
1299 = (L, start_of (layout_of aprog) as + 2 * n + 6)" |
|
1300 apply(auto simp: ci.simps findnth.simps tshift.simps |
|
1301 tinc_b_def add3_Suc) |
|
1302 apply(subgoal_tac "4 + 2*n = Suc (2*n + 3)", simp only: fetch.simps) |
|
1303 apply(auto simp: nth_of.simps nth_append) |
|
1304 done |
|
1305 |
|
1306 lemma fetch_clear_b: " |
|
1307 start_of (layout_of aprog) as > 0 |
|
1308 \<Longrightarrow> (fetch (ci (layout_of aprog) |
|
1309 (start_of (layout_of aprog) as) (Inc n)) (5 + 2 * n) Bk) |
|
1310 = (R, start_of (layout_of aprog) as + 2 * n + 5)" |
|
1311 apply(auto simp: ci.simps findnth.simps |
|
1312 tshift.simps tinc_b_def add3_Suc) |
|
1313 apply(subgoal_tac "5 + 2*n = Suc (2*n + 4)", simp only: fetch.simps) |
|
1314 apply(auto simp: nth_of.simps nth_append) |
|
1315 done |
|
1316 |
|
1317 lemma fetch_right_move_o: " |
|
1318 start_of (layout_of aprog) as > 0 |
|
1319 \<Longrightarrow> (fetch (ci (layout_of aprog) |
|
1320 (start_of (layout_of aprog) as) (Inc n)) (6 + 2*n) Oc) |
|
1321 = (R, start_of (layout_of aprog) as + 2 * n + 5)" |
|
1322 apply(auto simp: ci.simps findnth.simps tshift.simps |
|
1323 tinc_b_def add3_Suc) |
|
1324 apply(subgoal_tac "6 + 2*n = Suc (2*n + 5)", simp only: fetch.simps) |
|
1325 apply(auto simp: nth_of.simps nth_append) |
|
1326 done |
|
1327 |
|
1328 lemma fetch_right_move_b: " |
|
1329 start_of (layout_of aprog) as > 0 |
|
1330 \<Longrightarrow> (fetch (ci (layout_of aprog) |
|
1331 (start_of (layout_of aprog) as) (Inc n)) (6 + 2*n) Bk) |
|
1332 = (W1, start_of (layout_of aprog) as + 2 * n + 2)" |
|
1333 apply(auto simp: ci.simps findnth.simps |
|
1334 tshift.simps tinc_b_def add3_Suc) |
|
1335 apply(subgoal_tac "6 + 2*n = Suc (2*n + 5)", simp only: fetch.simps) |
|
1336 apply(auto simp: nth_of.simps nth_append) |
|
1337 done |
|
1338 |
|
1339 lemma fetch_left_move_o: " |
|
1340 start_of (layout_of aprog) as > 0 |
|
1341 \<Longrightarrow> (fetch (ci (layout_of aprog) |
|
1342 (start_of (layout_of aprog) as) (Inc n)) (7 + 2*n) Oc) |
|
1343 = (L, start_of (layout_of aprog) as + 2 * n + 6)" |
|
1344 apply(auto simp: ci.simps findnth.simps tshift.simps |
|
1345 tinc_b_def add3_Suc) |
|
1346 apply(subgoal_tac "7 + 2*n = Suc (2*n + 6)", simp only: fetch.simps) |
|
1347 apply(auto simp: nth_of.simps nth_append) |
|
1348 done |
|
1349 |
|
1350 lemma fetch_left_move_b: " |
|
1351 start_of (layout_of aprog) as > 0 |
|
1352 \<Longrightarrow> (fetch (ci (layout_of aprog) |
|
1353 (start_of (layout_of aprog) as) (Inc n)) (7 + 2*n) Bk) |
|
1354 = (L, start_of (layout_of aprog) as + 2 * n + 7)" |
|
1355 apply(auto simp: ci.simps findnth.simps |
|
1356 tshift.simps tinc_b_def add3_Suc) |
|
1357 apply(subgoal_tac "7 + 2*n = Suc (2*n + 6)", simp only: fetch.simps) |
|
1358 apply(auto simp: nth_of.simps nth_append) |
|
1359 done |
|
1360 |
|
1361 lemma fetch_check_left_move_o: " |
|
1362 start_of (layout_of aprog) as > 0 |
|
1363 \<Longrightarrow> (fetch (ci (layout_of aprog) |
|
1364 (start_of (layout_of aprog) as) (Inc n)) (8 + 2*n) Oc) |
|
1365 = (L, start_of (layout_of aprog) as + 2 * n + 6)" |
|
1366 apply(auto simp: ci.simps findnth.simps tshift.simps tinc_b_def) |
|
1367 apply(subgoal_tac "8 + 2 * n = Suc (2 * n + 7)", |
|
1368 simp only: fetch.simps) |
|
1369 apply(auto simp: nth_of.simps nth_append) |
|
1370 done |
|
1371 |
|
1372 lemma fetch_check_left_move_b: " |
|
1373 start_of (layout_of aprog) as > 0 |
|
1374 \<Longrightarrow> (fetch (ci (layout_of aprog) |
|
1375 (start_of (layout_of aprog) as) (Inc n)) (8 + 2*n) Bk) |
|
1376 = (R, start_of (layout_of aprog) as + 2 * n + 8) " |
|
1377 apply(auto simp: ci.simps findnth.simps |
|
1378 tshift.simps tinc_b_def add3_Suc) |
|
1379 apply(subgoal_tac "8 + 2*n= Suc (2*n + 7)", simp only: fetch.simps) |
|
1380 apply(auto simp: nth_of.simps nth_append) |
|
1381 done |
|
1382 |
|
1383 lemma fetch_after_left_move: " |
|
1384 start_of (layout_of aprog) as > 0 |
|
1385 \<Longrightarrow> (fetch (ci (layout_of aprog) |
|
1386 (start_of (layout_of aprog) as) (Inc n)) (9 + 2*n) Bk) |
|
1387 = (R, start_of (layout_of aprog) as + 2 * n + 9)" |
|
1388 apply(auto simp: ci.simps findnth.simps fetch.simps |
|
1389 nth_of.simps tshift.simps nth_append tinc_b_def) |
|
1390 done |
|
1391 |
|
1392 lemma fetch_stop: " |
|
1393 start_of (layout_of aprog) as > 0 |
|
1394 \<Longrightarrow> (fetch (ci (layout_of aprog) |
|
1395 (start_of (layout_of aprog) as) (Inc n)) (10 + 2 *n) b) |
|
1396 = (Nop, 0)" |
|
1397 apply(auto simp: ci.simps findnth.simps fetch.simps |
|
1398 nth_of.simps tshift.simps nth_append tinc_b_def |
|
1399 split: block.splits) |
|
1400 done |
|
1401 |
|
1402 lemma fetch_state0: " |
|
1403 (fetch (ci (layout_of aprog) |
|
1404 (start_of (layout_of aprog) as) (Inc n)) 0 b) |
|
1405 = (Nop, 0)" |
|
1406 apply(auto simp: ci.simps findnth.simps fetch.simps |
|
1407 nth_of.simps tshift.simps nth_append tinc_b_def) |
|
1408 done |
|
1409 |
|
1410 lemmas fetch_simps = |
|
1411 fetch_locate_a_o fetch_locate_a_b fetch_locate_b_o fetch_locate_b_b |
|
1412 fetch_locate_n_a_b fetch_locate_n_a_o fetch_locate_n_b_o |
|
1413 fetch_locate_n_b_b fetch_after_write_o fetch_after_move_o |
|
1414 fetch_after_move_b fetch_clear_b fetch_right_move_o |
|
1415 fetch_right_move_b fetch_left_move_o fetch_left_move_b |
|
1416 fetch_after_left_move fetch_check_left_move_o fetch_stop |
|
1417 fetch_state0 fetch_check_left_move_b |
|
1418 |
|
1419 text {* *} |
|
1420 declare exponent_def[simp del] tape_of_nat_list.simps[simp del] |
|
1421 at_begin_norm.simps[simp del] at_begin_fst_bwtn.simps[simp del] |
|
1422 at_begin_fst_awtn.simps[simp del] in_middle.simps[simp del] |
|
1423 abc_lm_s.simps[simp del] abc_lm_v.simps[simp del] |
|
1424 ci.simps[simp del] t_step.simps[simp del] |
|
1425 inv_after_move.simps[simp del] |
|
1426 inv_on_left_moving_norm.simps[simp del] |
|
1427 inv_on_left_moving_in_middle_B.simps[simp del] |
|
1428 inv_after_clear.simps[simp del] |
|
1429 inv_after_write.simps[simp del] inv_on_left_moving.simps[simp del] |
|
1430 inv_on_right_moving.simps[simp del] |
|
1431 inv_check_left_moving.simps[simp del] |
|
1432 inv_check_left_moving_in_middle.simps[simp del] |
|
1433 inv_check_left_moving_on_leftmost.simps[simp del] |
|
1434 inv_after_left_moving.simps[simp del] |
|
1435 inv_stop.simps[simp del] inv_locate_a.simps[simp del] |
|
1436 inv_locate_b.simps[simp del] |
|
1437 declare tms_of.simps[simp del] tm_of.simps[simp del] |
|
1438 layout_of.simps[simp del] abc_fetch.simps [simp del] |
|
1439 t_step.simps[simp del] t_steps.simps[simp del] |
|
1440 tpairs_of.simps[simp del] start_of.simps[simp del] |
|
1441 fetch.simps [simp del] new_tape.simps [simp del] |
|
1442 nth_of.simps [simp del] ci.simps [simp del] |
|
1443 length_of.simps[simp del] |
|
1444 |
|
1445 (*! Start point *) |
|
1446 lemma [simp]: "Suc (2 * q) mod 2 = Suc 0" |
|
1447 by arith |
|
1448 |
|
1449 lemma [simp]: "Suc (2 * q) div 2 = q" |
|
1450 by arith |
|
1451 |
|
1452 lemma [simp]: "\<lbrakk> \<not> a < start_of ly as; |
|
1453 a < start_of ly as + 2 * n; a - start_of ly as = 2 * q\<rbrakk> |
|
1454 \<Longrightarrow> Suc a < start_of ly as + 2 * n" |
|
1455 apply(arith) |
|
1456 done |
|
1457 |
|
1458 lemma [simp]: "x mod 2 = Suc 0 \<Longrightarrow> (Suc x) mod 2 = 0" |
|
1459 by arith |
|
1460 |
|
1461 lemma [simp]: "x mod 2 = Suc 0 \<Longrightarrow> (Suc x) div 2 = Suc (x div 2)" |
|
1462 by arith |
|
1463 lemma exp_def[simp]: "a\<^bsup>Suc n \<^esup>= a # a\<^bsup>n\<^esup>" |
|
1464 by(simp add: exponent_def) |
|
1465 lemma [intro]: "Bk # r = Oc\<^bsup>mr\<^esup> @ r' \<Longrightarrow> mr = 0" |
|
1466 by(case_tac mr, auto simp: exponent_def) |
|
1467 |
|
1468 lemma [intro]: "Bk # r = replicate mr Oc \<Longrightarrow> mr = 0" |
|
1469 by(case_tac mr, auto) |
|
1470 lemma tape_of_nl_abv_cons[simp]: "xs \<noteq> [] \<Longrightarrow> |
|
1471 <x # xs> = Oc\<^bsup>Suc x\<^esup>@ Bk # <xs>" |
|
1472 apply(simp add: tape_of_nl_abv tape_of_nat_list.simps) |
|
1473 apply(case_tac xs, simp, simp add: tape_of_nat_list.simps) |
|
1474 done |
|
1475 |
|
1476 lemma [simp]: "<[]::nat list> = []" |
|
1477 by(auto simp: tape_of_nl_abv tape_of_nat_list.simps) |
|
1478 lemma [simp]: "Oc # r = <(lm::nat list)> @ Bk\<^bsup>rn\<^esup>\<Longrightarrow> lm \<noteq> []" |
|
1479 apply(auto simp: tape_of_nl_abv tape_of_nat_list.simps) |
|
1480 apply(case_tac rn, auto simp: exponent_def) |
|
1481 done |
|
1482 lemma BkCons_nil: "Bk # xs = <lm::nat list> @ Bk\<^bsup>rn\<^esup>\<Longrightarrow> lm = []" |
|
1483 apply(case_tac lm, simp) |
|
1484 apply(case_tac list, auto simp: tape_of_nl_abv tape_of_nat_list.simps) |
|
1485 done |
|
1486 lemma BkCons_nil': "Bk # xs = <lm::nat list> @ Bk\<^bsup>ln\<^esup>\<Longrightarrow> lm = []" |
|
1487 by(auto intro: BkCons_nil) |
|
1488 |
|
1489 lemma hd_tl_tape_of_nat_list: |
|
1490 "tl (lm::nat list) \<noteq> [] \<Longrightarrow> <lm> = <hd lm> @ Bk # <tl lm>" |
|
1491 apply(frule tape_of_nl_abv_cons[of "tl lm" "hd lm"]) |
|
1492 apply(simp add: tape_of_nat_abv Bk_def del: tape_of_nl_abv_cons) |
|
1493 apply(subgoal_tac "lm = hd lm # tl lm", auto) |
|
1494 apply(case_tac lm, auto) |
|
1495 done |
|
1496 lemma [simp]: "Oc # xs = Oc\<^bsup>mr\<^esup> @ Bk # <lm2> @ Bk\<^bsup>rn\<^esup>\<Longrightarrow> mr > 0" |
|
1497 apply(case_tac mr, auto simp: exponent_def) |
|
1498 done |
|
1499 |
|
1500 lemma tape_of_nat_list_cons: "xs \<noteq> [] \<Longrightarrow> tape_of_nat_list (x # xs) = |
|
1501 replicate (Suc x) Oc @ Bk # tape_of_nat_list xs" |
|
1502 apply(drule tape_of_nl_abv_cons[of xs x]) |
|
1503 apply(auto simp: tape_of_nl_abv tape_of_nat_abv Oc_def Bk_def exponent_def) |
|
1504 done |
|
1505 |
|
1506 lemma rev_eq: "rev xs = rev ys \<Longrightarrow> xs = ys" |
|
1507 by simp |
|
1508 |
|
1509 lemma tape_of_nat_list_eq: " xs = ys \<Longrightarrow> |
|
1510 tape_of_nat_list xs = tape_of_nat_list ys" |
|
1511 by simp |
|
1512 |
|
1513 lemma tape_of_nl_nil_eq: "<(lm::nat list)> = [] = (lm = [])" |
|
1514 apply(simp add: tape_of_nl_abv tape_of_nat_list.simps) |
|
1515 apply(case_tac lm, simp add: tape_of_nat_list.simps) |
|
1516 apply(case_tac "list") |
|
1517 apply(auto simp: tape_of_nat_list.simps) |
|
1518 done |
|
1519 |
|
1520 lemma rep_ind: "replicate (Suc n) a = replicate n a @ [a]" |
|
1521 apply(induct n, simp, simp) |
|
1522 done |
|
1523 |
|
1524 lemma [simp]: "Oc # r = <lm::nat list> @ replicate rn Bk \<Longrightarrow> Suc 0 \<le> length lm" |
|
1525 apply(rule_tac classical, auto) |
|
1526 apply(case_tac lm, simp, case_tac rn, auto) |
|
1527 done |
|
1528 lemma Oc_Bk_Cons: "Oc # Bk # list = <lm::nat list> @ Bk\<^bsup>ln\<^esup> \<Longrightarrow> |
|
1529 lm \<noteq> [] \<and> hd lm = 0" |
|
1530 apply(case_tac lm, simp, case_tac ln, simp add: exponent_def, simp add: exponent_def, simp) |
|
1531 apply(case_tac lista, auto simp: tape_of_nl_abv tape_of_nat_list.simps) |
|
1532 done |
|
1533 (*lemma Oc_Oc_Cons: "Oc # Oc # list = <lm::nat list> @ Bk\<^bsup>ln\<^esup> \<Longrightarrow> |
|
1534 lm \<noteq> [] \<and> hd lm > 0" |
|
1535 apply(case_tac lm, simp add: exponent_def, case_tac ln, simp, simp) |
|
1536 apply(case_tac lista, |
|
1537 auto simp: tape_of_nl_abv tape_of_nat_list.simps exponent_def) |
|
1538 apply(case_tac [!] a, auto) |
|
1539 apply(case_tac ln, auto) |
|
1540 done |
|
1541 *) |
|
1542 lemma Oc_nil_zero[simp]: "[Oc] = <lm::nat list> @ Bk\<^bsup>ln\<^esup> |
|
1543 \<Longrightarrow> lm = [0] \<and> ln = 0" |
|
1544 apply(case_tac lm, simp) |
|
1545 apply(case_tac ln, auto simp: exponent_def) |
|
1546 apply(case_tac [!] list, |
|
1547 auto simp: tape_of_nl_abv tape_of_nat_list.simps) |
|
1548 done |
|
1549 |
|
1550 lemma [simp]: "Oc # r = <lm2> @ replicate rn Bk \<Longrightarrow> |
|
1551 (\<exists>rn. r = replicate (hd lm2) Oc @ Bk # <tl lm2> @ |
|
1552 replicate rn Bk) \<or> |
|
1553 tl lm2 = [] \<and> r = replicate (hd lm2) Oc" |
|
1554 apply(rule_tac disjCI, simp) |
|
1555 apply(case_tac "tl lm2 = []", simp) |
|
1556 apply(case_tac lm2, simp add: tape_of_nl_abv tape_of_nat_list.simps) |
|
1557 apply(case_tac rn, simp, simp, simp) |
|
1558 apply(simp add: tape_of_nl_abv tape_of_nat_list.simps exponent_def) |
|
1559 apply(case_tac rn, simp, simp) |
|
1560 apply(rule_tac x = rn in exI) |
|
1561 apply(simp add: hd_tl_tape_of_nat_list) |
|
1562 apply(simp add: tape_of_nat_abv Oc_def exponent_def) |
|
1563 done |
|
1564 |
|
1565 (*inv: from locate_a to locate_b*) |
|
1566 lemma [simp]: |
|
1567 "inv_locate_a (as, lm) (q, l, Oc # r) ires |
|
1568 \<Longrightarrow> inv_locate_b (as, lm) (q, Oc # l, r) ires" |
|
1569 apply(simp only: inv_locate_a.simps inv_locate_b.simps in_middle.simps |
|
1570 at_begin_norm.simps at_begin_fst_bwtn.simps |
|
1571 at_begin_fst_awtn.simps) |
|
1572 apply(erule disjE, erule exE, erule exE, erule exE) |
|
1573 apply(rule_tac x = lm1 in exI, rule_tac x = "tl lm2" in exI, simp) |
|
1574 apply(rule_tac x = "0" in exI, rule_tac x = "hd lm2" in exI, |
|
1575 auto simp: exponent_def) |
|
1576 apply(rule_tac x = "Suc 0" in exI, simp add:exponent_def) |
|
1577 apply(rule_tac x = "lm @ replicate tn 0" in exI, |
|
1578 rule_tac x = "[]" in exI, |
|
1579 rule_tac x = "Suc tn" in exI, rule_tac x = 0 in exI) |
|
1580 apply(simp only: rep_ind, simp) |
|
1581 apply(rule_tac x = "Suc 0" in exI, auto) |
|
1582 apply(case_tac [1-3] rn, simp_all ) |
|
1583 apply(rule_tac x = "lm @ replicate tn 0" in exI, |
|
1584 rule_tac x = "[]" in exI, |
|
1585 rule_tac x = "Suc tn" in exI, |
|
1586 rule_tac x = 0 in exI, simp add: rep_ind del: replicate_Suc split:if_splits) |
|
1587 apply(rule_tac x = "Suc 0" in exI, auto) |
|
1588 apply(case_tac rn, simp, simp) |
|
1589 apply(rule_tac [!] x = "Suc 0" in exI, auto) |
|
1590 apply(case_tac [!] rn, simp_all) |
|
1591 done |
|
1592 |
|
1593 (*inv: from locate_a to _locate_a*) |
|
1594 lemma locate_a_2_locate_a[simp]: "inv_locate_a (as, am) (q, aaa, Bk # xs) ires |
|
1595 \<Longrightarrow> inv_locate_a (as, am) (q, aaa, Oc # xs) ires" |
|
1596 apply(simp only: inv_locate_a.simps at_begin_norm.simps |
|
1597 at_begin_fst_bwtn.simps at_begin_fst_awtn.simps) |
|
1598 apply(erule_tac disjE, erule exE, erule exE, erule exE, |
|
1599 rule disjI2, rule disjI2) |
|
1600 defer |
|
1601 apply(erule_tac disjE, erule exE, erule exE, |
|
1602 erule exE, rule disjI2, rule disjI2) |
|
1603 prefer 2 |
|
1604 apply(simp) |
|
1605 proof- |
|
1606 fix lm1 tn rn |
|
1607 assume k: "lm1 = am @ 0\<^bsup>tn\<^esup> \<and> length lm1 = q \<and> (if lm1 = [] then aaa = Bk # Bk # |
|
1608 ires else aaa = [Bk] @ <rev lm1> @ Bk # Bk # ires) \<and> Bk # xs = Bk\<^bsup>rn\<^esup>" |
|
1609 thus "\<exists>lm1 tn rn. lm1 = am @ 0\<^bsup>tn\<^esup> \<and> length lm1 = q \<and> (if lm1 = [] then |
|
1610 aaa = Bk # Bk # ires else aaa = [Bk] @ <rev lm1> @ Bk # Bk # ires) \<and> Oc # xs = [Oc] @ Bk\<^bsup>rn\<^esup>" |
|
1611 (is "\<exists>lm1 tn rn. ?P lm1 tn rn") |
|
1612 proof - |
|
1613 from k have "?P lm1 tn (rn - 1)" |
|
1614 apply(auto simp: Oc_def) |
|
1615 by(case_tac [!] "rn::nat", auto simp: exponent_def) |
|
1616 thus ?thesis by blast |
|
1617 qed |
|
1618 next |
|
1619 fix lm1 lm2 rn |
|
1620 assume h1: "am = lm1 @ lm2 \<and> length lm1 = q \<and> (if lm1 = [] |
|
1621 then aaa = Bk # Bk # ires else aaa = Bk # <rev lm1> @ Bk # Bk # ires) \<and> |
|
1622 Bk # xs = <lm2> @ Bk\<^bsup>rn\<^esup>" |
|
1623 from h1 have h2: "lm2 = []" |
|
1624 proof(rule_tac xs = xs and rn = rn in BkCons_nil, simp) |
|
1625 qed |
|
1626 from h1 and h2 show "\<exists>lm1 tn rn. lm1 = am @ 0\<^bsup>tn\<^esup> \<and> length lm1 = q \<and> |
|
1627 (if lm1 = [] then aaa = Bk # Bk # ires else aaa = [Bk] @ <rev lm1> @ Bk # Bk # ires) \<and> |
|
1628 Oc # xs = [Oc] @ Bk\<^bsup>rn\<^esup>" |
|
1629 (is "\<exists>lm1 tn rn. ?P lm1 tn rn") |
|
1630 proof - |
|
1631 from h1 and h2 have "?P lm1 0 (rn - 1)" |
|
1632 apply(auto simp: Oc_def exponent_def |
|
1633 tape_of_nl_abv tape_of_nat_list.simps) |
|
1634 by(case_tac "rn::nat", simp, simp) |
|
1635 thus ?thesis by blast |
|
1636 qed |
|
1637 qed |
|
1638 |
|
1639 lemma [intro]: "\<exists>rn. [a] = a\<^bsup>rn\<^esup>" |
|
1640 by(rule_tac x = "Suc 0" in exI, simp add: exponent_def) |
|
1641 |
|
1642 lemma [intro]: "\<exists>tn. [] = a\<^bsup>tn\<^esup>" |
|
1643 apply(rule_tac x = 0 in exI, simp add: exponent_def) |
|
1644 done |
|
1645 |
|
1646 lemma [intro]: "at_begin_norm (as, am) (q, aaa, []) ires |
|
1647 \<Longrightarrow> at_begin_norm (as, am) (q, aaa, [Bk]) ires" |
|
1648 apply(simp add: at_begin_norm.simps, erule_tac exE, erule_tac exE) |
|
1649 apply(rule_tac x = lm1 in exI, simp, auto) |
|
1650 done |
|
1651 |
|
1652 lemma [intro]: "at_begin_fst_bwtn (as, am) (q, aaa, []) ires |
|
1653 \<Longrightarrow> at_begin_fst_bwtn (as, am) (q, aaa, [Bk]) ires" |
|
1654 apply(simp only: at_begin_fst_bwtn.simps, erule_tac exE, erule_tac exE, erule_tac exE) |
|
1655 apply(rule_tac x = "am @ 0\<^bsup>tn\<^esup>" in exI, auto) |
|
1656 done |
|
1657 |
|
1658 lemma [intro]: "at_begin_fst_awtn (as, am) (q, aaa, []) ires |
|
1659 \<Longrightarrow> at_begin_fst_awtn (as, am) (q, aaa, [Bk]) ires" |
|
1660 apply(auto simp: at_begin_fst_awtn.simps) |
|
1661 done |
|
1662 |
|
1663 lemma [intro]: "inv_locate_a (as, am) (q, aaa, []) ires |
|
1664 \<Longrightarrow> inv_locate_a (as, am) (q, aaa, [Bk]) ires" |
|
1665 apply(simp only: inv_locate_a.simps) |
|
1666 apply(erule disj_forward) |
|
1667 defer |
|
1668 apply(erule disj_forward, auto) |
|
1669 done |
|
1670 |
|
1671 lemma [simp]: "inv_locate_a (as, am) (q, aaa, []) ires \<Longrightarrow> |
|
1672 inv_locate_a (as, am) (q, aaa, [Oc]) ires" |
|
1673 apply(insert locate_a_2_locate_a [of as am q aaa "[]"]) |
|
1674 apply(subgoal_tac "inv_locate_a (as, am) (q, aaa, [Bk]) ires", auto) |
|
1675 done |
|
1676 |
|
1677 (*inv: from locate_b to locate_b*) |
|
1678 lemma [simp]: "inv_locate_b (as, am) (q, aaa, Oc # xs) ires |
|
1679 \<Longrightarrow> inv_locate_b (as, am) (q, Oc # aaa, xs) ires" |
|
1680 apply(simp only: inv_locate_b.simps in_middle.simps) |
|
1681 apply(erule exE)+ |
|
1682 apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI, |
|
1683 rule_tac x = tn in exI, rule_tac x = m in exI) |
|
1684 apply(rule_tac x = "Suc ml" in exI, rule_tac x = "mr - 1" in exI, |
|
1685 rule_tac x = rn in exI) |
|
1686 apply(case_tac mr, simp_all add: exponent_def, auto) |
|
1687 done |
|
1688 lemma zero_and_nil[intro]: "(Bk # Bk\<^bsup>n\<^esup> = Oc\<^bsup>mr\<^esup> @ Bk # <lm::nat list> @ |
|
1689 Bk\<^bsup>rn \<^esup>) \<or> (lm2 = [] \<and> Bk # Bk\<^bsup>n\<^esup> = Oc\<^bsup>mr\<^esup>) |
|
1690 \<Longrightarrow> mr = 0 \<and> lm = []" |
|
1691 apply(rule context_conjI) |
|
1692 apply(case_tac mr, auto simp:exponent_def) |
|
1693 apply(insert BkCons_nil[of "replicate (n - 1) Bk" lm rn]) |
|
1694 apply(case_tac n, auto simp: exponent_def Bk_def tape_of_nl_nil_eq) |
|
1695 done |
|
1696 |
|
1697 lemma tape_of_nat_def: "<[m::nat]> = Oc # Oc\<^bsup>m\<^esup>" |
|
1698 apply(simp add: tape_of_nl_abv tape_of_nat_list.simps) |
|
1699 done |
|
1700 lemma [simp]: "\<lbrakk>inv_locate_b (as, am) (q, aaa, Bk # xs) ires; \<exists>n. xs = Bk\<^bsup>n\<^esup>\<rbrakk> |
|
1701 \<Longrightarrow> inv_locate_a (as, am) (Suc q, Bk # aaa, xs) ires" |
|
1702 apply(simp add: inv_locate_b.simps inv_locate_a.simps) |
|
1703 apply(rule_tac disjI2, rule_tac disjI1) |
|
1704 apply(simp only: in_middle.simps at_begin_fst_bwtn.simps) |
|
1705 apply(erule_tac exE)+ |
|
1706 apply(rule_tac x = "lm1 @ [m]" in exI, rule_tac x = tn in exI, simp) |
|
1707 apply(subgoal_tac "mr = 0 \<and> lm2 = []") |
|
1708 defer |
|
1709 apply(rule_tac n = n and mr = mr and lm = "lm2" |
|
1710 and rn = rn and n = n in zero_and_nil) |
|
1711 apply(auto simp: exponent_def) |
|
1712 apply(case_tac "lm1 = []", auto simp: tape_of_nat_def) |
|
1713 done |
|
1714 |
|
1715 lemma length_equal: "xs = ys \<Longrightarrow> length xs = length ys" |
|
1716 by auto |
|
1717 lemma [simp]: "a\<^bsup>0\<^esup> = []" |
|
1718 by(simp add: exp_zero) |
|
1719 (*inv: from locate_b to locate_a*) |
|
1720 lemma [simp]: "length (a\<^bsup>b\<^esup>) = b" |
|
1721 apply(simp add: exponent_def) |
|
1722 done |
|
1723 |
|
1724 lemma [simp]: "\<lbrakk>inv_locate_b (as, am) (q, aaa, Bk # xs) ires; |
|
1725 \<not> (\<exists>n. xs = Bk\<^bsup>n\<^esup>)\<rbrakk> |
|
1726 \<Longrightarrow> inv_locate_a (as, am) (Suc q, Bk # aaa, xs) ires" |
|
1727 apply(simp add: inv_locate_b.simps inv_locate_a.simps) |
|
1728 apply(rule_tac disjI1) |
|
1729 apply(simp only: in_middle.simps at_begin_norm.simps) |
|
1730 apply(erule_tac exE)+ |
|
1731 apply(rule_tac x = "lm1 @ [m]" in exI, rule_tac x = lm2 in exI, simp) |
|
1732 apply(subgoal_tac "tn = 0", simp add: exponent_def , auto split: if_splits) |
|
1733 apply(case_tac [!] mr, simp_all add: tape_of_nat_def, auto) |
|
1734 apply(case_tac lm2, simp, erule_tac x = rn in allE, simp) |
|
1735 apply(case_tac am, simp, simp) |
|
1736 apply(case_tac lm2, simp, erule_tac x = rn in allE, simp) |
|
1737 apply(drule_tac length_equal, simp) |
|
1738 done |
|
1739 |
|
1740 lemma locate_b_2_a[intro]: |
|
1741 "inv_locate_b (as, am) (q, aaa, Bk # xs) ires |
|
1742 \<Longrightarrow> inv_locate_a (as, am) (Suc q, Bk # aaa, xs) ires" |
|
1743 apply(case_tac "\<exists> n. xs = Bk\<^bsup>n\<^esup>", simp, simp) |
|
1744 done |
|
1745 |
|
1746 lemma locate_b_2_locate_a[simp]: |
|
1747 "\<lbrakk>\<not> a < start_of ly as; |
|
1748 a < start_of ly as + 2 * n; |
|
1749 (a - start_of ly as) mod 2 = Suc 0; |
|
1750 inv_locate_b (as, am) ((a - start_of ly as) div 2, aaa, Bk # xs) ires\<rbrakk> |
|
1751 \<Longrightarrow> (Suc a < start_of ly as + 2 * n \<longrightarrow> inv_locate_a (as, am) |
|
1752 (Suc ((a - start_of ly as) div 2), Bk # aaa, xs) ires) \<and> |
|
1753 (\<not> Suc a < start_of ly as + 2 * n \<longrightarrow> |
|
1754 inv_locate_a (as, am) (n, Bk # aaa, xs) ires)" |
|
1755 apply(auto) |
|
1756 apply(subgoal_tac "n > 0") |
|
1757 apply(subgoal_tac "(a - start_of ly as) div 2 = n - 1") |
|
1758 apply(insert locate_b_2_a [of as am "n - 1" aaa xs], simp) |
|
1759 apply(arith) |
|
1760 apply(case_tac n, simp, simp) |
|
1761 done |
|
1762 |
|
1763 lemma [simp]: "inv_locate_b (as, am) (q, l, []) ires |
|
1764 \<Longrightarrow> inv_locate_b (as, am) (q, l, [Bk]) ires" |
|
1765 apply(simp only: inv_locate_b.simps in_middle.simps) |
|
1766 apply(erule exE)+ |
|
1767 apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI, |
|
1768 rule_tac x = tn in exI, rule_tac x = m in exI, |
|
1769 rule_tac x = ml in exI, rule_tac x = mr in exI) |
|
1770 apply(auto) |
|
1771 done |
|
1772 |
|
1773 lemma locate_b_2_locate_a_B[simp]: |
|
1774 "\<lbrakk>\<not> a < start_of ly as; |
|
1775 a < start_of ly as + 2 * n; |
|
1776 (a - start_of ly as) mod 2 = Suc 0; |
|
1777 inv_locate_b (as, am) ((a - start_of ly as) div 2, aaa, []) ires\<rbrakk> |
|
1778 \<Longrightarrow> (Suc a < start_of ly as + 2 * n \<longrightarrow> |
|
1779 inv_locate_a (as, am) |
|
1780 (Suc ((a - start_of ly as) div 2), Bk # aaa, []) ires) |
|
1781 \<and> (\<not> Suc a < start_of ly as + 2 * n \<longrightarrow> |
|
1782 inv_locate_a (as, am) (n, Bk # aaa, []) ires)" |
|
1783 apply(insert locate_b_2_locate_a [of a ly as n am aaa "[]"], simp) |
|
1784 done |
|
1785 |
|
1786 (*inv: from locate_b to after_write*) |
|
1787 lemma inv_locate_b_2_after_write[simp]: |
|
1788 "inv_locate_b (as, am) (n, aaa, Bk # xs) ires |
|
1789 \<Longrightarrow> inv_after_write (as, abc_lm_s am n (Suc (abc_lm_v am n))) |
|
1790 (Suc (Suc (2 * n)), aaa, Oc # xs) ires" |
|
1791 apply(auto simp: in_middle.simps inv_after_write.simps |
|
1792 abc_lm_v.simps abc_lm_s.simps inv_locate_b.simps) |
|
1793 apply(subgoal_tac [!] "mr = 0", auto simp: exponent_def split: if_splits) |
|
1794 apply(subgoal_tac "lm2 = []", simp) |
|
1795 apply(rule_tac x = rn in exI, rule_tac x = "Suc m" in exI, |
|
1796 rule_tac x = "lm1" in exI, simp, rule_tac x = "[]" in exI, simp) |
|
1797 apply(case_tac "Suc (length lm1) - length am", simp, simp only: rep_ind, simp) |
|
1798 apply(subgoal_tac "length lm1 - length am = nat", simp, arith) |
|
1799 apply(drule_tac length_equal, simp) |
|
1800 done |
|
1801 |
|
1802 lemma [simp]: "inv_locate_b (as, am) (n, aaa, []) ires \<Longrightarrow> |
|
1803 inv_after_write (as, abc_lm_s am n (Suc (abc_lm_v am n))) |
|
1804 (Suc (Suc (2 * n)), aaa, [Oc]) ires" |
|
1805 apply(insert inv_locate_b_2_after_write [of as am n aaa "[]"]) |
|
1806 by(simp) |
|
1807 |
|
1808 (*inv: from after_write to after_move*) |
|
1809 lemma [simp]: "inv_after_write (as, lm) (Suc (Suc (2 * n)), l, Oc # r) ires |
|
1810 \<Longrightarrow> inv_after_move (as, lm) (2 * n + 3, Oc # l, r) ires" |
|
1811 apply(auto simp:inv_after_move.simps inv_after_write.simps split: if_splits) |
|
1812 done |
|
1813 |
|
1814 lemma [simp]: "inv_after_write (as, abc_lm_s am n (Suc (abc_lm_v am n) |
|
1815 )) (Suc (Suc (2 * n)), aaa, Bk # xs) ires = False" |
|
1816 apply(simp add: inv_after_write.simps ) |
|
1817 done |
|
1818 |
|
1819 lemma [simp]: |
|
1820 "inv_after_write (as, abc_lm_s am n (Suc (abc_lm_v am n))) |
|
1821 (Suc (Suc (2 * n)), aaa, []) ires = False" |
|
1822 apply(simp add: inv_after_write.simps ) |
|
1823 done |
|
1824 |
|
1825 (*inv: from after_move to after_clear*) |
|
1826 lemma [simp]: "inv_after_move (as, lm) (s, l, Oc # r) ires |
|
1827 \<Longrightarrow> inv_after_clear (as, lm) (s', l, Bk # r) ires" |
|
1828 apply(auto simp: inv_after_move.simps inv_after_clear.simps split: if_splits) |
|
1829 done |
|
1830 |
|
1831 (*inv: from after_move to on_leftmoving*) |
|
1832 lemma inv_after_move_2_inv_on_left_moving[simp]: |
|
1833 "inv_after_move (as, lm) (s, l, Bk # r) ires |
|
1834 \<Longrightarrow> (l = [] \<longrightarrow> |
|
1835 inv_on_left_moving (as, lm) (s', [], Bk # Bk # r) ires) \<and> |
|
1836 (l \<noteq> [] \<longrightarrow> |
|
1837 inv_on_left_moving (as, lm) (s', tl l, hd l # Bk # r) ires)" |
|
1838 apply(simp only: inv_after_move.simps inv_on_left_moving.simps) |
|
1839 apply(subgoal_tac "l \<noteq> []", rule conjI, simp, rule impI, |
|
1840 rule disjI1, simp only: inv_on_left_moving_norm.simps) |
|
1841 apply(erule exE)+ |
|
1842 apply(subgoal_tac "lm2 = []") |
|
1843 apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI, |
|
1844 rule_tac x = m in exI, rule_tac x = m in exI, |
|
1845 rule_tac x = 1 in exI, |
|
1846 rule_tac x = "rn - 1" in exI, simp, case_tac rn) |
|
1847 apply(auto simp: exponent_def intro: BkCons_nil split: if_splits) |
|
1848 done |
|
1849 |
|
1850 lemma [elim]: "[] = <lm::nat list> \<Longrightarrow> lm = []" |
|
1851 using tape_of_nl_nil_eq[of lm] |
|
1852 by simp |
|
1853 |
|
1854 lemma inv_after_move_2_inv_on_left_moving_B[simp]: |
|
1855 "inv_after_move (as, lm) (s, l, []) ires |
|
1856 \<Longrightarrow> (l = [] \<longrightarrow> inv_on_left_moving (as, lm) (s', [], [Bk]) ires) \<and> |
|
1857 (l \<noteq> [] \<longrightarrow> inv_on_left_moving (as, lm) (s', tl l, [hd l]) ires)" |
|
1858 apply(simp only: inv_after_move.simps inv_on_left_moving.simps) |
|
1859 apply(subgoal_tac "l \<noteq> []", rule conjI, simp, rule impI, rule disjI1, |
|
1860 simp only: inv_on_left_moving_norm.simps) |
|
1861 apply(erule exE)+ |
|
1862 apply(subgoal_tac "lm2 = []") |
|
1863 apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI, |
|
1864 rule_tac x = m in exI, rule_tac x = m in exI, |
|
1865 rule_tac x = 1 in exI, rule_tac x = "rn - 1" in exI, simp, case_tac rn) |
|
1866 apply(auto simp: exponent_def tape_of_nl_nil_eq intro: BkCons_nil split: if_splits) |
|
1867 done |
|
1868 |
|
1869 (*inv: from after_clear to on_right_moving*) |
|
1870 lemma [simp]: "Oc # r = replicate rn Bk = False" |
|
1871 apply(case_tac rn, simp, simp) |
|
1872 done |
|
1873 |
|
1874 lemma inv_after_clear_2_inv_on_right_moving[simp]: |
|
1875 "inv_after_clear (as, lm) (2 * n + 4, l, Bk # r) ires |
|
1876 \<Longrightarrow> inv_on_right_moving (as, lm) (2 * n + 5, Bk # l, r) ires" |
|
1877 apply(auto simp: inv_after_clear.simps inv_on_right_moving.simps ) |
|
1878 apply(subgoal_tac "lm2 \<noteq> []") |
|
1879 apply(rule_tac x = "lm1 @ [m]" in exI, rule_tac x = "tl lm2" in exI, |
|
1880 rule_tac x = "hd lm2" in exI, simp) |
|
1881 apply(rule_tac x = 0 in exI, rule_tac x = "hd lm2" in exI) |
|
1882 apply(simp add: exponent_def, rule conjI) |
|
1883 apply(case_tac [!] "lm2::nat list", auto simp: exponent_def) |
|
1884 apply(case_tac rn, auto split: if_splits simp: tape_of_nat_def) |
|
1885 apply(case_tac list, |
|
1886 simp add: tape_of_nl_abv tape_of_nat_list.simps exponent_def) |
|
1887 apply(erule_tac x = "rn - 1" in allE, |
|
1888 case_tac rn, auto simp: exponent_def) |
|
1889 apply(case_tac list, |
|
1890 simp add: tape_of_nl_abv tape_of_nat_list.simps exponent_def) |
|
1891 apply(erule_tac x = "rn - 1" in allE, |
|
1892 case_tac rn, auto simp: exponent_def) |
|
1893 done |
|
1894 |
|
1895 |
|
1896 lemma [simp]: "inv_after_clear (as, lm) (2 * n + 4, l, []) ires\<Longrightarrow> |
|
1897 inv_after_clear (as, lm) (2 * n + 4, l, [Bk]) ires" |
|
1898 by(auto simp: inv_after_clear.simps) |
|
1899 |
|
1900 lemma [simp]: "inv_after_clear (as, lm) (2 * n + 4, l, []) ires |
|
1901 \<Longrightarrow> inv_on_right_moving (as, lm) (2 * n + 5, Bk # l, []) ires" |
|
1902 by(insert |
|
1903 inv_after_clear_2_inv_on_right_moving[of as lm n l "[]"], simp) |
|
1904 |
|
1905 (*inv: from on_right_moving to on_right_movign*) |
|
1906 lemma [simp]: "inv_on_right_moving (as, lm) (2 * n + 5, l, Oc # r) ires |
|
1907 \<Longrightarrow> inv_on_right_moving (as, lm) (2 * n + 5, Oc # l, r) ires" |
|
1908 apply(auto simp: inv_on_right_moving.simps) |
|
1909 apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI, |
|
1910 rule_tac x = "ml + mr" in exI, simp) |
|
1911 apply(rule_tac x = "Suc ml" in exI, |
|
1912 rule_tac x = "mr - 1" in exI, simp) |
|
1913 apply(case_tac mr, auto simp: exponent_def ) |
|
1914 apply(rule_tac x = lm1 in exI, rule_tac x = "[]" in exI, |
|
1915 rule_tac x = "ml + mr" in exI, simp) |
|
1916 apply(rule_tac x = "Suc ml" in exI, |
|
1917 rule_tac x = "mr - 1" in exI, simp) |
|
1918 apply(case_tac mr, auto split: if_splits simp: exponent_def) |
|
1919 done |
|
1920 |
|
1921 lemma inv_on_right_moving_2_inv_on_right_moving[simp]: |
|
1922 "inv_on_right_moving (as, lm) (2 * n + 5, l, Bk # r) ires |
|
1923 \<Longrightarrow> inv_after_write (as, lm) (Suc (Suc (2 * n)), l, Oc # r) ires" |
|
1924 apply(auto simp: inv_on_right_moving.simps inv_after_write.simps ) |
|
1925 apply(case_tac mr, auto simp: exponent_def split: if_splits) |
|
1926 apply(case_tac [!] mr, simp_all) |
|
1927 done |
|
1928 |
|
1929 lemma [simp]: "inv_on_right_moving (as, lm) (2 * n + 5, l, []) ires\<Longrightarrow> |
|
1930 inv_on_right_moving (as, lm) (2 * n + 5, l, [Bk]) ires" |
|
1931 apply(auto simp: inv_on_right_moving.simps exponent_def) |
|
1932 apply(rule_tac x = lm1 in exI, rule_tac x = "[]" in exI, simp) |
|
1933 apply (rule_tac x = m in exI, auto split: if_splits simp: exponent_def) |
|
1934 done |
|
1935 |
|
1936 (*inv: from on_right_moving to after_write*) |
|
1937 lemma [simp]: "inv_on_right_moving (as, lm) (2 * n + 5, l, []) ires |
|
1938 \<Longrightarrow> inv_after_write (as, lm) (Suc (Suc (2 * n)), l, [Oc]) ires" |
|
1939 apply(rule_tac inv_on_right_moving_2_inv_on_right_moving, simp) |
|
1940 done |
|
1941 |
|
1942 (*inv: from on_left_moving to on_left_moving*) |
|
1943 lemma [simp]: "inv_on_left_moving_in_middle_B (as, lm) |
|
1944 (s, l, Oc # r) ires = False" |
|
1945 apply(auto simp: inv_on_left_moving_in_middle_B.simps ) |
|
1946 done |
|
1947 |
|
1948 lemma [simp]: "inv_on_left_moving_norm (as, lm) (s, l, Bk # r) ires |
|
1949 = False" |
|
1950 apply(auto simp: inv_on_left_moving_norm.simps) |
|
1951 apply(case_tac [!] mr, auto simp: ) |
|
1952 done |
|
1953 |
|
1954 lemma [intro]: "\<exists>rna. Oc # Oc\<^bsup>m\<^esup> @ Bk # <lm> @ Bk\<^bsup>rn\<^esup> = <m # lm> @ Bk\<^bsup>rna\<^esup>" |
|
1955 apply(case_tac lm, simp add: tape_of_nl_abv tape_of_nat_list.simps) |
|
1956 apply(rule_tac x = "Suc rn" in exI, simp) |
|
1957 apply(case_tac list, simp_all add: tape_of_nl_abv tape_of_nat_list.simps, auto) |
|
1958 done |
|
1959 |
|
1960 |
|
1961 lemma [simp]: |
|
1962 "\<lbrakk>inv_on_left_moving_norm (as, lm) (s, l, Oc # r) ires; |
|
1963 hd l = Bk; l \<noteq> []\<rbrakk> \<Longrightarrow> |
|
1964 inv_on_left_moving_in_middle_B (as, lm) (s, tl l, Bk # Oc # r) ires" |
|
1965 apply(case_tac l, simp, simp) |
|
1966 apply(simp only: inv_on_left_moving_norm.simps |
|
1967 inv_on_left_moving_in_middle_B.simps) |
|
1968 apply(erule_tac exE)+ |
|
1969 apply(rule_tac x = lm1 in exI, rule_tac x = "m # lm2" in exI, auto) |
|
1970 apply(case_tac [!] ml, auto) |
|
1971 apply(rule_tac [!] x = 0 in exI, simp_all add: tape_of_nl_abv tape_of_nat_list.simps) |
|
1972 done |
|
1973 |
|
1974 lemma [simp]: "\<lbrakk>inv_on_left_moving_norm (as, lm) (s, l, Oc # r) ires; |
|
1975 hd l = Oc; l \<noteq> []\<rbrakk> |
|
1976 \<Longrightarrow> inv_on_left_moving_norm (as, lm) |
|
1977 (s, tl l, Oc # Oc # r) ires" |
|
1978 apply(simp only: inv_on_left_moving_norm.simps) |
|
1979 apply(erule exE)+ |
|
1980 apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI, |
|
1981 rule_tac x = m in exI, rule_tac x = "ml - 1" in exI, |
|
1982 rule_tac x = "Suc mr" in exI, rule_tac x = rn in exI, simp) |
|
1983 apply(case_tac ml, auto simp: exponent_def split: if_splits) |
|
1984 done |
|
1985 |
|
1986 lemma [simp]: "inv_on_left_moving_norm (as, lm) (s, [], Oc # r) ires |
|
1987 \<Longrightarrow> inv_on_left_moving_in_middle_B (as, lm) (s, [], Bk # Oc # r) ires" |
|
1988 apply(auto simp: inv_on_left_moving_norm.simps |
|
1989 inv_on_left_moving_in_middle_B.simps split: if_splits) |
|
1990 done |
|
1991 |
|
1992 lemma [simp]:"inv_on_left_moving (as, lm) (s, l, Oc # r) ires |
|
1993 \<Longrightarrow> (l = [] \<longrightarrow> inv_on_left_moving (as, lm) (s, [], Bk # Oc # r) ires) |
|
1994 \<and> (l \<noteq> [] \<longrightarrow> inv_on_left_moving (as, lm) (s, tl l, hd l # Oc # r) ires)" |
|
1995 apply(simp add: inv_on_left_moving.simps) |
|
1996 apply(case_tac "l \<noteq> []", rule conjI, simp, simp) |
|
1997 apply(case_tac "hd l", simp, simp, simp) |
|
1998 done |
|
1999 |
|
2000 (*inv: from on_left_moving to check_left_moving*) |
|
2001 lemma [simp]: "inv_on_left_moving_in_middle_B (as, lm) |
|
2002 (s, Bk # list, Bk # r) ires |
|
2003 \<Longrightarrow> inv_check_left_moving_on_leftmost (as, lm) |
|
2004 (s', list, Bk # Bk # r) ires" |
|
2005 apply(auto simp: inv_on_left_moving_in_middle_B.simps |
|
2006 inv_check_left_moving_on_leftmost.simps split: if_splits) |
|
2007 apply(case_tac [!] "rev lm1", simp_all) |
|
2008 apply(case_tac [!] lista, simp_all add: tape_of_nl_abv tape_of_nat_list.simps) |
|
2009 done |
|
2010 |
|
2011 lemma [simp]: |
|
2012 "inv_check_left_moving_in_middle (as, lm) (s, l, Bk # r) ires= False" |
|
2013 by(auto simp: inv_check_left_moving_in_middle.simps ) |
|
2014 |
|
2015 lemma [simp]: |
|
2016 "inv_on_left_moving_in_middle_B (as, lm) (s, [], Bk # r) ires\<Longrightarrow> |
|
2017 inv_check_left_moving_on_leftmost (as, lm) (s', [], Bk # Bk # r) ires" |
|
2018 apply(auto simp: inv_on_left_moving_in_middle_B.simps |
|
2019 inv_check_left_moving_on_leftmost.simps split: if_splits) |
|
2020 done |
|
2021 |
|
2022 |
|
2023 lemma [simp]: "inv_check_left_moving_on_leftmost (as, lm) |
|
2024 (s, list, Oc # r) ires= False" |
|
2025 by(auto simp: inv_check_left_moving_on_leftmost.simps split: if_splits) |
|
2026 |
|
2027 lemma [simp]: "inv_on_left_moving_in_middle_B (as, lm) |
|
2028 (s, Oc # list, Bk # r) ires |
|
2029 \<Longrightarrow> inv_check_left_moving_in_middle (as, lm) (s', list, Oc # Bk # r) ires" |
|
2030 apply(auto simp: inv_on_left_moving_in_middle_B.simps |
|
2031 inv_check_left_moving_in_middle.simps split: if_splits) |
|
2032 done |
|
2033 |
|
2034 lemma inv_on_left_moving_2_check_left_moving[simp]: |
|
2035 "inv_on_left_moving (as, lm) (s, l, Bk # r) ires |
|
2036 \<Longrightarrow> (l = [] \<longrightarrow> inv_check_left_moving (as, lm) (s', [], Bk # Bk # r) ires) |
|
2037 \<and> (l \<noteq> [] \<longrightarrow> |
|
2038 inv_check_left_moving (as, lm) (s', tl l, hd l # Bk # r) ires)" |
|
2039 apply(simp add: inv_on_left_moving.simps inv_check_left_moving.simps) |
|
2040 apply(case_tac l, simp, simp) |
|
2041 apply(case_tac a, simp, simp) |
|
2042 done |
|
2043 |
|
2044 lemma [simp]: "inv_on_left_moving_norm (as, lm) (s, l, []) ires = False" |
|
2045 apply(auto simp: inv_on_left_moving_norm.simps) |
|
2046 by(case_tac [!] mr, auto) |
|
2047 |
|
2048 lemma [simp]: "inv_on_left_moving (as, lm) (s, l, []) ires\<Longrightarrow> |
|
2049 inv_on_left_moving (as, lm) (6 + 2 * n, l, [Bk]) ires" |
|
2050 apply(simp add: inv_on_left_moving.simps) |
|
2051 apply(auto simp: inv_on_left_moving_in_middle_B.simps) |
|
2052 done |
|
2053 |
|
2054 lemma [simp]: "inv_on_left_moving (as, lm) (s, l, []) ires = False" |
|
2055 apply(simp add: inv_on_left_moving.simps) |
|
2056 apply(simp add: inv_on_left_moving_in_middle_B.simps) |
|
2057 done |
|
2058 |
|
2059 lemma [simp]: "inv_on_left_moving (as, lm) (s, l, []) ires |
|
2060 \<Longrightarrow> (l = [] \<longrightarrow> inv_check_left_moving (as, lm) (s', [], [Bk]) ires) \<and> |
|
2061 (l \<noteq> [] \<longrightarrow> inv_check_left_moving (as, lm) (s', tl l, [hd l]) ires)" |
|
2062 by simp |
|
2063 |
|
2064 lemma Oc_Bk_Cons_ex[simp]: |
|
2065 "Oc # Bk # list = <lm::nat list> @ Bk\<^bsup>ln\<^esup> \<Longrightarrow> |
|
2066 \<exists>ln. list = <tl (lm)> @ Bk\<^bsup>ln\<^esup>" |
|
2067 apply(case_tac "lm", simp) |
|
2068 apply(case_tac ln, simp_all add: exponent_def) |
|
2069 apply(case_tac lista, |
|
2070 auto simp: tape_of_nl_abv tape_of_nat_list.simps exponent_def) |
|
2071 apply(case_tac [!] a, auto simp: ) |
|
2072 apply(case_tac ln, simp, rule_tac x = nat in exI, simp) |
|
2073 done |
|
2074 |
|
2075 lemma [simp]: |
|
2076 "Oc # Bk # list = <rev lm1::nat list> @ Bk\<^bsup>ln\<^esup> \<Longrightarrow> |
|
2077 \<exists>rna. Oc # Bk # <lm2> @ Bk\<^bsup>rn\<^esup> = <hd (rev lm1) # lm2> @ Bk\<^bsup>rna\<^esup>" |
|
2078 apply(frule Oc_Bk_Cons, simp) |
|
2079 apply(case_tac lm2, |
|
2080 auto simp: tape_of_nl_abv tape_of_nat_list.simps exponent_def ) |
|
2081 apply(rule_tac x = "Suc rn" in exI, simp) |
|
2082 done |
|
2083 |
|
2084 (*inv: from check_left_moving to on_left_moving*) |
|
2085 lemma [intro]: "\<exists>rna. a # a\<^bsup>rn\<^esup> = a\<^bsup>rna\<^esup>" |
|
2086 apply(rule_tac x = "Suc rn" in exI, simp) |
|
2087 done |
|
2088 |
|
2089 lemma |
|
2090 inv_check_left_moving_in_middle_2_on_left_moving_in_middle_B[simp]: |
|
2091 "inv_check_left_moving_in_middle (as, lm) (s, Bk # list, Oc # r) ires |
|
2092 \<Longrightarrow> inv_on_left_moving_in_middle_B (as, lm) (s', list, Bk # Oc # r) ires" |
|
2093 apply(simp only: inv_check_left_moving_in_middle.simps |
|
2094 inv_on_left_moving_in_middle_B.simps) |
|
2095 apply(erule_tac exE)+ |
|
2096 apply(rule_tac x = "rev (tl (rev lm1))" in exI, |
|
2097 rule_tac x = "[hd (rev lm1)] @ lm2" in exI, auto) |
|
2098 apply(case_tac [!] "rev lm1",simp_all add: tape_of_nl_abv tape_of_nat_list.simps) |
|
2099 apply(case_tac [!] a, simp_all) |
|
2100 apply(case_tac [1] lm2, simp_all add: tape_of_nat_list.simps, auto) |
|
2101 apply(case_tac [3] lm2, simp_all add: tape_of_nat_list.simps, auto) |
|
2102 apply(case_tac [!] lista, simp_all add: tape_of_nat_list.simps) |
|
2103 done |
|
2104 |
|
2105 lemma [simp]: |
|
2106 "inv_check_left_moving_in_middle (as, lm) (s, [], Oc # r) ires\<Longrightarrow> |
|
2107 inv_check_left_moving_in_middle (as, lm) (s', [Bk], Oc # r) ires" |
|
2108 apply(auto simp: inv_check_left_moving_in_middle.simps ) |
|
2109 done |
|
2110 |
|
2111 lemma [simp]: |
|
2112 "inv_check_left_moving_in_middle (as, lm) (s, [], Oc # r) ires |
|
2113 \<Longrightarrow> inv_on_left_moving_in_middle_B (as, lm) (s', [], Bk # Oc # r) ires" |
|
2114 apply(insert |
|
2115 inv_check_left_moving_in_middle_2_on_left_moving_in_middle_B[of |
|
2116 as lm n "[]" r], simp) |
|
2117 done |
|
2118 |
|
2119 lemma [simp]: "a\<^bsup>0\<^esup> = []" |
|
2120 apply(simp add: exponent_def) |
|
2121 done |
|
2122 |
|
2123 lemma [simp]: "inv_check_left_moving_in_middle (as, lm) |
|
2124 (s, Oc # list, Oc # r) ires |
|
2125 \<Longrightarrow> inv_on_left_moving_norm (as, lm) (s', list, Oc # Oc # r) ires" |
|
2126 apply(auto simp: inv_check_left_moving_in_middle.simps |
|
2127 inv_on_left_moving_norm.simps) |
|
2128 apply(rule_tac x = "rev (tl (rev lm1))" in exI, |
|
2129 rule_tac x = lm2 in exI, rule_tac x = "hd (rev lm1)" in exI) |
|
2130 apply(rule_tac conjI) |
|
2131 apply(case_tac "rev lm1", simp, simp) |
|
2132 apply(rule_tac x = "hd (rev lm1) - 1" in exI, auto) |
|
2133 apply(rule_tac [!] x = "Suc (Suc 0)" in exI, simp) |
|
2134 apply(case_tac [!] "rev lm1", simp_all) |
|
2135 apply(case_tac [!] a, simp_all add: tape_of_nl_abv tape_of_nat_list.simps, auto) |
|
2136 done |
|
2137 |
|
2138 lemma [simp]: "inv_check_left_moving (as, lm) (s, l, Oc # r) ires |
|
2139 \<Longrightarrow> (l = [] \<longrightarrow> inv_on_left_moving (as, lm) (s', [], Bk # Oc # r) ires) \<and> |
|
2140 (l \<noteq> [] \<longrightarrow> inv_on_left_moving (as, lm) (s', tl l, hd l # Oc # r) ires)" |
|
2141 apply(case_tac l, |
|
2142 auto simp: inv_check_left_moving.simps inv_on_left_moving.simps) |
|
2143 apply(case_tac a, simp, simp) |
|
2144 done |
|
2145 |
|
2146 (*inv: check_left_moving to after_left_moving*) |
|
2147 lemma [simp]: "inv_check_left_moving (as, lm) (s, l, Bk # r) ires |
|
2148 \<Longrightarrow> inv_after_left_moving (as, lm) (s', Bk # l, r) ires" |
|
2149 apply(auto simp: inv_check_left_moving.simps |
|
2150 inv_check_left_moving_on_leftmost.simps inv_after_left_moving.simps) |
|
2151 done |
|
2152 |
|
2153 |
|
2154 lemma [simp]:"inv_check_left_moving (as, lm) (s, l, []) ires |
|
2155 \<Longrightarrow> inv_after_left_moving (as, lm) (s', Bk # l, []) ires" |
|
2156 by(simp add: inv_check_left_moving.simps |
|
2157 inv_check_left_moving_in_middle.simps |
|
2158 inv_check_left_moving_on_leftmost.simps) |
|
2159 |
|
2160 (*inv: after_left_moving to inv_stop*) |
|
2161 lemma [simp]: "inv_after_left_moving (as, lm) (s, l, Bk # r) ires |
|
2162 \<Longrightarrow> inv_stop (as, lm) (s', Bk # l, r) ires" |
|
2163 apply(auto simp: inv_after_left_moving.simps inv_stop.simps) |
|
2164 done |
|
2165 |
|
2166 lemma [simp]: "inv_after_left_moving (as, lm) (s, l, []) ires |
|
2167 \<Longrightarrow> inv_stop (as, lm) (s', Bk # l, []) ires" |
|
2168 by(auto simp: inv_after_left_moving.simps) |
|
2169 |
|
2170 (*inv: stop to stop*) |
|
2171 lemma [simp]: "inv_stop (as, lm) (x, l, r) ires \<Longrightarrow> |
|
2172 inv_stop (as, lm) (y, l, r) ires" |
|
2173 apply(simp add: inv_stop.simps) |
|
2174 done |
|
2175 |
|
2176 lemma [simp]: "inv_after_clear (as, lm) (s, aaa, Oc # xs) ires= False" |
|
2177 apply(auto simp: inv_after_clear.simps ) |
|
2178 done |
|
2179 |
|
2180 lemma [simp]: |
|
2181 "inv_after_left_moving (as, lm) (s, aaa, Oc # xs) ires = False" |
|
2182 by(auto simp: inv_after_left_moving.simps ) |
|
2183 |
|
2184 lemma start_of_not0: "as \<noteq> 0 \<Longrightarrow> start_of ly as > 0" |
|
2185 apply(rule startof_not0) |
|
2186 done |
|
2187 |
|
2188 text {* |
|
2189 The single step currectness of the TM complied from Abacus instruction @{text "Inc n"}. |
|
2190 It shows every single step execution of this TM keeps the invariant. |
|
2191 *} |
|
2192 |
|
2193 lemma inc_inv_step: |
|
2194 assumes |
|
2195 -- {* Invariant holds on the start *} |
|
2196 h11: "inc_inv ly n (as, am) tc ires" |
|
2197 -- {* The layout of Abacus program @{text "aprog"} is @{text "ly"} *} |
|
2198 and h12: "ly = layout_of aprog" |
|
2199 -- {* The instruction at position @{text "as"} is @{text "Inc n"} *} |
|
2200 and h21: "abc_fetch as aprog = Some (Inc n)" |
|
2201 -- {* TM not yet reach the final state, where @{text "start_of ly as + 2*n + 9"} is the state |
|
2202 where the current TM stops and the next TM starts. *} |
|
2203 and h22: "(\<lambda> (s, l, r). s \<noteq> start_of ly as + 2*n + 9) tc" |
|
2204 shows |
|
2205 -- {* |
|
2206 Single step execution of the TM keeps the invaraint, where |
|
2207 the TM compiled from @{text "Inc n"} is @{text "(ci ly (start_of ly as) (Inc n))"} |
|
2208 @{text "start_of ly as - Suc 0)"} is the offset used to execute this {\em shifted} |
|
2209 TM. |
|
2210 *} |
|
2211 "inc_inv ly n (as, am) (t_step tc (ci ly (start_of ly as) (Inc n), start_of ly as - Suc 0)) ires" |
|
2212 proof - |
|
2213 from h21 h22 have h3 : "start_of (layout_of aprog) as > 0" |
|
2214 apply(case_tac as, simp add: start_of.simps abc_fetch.simps) |
|
2215 apply(insert start_of_not0[of as "layout_of aprog"], simp) |
|
2216 done |
|
2217 from h11 h12 and h21 h22 and this show ?thesis |
|
2218 apply(case_tac tc, simp) |
|
2219 apply(case_tac "a = 0", |
|
2220 auto split:if_splits simp add:t_step.simps, |
|
2221 tactic {* ALLGOALS (resolve_tac [@{thm fetch_intro}]) *}) |
|
2222 apply (simp_all add:fetch_simps new_tape.simps) |
|
2223 done |
|
2224 qed |
|
2225 |
|
2226 |
|
2227 lemma t_steps_ind: "t_steps tc (p, off) (Suc n) |
|
2228 = t_step (t_steps tc (p, off) n) (p, off)" |
|
2229 apply(induct n arbitrary: tc) |
|
2230 apply(simp add: t_steps.simps) |
|
2231 apply(simp add: t_steps.simps) |
|
2232 done |
|
2233 |
|
2234 definition lex_pair :: "((nat \<times> nat) \<times> (nat \<times> nat)) set" |
|
2235 where |
|
2236 "lex_pair \<equiv> less_than <*lex*> less_than" |
|
2237 |
|
2238 definition lex_triple :: |
|
2239 "((nat \<times> (nat \<times> nat)) \<times> (nat \<times> (nat \<times> nat))) set" |
|
2240 where "lex_triple \<equiv> less_than <*lex*> lex_pair" |
|
2241 |
|
2242 definition lex_square :: |
|
2243 "((nat \<times> nat \<times> nat \<times> nat) \<times> (nat \<times> nat \<times> nat \<times> nat)) set" |
|
2244 where "lex_square \<equiv> less_than <*lex*> lex_triple" |
|
2245 |
|
2246 fun abc_inc_stage1 :: "t_conf \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat" |
|
2247 where |
|
2248 "abc_inc_stage1 (s, l, r) ss n = |
|
2249 (if s = 0 then 0 |
|
2250 else if s \<le> ss+2*n+1 then 5 |
|
2251 else if s\<le> ss+2*n+5 then 4 |
|
2252 else if s \<le> ss+2*n+7 then 3 |
|
2253 else if s = ss+2*n+8 then 2 |
|
2254 else 1)" |
|
2255 |
|
2256 fun abc_inc_stage2 :: "t_conf \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat" |
|
2257 where |
|
2258 "abc_inc_stage2 (s, l, r) ss n = |
|
2259 (if s \<le> ss + 2*n + 1 then 0 |
|
2260 else if s = ss + 2*n + 2 then length r |
|
2261 else if s = ss + 2*n + 3 then length r |
|
2262 else if s = ss + 2*n + 4 then length r |
|
2263 else if s = ss + 2*n + 5 then |
|
2264 if r \<noteq> [] then length r |
|
2265 else 1 |
|
2266 else if s = ss+2*n+6 then length l |
|
2267 else if s = ss+2*n+7 then length l |
|
2268 else 0)" |
|
2269 |
|
2270 fun abc_inc_stage3 :: "t_conf \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> block list \<Rightarrow> nat" |
|
2271 where |
|
2272 "abc_inc_stage3 (s, l, r) ss n ires = ( |
|
2273 if s = ss + 2*n + 3 then 4 |
|
2274 else if s = ss + 2*n + 4 then 3 |
|
2275 else if s = ss + 2*n + 5 then |
|
2276 if r \<noteq> [] \<and> hd r = Oc then 2 |
|
2277 else 1 |
|
2278 else if s = ss + 2*n + 2 then 0 |
|
2279 else if s = ss + 2*n + 6 then |
|
2280 if l = Bk # ires \<and> r \<noteq> [] \<and> hd r = Oc then 2 |
|
2281 else 1 |
|
2282 else if s = ss + 2*n + 7 then |
|
2283 if r \<noteq> [] \<and> hd r = Oc then 3 |
|
2284 else 0 |
|
2285 else ss+2*n+9 - s)" |
|
2286 |
|
2287 fun abc_inc_stage4 :: "t_conf \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> block list \<Rightarrow> nat" |
|
2288 where |
|
2289 "abc_inc_stage4 (s, l, r) ss n ires = |
|
2290 (if s \<le> ss+2*n+1 \<and> (s - ss) mod 2 = 0 then |
|
2291 if (r\<noteq>[] \<and> hd r = Oc) then 0 |
|
2292 else 1 |
|
2293 else if (s \<le> ss+2*n+1 \<and> (s - ss) mod 2 = Suc 0) |
|
2294 then length r |
|
2295 else if s = ss + 2*n + 6 then |
|
2296 if l = Bk # ires \<and> hd r = Bk then 0 |
|
2297 else Suc (length l) |
|
2298 else 0)" |
|
2299 |
|
2300 fun abc_inc_measure :: "(t_conf \<times> nat \<times> nat \<times> block list) \<Rightarrow> |
|
2301 (nat \<times> nat \<times> nat \<times> nat)" |
|
2302 where |
|
2303 "abc_inc_measure (c, ss, n, ires) = |
|
2304 (abc_inc_stage1 c ss n, abc_inc_stage2 c ss n, |
|
2305 abc_inc_stage3 c ss n ires, abc_inc_stage4 c ss n ires)" |
|
2306 |
|
2307 definition abc_inc_LE :: "(((nat \<times> block list \<times> block list) \<times> nat \<times> |
|
2308 nat \<times> block list) \<times> ((nat \<times> block list \<times> block list) \<times> nat \<times> nat \<times> block list)) set" |
|
2309 where "abc_inc_LE \<equiv> (inv_image lex_square abc_inc_measure)" |
|
2310 |
|
2311 lemma wf_lex_triple: "wf lex_triple" |
|
2312 by (auto intro:wf_lex_prod simp:lex_triple_def lex_pair_def) |
|
2313 |
|
2314 lemma wf_lex_square: "wf lex_square" |
|
2315 by (auto intro:wf_lex_triple simp:lex_triple_def lex_square_def lex_pair_def) |
|
2316 |
|
2317 lemma wf_abc_inc_le[intro]: "wf abc_inc_LE" |
|
2318 by(auto intro:wf_inv_image wf_lex_square simp:abc_inc_LE_def) |
|
2319 |
|
2320 (********************************************************************) |
|
2321 declare inc_inv.simps[simp del] |
|
2322 |
|
2323 lemma halt_lemma2': |
|
2324 "\<lbrakk>wf LE; \<forall> n. ((\<not> P (f n) \<and> Q (f n)) \<longrightarrow> |
|
2325 (Q (f (Suc n)) \<and> (f (Suc n), (f n)) \<in> LE)); Q (f 0)\<rbrakk> |
|
2326 \<Longrightarrow> \<exists> n. P (f n)" |
|
2327 apply(intro exCI, simp) |
|
2328 apply(subgoal_tac "\<forall> n. Q (f n)", simp) |
|
2329 apply(drule_tac f = f in wf_inv_image) |
|
2330 apply(simp add: inv_image_def) |
|
2331 apply(erule wf_induct, simp) |
|
2332 apply(erule_tac x = x in allE) |
|
2333 apply(erule_tac x = n in allE, erule_tac x = n in allE) |
|
2334 apply(erule_tac x = "Suc x" in allE, simp) |
|
2335 apply(rule_tac allI) |
|
2336 apply(induct_tac n, simp) |
|
2337 apply(erule_tac x = na in allE, simp) |
|
2338 done |
|
2339 |
|
2340 lemma halt_lemma2'': |
|
2341 "\<lbrakk>P (f n); \<not> P (f (0::nat))\<rbrakk> \<Longrightarrow> |
|
2342 \<exists> n. (P (f n) \<and> (\<forall> i < n. \<not> P (f i)))" |
|
2343 apply(induct n rule: nat_less_induct, auto) |
|
2344 done |
|
2345 |
|
2346 lemma halt_lemma2''': |
|
2347 "\<lbrakk>\<forall>n. \<not> P (f n) \<and> Q (f n) \<longrightarrow> Q (f (Suc n)) \<and> (f (Suc n), f n) \<in> LE; |
|
2348 Q (f 0); \<forall>i<na. \<not> P (f i)\<rbrakk> \<Longrightarrow> Q (f na)" |
|
2349 apply(induct na, simp, simp) |
|
2350 done |
|
2351 |
|
2352 lemma halt_lemma2: |
|
2353 "\<lbrakk>wf LE; |
|
2354 \<forall> n. ((\<not> P (f n) \<and> Q (f n)) \<longrightarrow> (Q (f (Suc n)) \<and> (f (Suc n), (f n)) \<in> LE)); |
|
2355 Q (f 0); \<not> P (f 0)\<rbrakk> |
|
2356 \<Longrightarrow> \<exists> n. P (f n) \<and> Q (f n)" |
|
2357 apply(insert halt_lemma2' [of LE P f Q], simp, erule_tac exE) |
|
2358 apply(subgoal_tac "\<exists> n. (P (f n) \<and> (\<forall> i < n. \<not> P (f i)))") |
|
2359 apply(erule_tac exE)+ |
|
2360 apply(rule_tac x = na in exI, auto) |
|
2361 apply(rule halt_lemma2''', simp, simp, simp) |
|
2362 apply(erule_tac halt_lemma2'', simp) |
|
2363 done |
|
2364 |
|
2365 lemma [simp]: |
|
2366 "\<lbrakk>ly = layout_of aprog; abc_fetch as aprog = Some (Inc n)\<rbrakk> |
|
2367 \<Longrightarrow> start_of ly (Suc as) = start_of ly as + 2*n +9" |
|
2368 apply(case_tac as, auto simp: abc_fetch.simps start_of.simps |
|
2369 layout_of.simps length_of.simps split: if_splits) |
|
2370 done |
|
2371 |
|
2372 lemma inc_inv_init: |
|
2373 "\<lbrakk>abc_fetch as aprog = Some (Inc n); |
|
2374 crsp_l ly (as, am) (start_of ly as, l, r) ires; ly = layout_of aprog\<rbrakk> |
|
2375 \<Longrightarrow> inc_inv ly n (as, am) (start_of ly as, l, r) ires" |
|
2376 apply(auto simp: crsp_l.simps inc_inv.simps |
|
2377 inv_locate_a.simps at_begin_fst_bwtn.simps |
|
2378 at_begin_fst_awtn.simps at_begin_norm.simps ) |
|
2379 apply(auto intro: startof_not0) |
|
2380 done |
|
2381 |
|
2382 lemma inc_inv_stop_pre[simp]: |
|
2383 "\<lbrakk>ly = layout_of aprog; inc_inv ly n (as, am) (s, l, r) ires; |
|
2384 s = start_of ly as; abc_fetch as aprog = Some (Inc n)\<rbrakk> |
|
2385 \<Longrightarrow> (\<forall>na. \<not> (\<lambda>((s, l, r), ss, n', ires'). s = start_of ly (Suc as)) |
|
2386 (t_steps (s, l, r) (ci ly (start_of ly as) |
|
2387 (Inc n), start_of ly as - Suc 0) na, s, n, ires) \<and> |
|
2388 (\<lambda>((s, l, r), ss, n', ires'). inc_inv ly n (as, am) (s, l, r) ires') |
|
2389 (t_steps (s, l, r) (ci ly (start_of ly as) |
|
2390 (Inc n), start_of ly as - Suc 0) na, s, n, ires) \<longrightarrow> |
|
2391 (\<lambda>((s, l, r), ss, n', ires'). inc_inv ly n (as, am) (s, l, r) ires') |
|
2392 (t_steps (s, l, r) (ci ly (start_of ly as) |
|
2393 (Inc n), start_of ly as - Suc 0) (Suc na), s, n, ires) \<and> |
|
2394 ((t_steps (s, l, r) (ci ly (start_of ly as) (Inc n), |
|
2395 start_of ly as - Suc 0) (Suc na), s, n, ires), |
|
2396 t_steps (s, l, r) (ci ly (start_of ly as) |
|
2397 (Inc n), start_of ly as - Suc 0) na, s, n, ires) \<in> abc_inc_LE)" |
|
2398 apply(rule allI, rule impI, simp add: t_steps_ind, |
|
2399 rule conjI, erule_tac conjE) |
|
2400 apply(rule_tac inc_inv_step, simp, simp, simp) |
|
2401 apply(case_tac "t_steps (start_of (layout_of aprog) as, l, r) (ci (layout_of aprog) |
|
2402 (start_of (layout_of aprog) as) (Inc n), start_of (layout_of aprog) as - Suc 0) na", simp) |
|
2403 proof - |
|
2404 fix na |
|
2405 assume h1: "abc_fetch as aprog = Some (Inc n)" |
|
2406 "\<not> (\<lambda>(s, l, r) (ss, n', ires'). s = start_of (layout_of aprog) as + 2 * n + 9) |
|
2407 (t_steps (start_of (layout_of aprog) as, l, r) (ci (layout_of aprog) |
|
2408 (start_of (layout_of aprog) as) (Inc n), start_of (layout_of aprog) as - Suc 0) na) |
|
2409 (start_of (layout_of aprog) as, n, ires) \<and> |
|
2410 inc_inv (layout_of aprog) n (as, am) (t_steps (start_of (layout_of aprog) as, l, r) |
|
2411 (ci (layout_of aprog) (start_of (layout_of aprog) as) (Inc n), start_of (layout_of aprog) as - Suc 0) na) ires" |
|
2412 from h1 have h2: "start_of (layout_of aprog) as > 0" |
|
2413 apply(rule_tac startof_not0) |
|
2414 done |
|
2415 from h1 and h2 show "((t_step (t_steps (start_of (layout_of aprog) as, l, r) (ci (layout_of aprog) |
|
2416 (start_of (layout_of aprog) as) (Inc n), start_of (layout_of aprog) as - Suc 0) na) |
|
2417 (ci (layout_of aprog) (start_of (layout_of aprog) as) (Inc n), start_of (layout_of aprog) as - Suc 0), |
|
2418 start_of (layout_of aprog) as, n, ires), |
|
2419 t_steps (start_of (layout_of aprog) as, l, r) |
|
2420 (ci (layout_of aprog) (start_of (layout_of aprog) as) (Inc n), start_of (layout_of aprog) as - Suc 0) na, |
|
2421 start_of (layout_of aprog) as, n, ires) |
|
2422 \<in> abc_inc_LE" |
|
2423 apply(case_tac "(t_steps (start_of (layout_of aprog) as, l, r) |
|
2424 (ci (layout_of aprog) |
|
2425 (start_of (layout_of aprog) as) (Inc n), |
|
2426 start_of (layout_of aprog) as - Suc 0) na)", simp) |
|
2427 apply(case_tac "a = 0", |
|
2428 auto split:if_splits simp add:t_step.simps inc_inv.simps, |
|
2429 tactic {* ALLGOALS (resolve_tac [@{thm fetch_intro}]) *}) |
|
2430 apply(simp_all add:fetch_simps new_tape.simps) |
|
2431 apply(auto simp add: abc_inc_LE_def |
|
2432 lex_square_def lex_triple_def lex_pair_def |
|
2433 inv_after_write.simps inv_after_move.simps inv_after_clear.simps |
|
2434 inv_on_left_moving.simps inv_on_left_moving_norm.simps split: if_splits) |
|
2435 done |
|
2436 qed |
|
2437 |
|
2438 lemma inc_inv_stop_pre1: |
|
2439 "\<lbrakk> |
|
2440 ly = layout_of aprog; |
|
2441 abc_fetch as aprog = Some (Inc n); |
|
2442 s = start_of ly as; |
|
2443 inc_inv ly n (as, am) (s, l, r) ires |
|
2444 \<rbrakk> \<Longrightarrow> |
|
2445 (\<exists> stp > 0. (\<lambda> (s', l', r'). |
|
2446 s' = start_of ly (Suc as) \<and> |
|
2447 inc_inv ly n (as, am) (s', l', r') ires) |
|
2448 (t_steps (s, l, r) (ci ly (start_of ly as) (Inc n), |
|
2449 start_of ly as - Suc 0) stp))" |
|
2450 apply(insert halt_lemma2[of abc_inc_LE |
|
2451 "\<lambda> ((s, l, r), ss, n', ires'). s = start_of ly (Suc as)" |
|
2452 "(\<lambda> stp. (t_steps (s, l, r) |
|
2453 (ci ly (start_of ly as) (Inc n), |
|
2454 start_of ly as - Suc 0) stp, s, n, ires))" |
|
2455 "\<lambda> ((s, l, r), ss, n'). inc_inv ly n (as, am) (s, l, r) ires"]) |
|
2456 apply(insert wf_abc_inc_le) |
|
2457 apply(insert inc_inv_stop_pre[of ly aprog n as am s l r ires], simp) |
|
2458 apply(simp only: t_steps.simps, auto) |
|
2459 apply(rule_tac x = na in exI) |
|
2460 apply(case_tac "(t_steps (start_of (layout_of aprog) as, l, r) |
|
2461 (ci (layout_of aprog) (start_of (layout_of aprog) as) |
|
2462 (Inc n), start_of (layout_of aprog) as - Suc 0) na)", simp) |
|
2463 apply(case_tac na, simp add: t_steps.simps, simp) |
|
2464 done |
|
2465 |
|
2466 lemma inc_inv_stop: |
|
2467 assumes program_and_layout: |
|
2468 -- {* There is an Abacus program @{text "aprog"} and its layout is @{text "ly"}: *} |
|
2469 "ly = layout_of aprog" |
|
2470 and an_instruction: |
|
2471 -- {* There is an instruction @{text "Inc n"} at postion @{text "as"} of @{text "aprog"} *} |
|
2472 "abc_fetch as aprog = Some (Inc n)" |
|
2473 and the_start_state: |
|
2474 -- {* According to @{text "ly"} and @{text "as"}, |
|
2475 the start state of the TM compiled from this |
|
2476 @{text "Inc n"} instruction should be @{text "s"}: |
|
2477 *} |
|
2478 "s = start_of ly as" |
|
2479 and inv: |
|
2480 -- {* Invariant holds on configuration @{text "(s, l, r)"} *} |
|
2481 "inc_inv ly n (as, am) (s, l, r) ires" |
|
2482 shows -- {* After @{text "stp"} steps of execution, the compiled |
|
2483 TM reaches the start state of next compiled TM and the invariant |
|
2484 still holds. |
|
2485 *} |
|
2486 "(\<exists> stp > 0. (\<lambda> (s', l', r'). |
|
2487 s' = start_of ly (Suc as) \<and> |
|
2488 inc_inv ly n (as, am) (s', l', r') ires) |
|
2489 (t_steps (s, l, r) (ci ly (start_of ly as) (Inc n), |
|
2490 start_of ly as - Suc 0) stp))" |
|
2491 proof - |
|
2492 from inc_inv_stop_pre1 [OF program_and_layout an_instruction the_start_state inv] |
|
2493 show ?thesis . |
|
2494 qed |
|
2495 |
|
2496 lemma inc_inv_stop_cond: |
|
2497 "\<lbrakk>ly = layout_of aprog; |
|
2498 s' = start_of ly (as + 1); |
|
2499 inc_inv ly n (as, lm) (s', (l', r')) ires; |
|
2500 abc_fetch as aprog = Some (Inc n)\<rbrakk> \<Longrightarrow> |
|
2501 crsp_l ly (Suc as, abc_lm_s lm n (Suc (abc_lm_v lm n))) |
|
2502 (s', l', r') ires" |
|
2503 apply(subgoal_tac "s' = start_of ly as + 2*n + 9", simp) |
|
2504 apply(auto simp: inc_inv.simps inv_stop.simps crsp_l.simps ) |
|
2505 done |
|
2506 |
|
2507 lemma inc_crsp_ex_pre: |
|
2508 "\<lbrakk>ly = layout_of aprog; |
|
2509 crsp_l ly (as, am) tc ires; |
|
2510 abc_fetch as aprog = Some (Inc n)\<rbrakk> |
|
2511 \<Longrightarrow> \<exists>stp > 0. crsp_l ly (abc_step_l (as, am) (Some (Inc n))) |
|
2512 (t_steps tc (ci ly (start_of ly as) (Inc n), |
|
2513 start_of ly as - Suc 0) stp) ires" |
|
2514 proof(case_tac tc, simp add: abc_step_l.simps) |
|
2515 fix a b c |
|
2516 assume h1: "ly = layout_of aprog" |
|
2517 "crsp_l (layout_of aprog) (as, am) (a, b, c) ires" |
|
2518 "abc_fetch as aprog = Some (Inc n)" |
|
2519 hence h2: "a = start_of ly as" |
|
2520 by(auto simp: crsp_l.simps) |
|
2521 from h1 and h2 have h3: |
|
2522 "inc_inv ly n (as, am) (start_of ly as, b, c) ires" |
|
2523 by(rule_tac inc_inv_init, simp, simp, simp) |
|
2524 from h1 and h2 and h3 have h4: |
|
2525 "(\<exists> stp > 0. (\<lambda> (s', l', r'). s' = |
|
2526 start_of ly (Suc as) \<and> inc_inv ly n (as, am) (s', l', r') ires) |
|
2527 (t_steps (a, b, c) (ci ly (start_of ly as) |
|
2528 (Inc n), start_of ly as - Suc 0) stp))" |
|
2529 apply(rule_tac inc_inv_stop, auto) |
|
2530 done |
|
2531 from h1 and h2 and h3 and h4 show |
|
2532 "\<exists>stp > 0. crsp_l (layout_of aprog) |
|
2533 (Suc as, abc_lm_s am n (Suc (abc_lm_v am n))) |
|
2534 (t_steps (a, b, c) (ci (layout_of aprog) |
|
2535 (start_of (layout_of aprog) as) (Inc n), |
|
2536 start_of (layout_of aprog) as - Suc 0) stp) ires" |
|
2537 apply(erule_tac exE) |
|
2538 apply(rule_tac x = stp in exI) |
|
2539 apply(case_tac "(t_steps (a, b, c) (ci (layout_of aprog) |
|
2540 (start_of (layout_of aprog) as) (Inc n), |
|
2541 start_of (layout_of aprog) as - Suc 0) stp)", simp) |
|
2542 apply(rule_tac inc_inv_stop_cond, auto) |
|
2543 done |
|
2544 qed |
|
2545 |
|
2546 text {* |
|
2547 The total correctness of the compilaton of @{text "Inc n"} instruction. |
|
2548 *} |
|
2549 |
|
2550 lemma inc_crsp_ex: |
|
2551 assumes layout: |
|
2552 -- {* For any Abacus program @{text "aprog"}, assuming its layout is @{text "ly"} *} |
|
2553 "ly = layout_of aprog" |
|
2554 and corresponds: |
|
2555 -- {* Abacus configuration @{text "(as, am)"} is in correspondence with |
|
2556 TM configuration @{text "tc"} *} |
|
2557 "crsp_l ly (as, am) tc ires" |
|
2558 and inc: |
|
2559 -- {* There is an instruction @{text "Inc n"} at postion @{text "as"} of @{text "aprog"} *} |
|
2560 "abc_fetch as aprog = Some (Inc n)" |
|
2561 shows |
|
2562 -- {* |
|
2563 After @{text "stp"} steps of execution, the TM compiled from this @{text "Inc n"} |
|
2564 stops with a configuration which corresponds to the Abacus configuration obtained |
|
2565 from the execution of this @{text "Inc n"} instruction. |
|
2566 *} |
|
2567 "\<exists>stp > 0. crsp_l ly (abc_step_l (as, am) (Some (Inc n))) |
|
2568 (t_steps tc (ci ly (start_of ly as) (Inc n), |
|
2569 start_of ly as - Suc 0) stp) ires" |
|
2570 proof - |
|
2571 from inc_crsp_ex_pre [OF layout corresponds inc] show ?thesis . |
|
2572 qed |
|
2573 |
|
2574 (* |
|
2575 subsection {* The compilation of @{text "Dec n e"} *} |
|
2576 *) |
|
2577 |
|
2578 text {* |
|
2579 The lemmas in this section lead to the correctness of the compilation |
|
2580 of @{text "Dec n e"} instruction using the same techniques as |
|
2581 @{text "Inc n"}. |
|
2582 *} |
|
2583 |
|
2584 type_synonym dec_inv_t = "(nat * nat list) \<Rightarrow> t_conf \<Rightarrow> block list \<Rightarrow> bool" |
|
2585 |
|
2586 fun dec_first_on_right_moving :: "nat \<Rightarrow> dec_inv_t" |
|
2587 where |
|
2588 "dec_first_on_right_moving n (as, lm) (s, l, r) ires = |
|
2589 (\<exists> lm1 lm2 m ml mr rn. lm = lm1 @ [m] @ lm2 \<and> |
|
2590 ml + mr = Suc m \<and> length lm1 = n \<and> ml > 0 \<and> m > 0 \<and> |
|
2591 (if lm1 = [] then l = Oc\<^bsup>ml\<^esup> @ Bk # Bk # ires |
|
2592 else l = (Oc\<^bsup>ml\<^esup>) @ [Bk] @ <rev lm1> @ Bk # Bk # ires) \<and> |
|
2593 ((r = (Oc\<^bsup>mr\<^esup>) @ [Bk] @ <lm2> @ (Bk\<^bsup>rn\<^esup>)) \<or> (r = (Oc\<^bsup>mr\<^esup>) \<and> lm2 = [])))" |
|
2594 |
|
2595 fun dec_on_right_moving :: "dec_inv_t" |
|
2596 where |
|
2597 "dec_on_right_moving (as, lm) (s, l, r) ires = |
|
2598 (\<exists> lm1 lm2 m ml mr rn. lm = lm1 @ [m] @ lm2 \<and> |
|
2599 ml + mr = Suc (Suc m) \<and> |
|
2600 (if lm1 = [] then l = Oc\<^bsup>ml\<^esup> @ Bk # Bk # ires |
|
2601 else l = (Oc\<^bsup>ml\<^esup>) @ [Bk] @ <rev lm1> @ Bk # Bk # ires) \<and> |
|
2602 ((r = (Oc\<^bsup>mr\<^esup>) @ [Bk] @ <lm2> @ (Bk\<^bsup>rn\<^esup>)) \<or> (r = (Oc\<^bsup>mr\<^esup>) \<and> lm2 = [])))" |
|
2603 |
|
2604 fun dec_after_clear :: "dec_inv_t" |
|
2605 where |
|
2606 "dec_after_clear (as, lm) (s, l, r) ires = |
|
2607 (\<exists> lm1 lm2 m ml mr rn. lm = lm1 @ [m] @ lm2 \<and> |
|
2608 ml + mr = Suc m \<and> ml = Suc m \<and> r \<noteq> [] \<and> r \<noteq> [] \<and> |
|
2609 (if lm1 = [] then l = Oc\<^bsup>ml\<^esup> @ Bk # Bk # ires |
|
2610 else l = (Oc\<^bsup>ml \<^esup>) @ [Bk] @ <rev lm1> @ Bk # Bk # ires) \<and> |
|
2611 (tl r = Bk # <lm2> @ (Bk\<^bsup>rn\<^esup>) \<or> tl r = [] \<and> lm2 = []))" |
|
2612 |
|
2613 fun dec_after_write :: "dec_inv_t" |
|
2614 where |
|
2615 "dec_after_write (as, lm) (s, l, r) ires = |
|
2616 (\<exists> lm1 lm2 m ml mr rn. lm = lm1 @ [m] @ lm2 \<and> |
|
2617 ml + mr = Suc m \<and> ml = Suc m \<and> lm2 \<noteq> [] \<and> |
|
2618 (if lm1 = [] then l = Bk # Oc\<^bsup>ml\<^esup> @ Bk # Bk # ires |
|
2619 else l = Bk # (Oc\<^bsup>ml \<^esup>) @ [Bk] @ <rev lm1> @ Bk # Bk # ires) \<and> |
|
2620 tl r = <lm2> @ (Bk\<^bsup>rn\<^esup>))" |
|
2621 |
|
2622 fun dec_right_move :: "dec_inv_t" |
|
2623 where |
|
2624 "dec_right_move (as, lm) (s, l, r) ires = |
|
2625 (\<exists> lm1 lm2 m ml mr rn. lm = lm1 @ [m] @ lm2 |
|
2626 \<and> ml = Suc m \<and> mr = (0::nat) \<and> |
|
2627 (if lm1 = [] then l = Bk # Oc\<^bsup>ml\<^esup> @ Bk # Bk # ires |
|
2628 else l = Bk # Oc\<^bsup>ml\<^esup>@ [Bk] @ <rev lm1> @ Bk # Bk # ires) |
|
2629 \<and> (r = Bk # <lm2> @ Bk\<^bsup>rn\<^esup>\<or> r = [] \<and> lm2 = []))" |
|
2630 |
|
2631 fun dec_check_right_move :: "dec_inv_t" |
|
2632 where |
|
2633 "dec_check_right_move (as, lm) (s, l, r) ires = |
|
2634 (\<exists> lm1 lm2 m ml mr rn. lm = lm1 @ [m] @ lm2 \<and> |
|
2635 ml = Suc m \<and> mr = (0::nat) \<and> |
|
2636 (if lm1 = [] then l = Bk # Bk # Oc\<^bsup>ml\<^esup> @ Bk # Bk # ires |
|
2637 else l = Bk # Bk # Oc\<^bsup>ml \<^esup>@ [Bk] @ <rev lm1> @ Bk # Bk # ires) \<and> |
|
2638 r = <lm2> @ Bk\<^bsup>rn\<^esup>)" |
|
2639 |
|
2640 fun dec_left_move :: "dec_inv_t" |
|
2641 where |
|
2642 "dec_left_move (as, lm) (s, l, r) ires = |
|
2643 (\<exists> lm1 m rn. (lm::nat list) = lm1 @ [m::nat] \<and> |
|
2644 rn > 0 \<and> |
|
2645 (if lm1 = [] then l = Bk # Oc\<^bsup>Suc m\<^esup> @ Bk # Bk # ires |
|
2646 else l = Bk # Oc\<^bsup>Suc m\<^esup> @ Bk # <rev lm1> @ Bk # Bk # ires) \<and> r = Bk\<^bsup>rn\<^esup>)" |
|
2647 |
|
2648 declare |
|
2649 dec_on_right_moving.simps[simp del] dec_after_clear.simps[simp del] |
|
2650 dec_after_write.simps[simp del] dec_left_move.simps[simp del] |
|
2651 dec_check_right_move.simps[simp del] dec_right_move.simps[simp del] |
|
2652 dec_first_on_right_moving.simps[simp del] |
|
2653 |
|
2654 fun inv_locate_n_b :: "inc_inv_t" |
|
2655 where |
|
2656 "inv_locate_n_b (as, lm) (s, l, r) ires= |
|
2657 (\<exists> lm1 lm2 tn m ml mr rn. lm @ 0\<^bsup>tn\<^esup> = lm1 @ [m] @ lm2 \<and> |
|
2658 length lm1 = s \<and> m + 1 = ml + mr \<and> |
|
2659 ml = 1 \<and> tn = s + 1 - length lm \<and> |
|
2660 (if lm1 = [] then l = Oc\<^bsup>ml\<^esup> @ Bk # Bk # ires |
|
2661 else l = Oc\<^bsup>ml\<^esup>@Bk#<rev lm1>@Bk#Bk#ires) \<and> |
|
2662 (r = (Oc\<^bsup>mr\<^esup>) @ [Bk] @ <lm2>@ (Bk\<^bsup>rn\<^esup>) \<or> (lm2 = [] \<and> r = (Oc\<^bsup>mr\<^esup>))) |
|
2663 )" |
|
2664 |
|
2665 fun dec_inv_1 :: "layout \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> dec_inv_t" |
|
2666 where |
|
2667 "dec_inv_1 ly n e (as, am) (s, l, r) ires = |
|
2668 (let ss = start_of ly as in |
|
2669 let am' = abc_lm_s am n (abc_lm_v am n - Suc 0) in |
|
2670 let am'' = abc_lm_s am n (abc_lm_v am n) in |
|
2671 if s = start_of ly e then inv_stop (as, am'') (s, l, r) ires |
|
2672 else if s = ss then False |
|
2673 else if ss \<le> s \<and> s < ss + 2*n then |
|
2674 if (s - ss) mod 2 = 0 then |
|
2675 inv_locate_a (as, am) ((s - ss) div 2, l, r) ires |
|
2676 \<or> inv_locate_a (as, am'') ((s - ss) div 2, l, r) ires |
|
2677 else |
|
2678 inv_locate_b (as, am) ((s - ss) div 2, l, r) ires |
|
2679 \<or> inv_locate_b (as, am'') ((s - ss) div 2, l, r) ires |
|
2680 else if s = ss + 2 * n then |
|
2681 inv_locate_a (as, am) (n, l, r) ires |
|
2682 \<or> inv_locate_a (as, am'') (n, l, r) ires |
|
2683 else if s = ss + 2 * n + 1 then |
|
2684 inv_locate_b (as, am) (n, l, r) ires |
|
2685 else if s = ss + 2 * n + 13 then |
|
2686 inv_on_left_moving (as, am'') (s, l, r) ires |
|
2687 else if s = ss + 2 * n + 14 then |
|
2688 inv_check_left_moving (as, am'') (s, l, r) ires |
|
2689 else if s = ss + 2 * n + 15 then |
|
2690 inv_after_left_moving (as, am'') (s, l, r) ires |
|
2691 else False)" |
|
2692 |
|
2693 fun dec_inv_2 :: "layout \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> dec_inv_t" |
|
2694 where |
|
2695 "dec_inv_2 ly n e (as, am) (s, l, r) ires = |
|
2696 (let ss = start_of ly as in |
|
2697 let am' = abc_lm_s am n (abc_lm_v am n - Suc 0) in |
|
2698 let am'' = abc_lm_s am n (abc_lm_v am n) in |
|
2699 if s = 0 then False |
|
2700 else if s = ss then False |
|
2701 else if ss \<le> s \<and> s < ss + 2*n then |
|
2702 if (s - ss) mod 2 = 0 then |
|
2703 inv_locate_a (as, am) ((s - ss) div 2, l, r) ires |
|
2704 else inv_locate_b (as, am) ((s - ss) div 2, l, r) ires |
|
2705 else if s = ss + 2 * n then |
|
2706 inv_locate_a (as, am) (n, l, r) ires |
|
2707 else if s = ss + 2 * n + 1 then |
|
2708 inv_locate_n_b (as, am) (n, l, r) ires |
|
2709 else if s = ss + 2 * n + 2 then |
|
2710 dec_first_on_right_moving n (as, am'') (s, l, r) ires |
|
2711 else if s = ss + 2 * n + 3 then |
|
2712 dec_after_clear (as, am') (s, l, r) ires |
|
2713 else if s = ss + 2 * n + 4 then |
|
2714 dec_right_move (as, am') (s, l, r) ires |
|
2715 else if s = ss + 2 * n + 5 then |
|
2716 dec_check_right_move (as, am') (s, l, r) ires |
|
2717 else if s = ss + 2 * n + 6 then |
|
2718 dec_left_move (as, am') (s, l, r) ires |
|
2719 else if s = ss + 2 * n + 7 then |
|
2720 dec_after_write (as, am') (s, l, r) ires |
|
2721 else if s = ss + 2 * n + 8 then |
|
2722 dec_on_right_moving (as, am') (s, l, r) ires |
|
2723 else if s = ss + 2 * n + 9 then |
|
2724 dec_after_clear (as, am') (s, l, r) ires |
|
2725 else if s = ss + 2 * n + 10 then |
|
2726 inv_on_left_moving (as, am') (s, l, r) ires |
|
2727 else if s = ss + 2 * n + 11 then |
|
2728 inv_check_left_moving (as, am') (s, l, r) ires |
|
2729 else if s = ss + 2 * n + 12 then |
|
2730 inv_after_left_moving (as, am') (s, l, r) ires |
|
2731 else if s = ss + 2 * n + 16 then |
|
2732 inv_stop (as, am') (s, l, r) ires |
|
2733 else False)" |
|
2734 |
|
2735 (*begin: dec_fetch lemmas*) |
|
2736 |
|
2737 lemma dec_fetch_locate_a_o: |
|
2738 "\<lbrakk>start_of ly as \<le> a; |
|
2739 a < start_of ly as + 2 * n; start_of ly as > 0; |
|
2740 a - start_of ly as = 2 * q\<rbrakk> |
|
2741 \<Longrightarrow> fetch (ci (layout_of aprog) |
|
2742 (start_of ly as) (Dec n e)) (Suc (2 * q)) Oc = (R, a + 1)" |
|
2743 apply(auto simp: ci.simps findnth.simps fetch.simps |
|
2744 nth_of.simps tshift.simps nth_append Suc_pre) |
|
2745 apply(subgoal_tac "(findnth n ! Suc (4 * q)) = |
|
2746 findnth (Suc q) ! (4 * q + 1)") |
|
2747 apply(simp add: findnth.simps nth_append) |
|
2748 apply(subgoal_tac " findnth n !(4 * q + 1) = |
|
2749 findnth (Suc q) ! (4 * q + 1)", simp) |
|
2750 apply(rule_tac findnth_nth, auto) |
|
2751 done |
|
2752 |
|
2753 lemma dec_fetch_locate_a_b: |
|
2754 "\<lbrakk>start_of ly as \<le> a; |
|
2755 a < start_of ly as + 2 * n; |
|
2756 start_of ly as > 0; |
|
2757 a - start_of ly as = 2 * q\<rbrakk> |
|
2758 \<Longrightarrow> fetch (ci (layout_of aprog) (start_of ly as) (Dec n e)) |
|
2759 (Suc (2 * q)) Bk = (W1, a)" |
|
2760 apply(auto simp: ci.simps findnth.simps fetch.simps |
|
2761 nth_of.simps tshift.simps nth_append) |
|
2762 apply(subgoal_tac "(findnth n ! (4 * q)) = |
|
2763 findnth (Suc q) ! (4 * q )") |
|
2764 apply(simp add: findnth.simps nth_append) |
|
2765 apply(subgoal_tac " findnth n !(4 * q + 0) = |
|
2766 findnth (Suc q) ! (4 * q + 0)", simp) |
|
2767 apply(rule_tac findnth_nth, auto) |
|
2768 done |
|
2769 |
|
2770 lemma dec_fetch_locate_b_o: |
|
2771 "\<lbrakk>start_of ly as \<le> a; |
|
2772 a < start_of ly as + 2 * n; |
|
2773 (a - start_of ly as) mod 2 = Suc 0; |
|
2774 start_of ly as> 0\<rbrakk> |
|
2775 \<Longrightarrow> fetch (ci (layout_of aprog) (start_of ly as) (Dec n e)) |
|
2776 (Suc (a - start_of ly as)) Oc = (R, a)" |
|
2777 apply(auto simp: ci.simps findnth.simps fetch.simps |
|
2778 nth_of.simps tshift.simps nth_append) |
|
2779 apply(subgoal_tac "\<exists> q. (a - start_of ly as) = 2 * q + 1", auto) |
|
2780 apply(subgoal_tac "(findnth n ! Suc (Suc (Suc (4 * q)))) = |
|
2781 findnth (Suc q) ! (4 * q + 3)") |
|
2782 apply(simp add: findnth.simps nth_append) |
|
2783 apply(subgoal_tac " findnth n ! (4 * q + 3) = |
|
2784 findnth (Suc q) ! (4 * q + 3)", simp add: add3_Suc) |
|
2785 apply(rule_tac findnth_nth, auto) |
|
2786 done |
|
2787 |
|
2788 lemma dec_fetch_locate_b_b: |
|
2789 "\<lbrakk>\<not> a < start_of ly as; |
|
2790 a < start_of ly as + 2 * n; |
|
2791 (a - start_of ly as) mod 2 = Suc 0; |
|
2792 start_of ly as > 0\<rbrakk> |
|
2793 \<Longrightarrow> fetch (ci (layout_of aprog) (start_of ly as) (Dec n e)) |
|
2794 (Suc (a - start_of ly as)) Bk = (R, a + 1)" |
|
2795 apply(auto simp: ci.simps findnth.simps fetch.simps |
|
2796 nth_of.simps tshift.simps nth_append) |
|
2797 apply(subgoal_tac "\<exists> q. (a - start_of ly as) = 2 * q + 1", auto) |
|
2798 apply(subgoal_tac "(findnth n ! Suc ((Suc (4 * q)))) = |
|
2799 findnth (Suc q) ! (4 * q + 2)") |
|
2800 apply(simp add: findnth.simps nth_append) |
|
2801 apply(subgoal_tac " findnth n ! (4 * q + 2) = |
|
2802 findnth (Suc q) ! (4 * q + 2)", simp) |
|
2803 apply(rule_tac findnth_nth, auto) |
|
2804 done |
|
2805 |
|
2806 lemma dec_fetch_locate_n_a_o: |
|
2807 "start_of ly as > 0 \<Longrightarrow> fetch (ci (layout_of aprog) |
|
2808 (start_of ly as) (Dec n e)) (Suc (2 * n)) Oc |
|
2809 = (R, start_of ly as + 2*n + 1)" |
|
2810 apply(auto simp: ci.simps findnth.simps fetch.simps |
|
2811 nth_of.simps tshift.simps nth_append tdec_b_def) |
|
2812 done |
|
2813 |
|
2814 lemma dec_fetch_locate_n_a_b: |
|
2815 "start_of ly as > 0 \<Longrightarrow> fetch (ci (layout_of aprog) |
|
2816 (start_of ly as) (Dec n e)) (Suc (2 * n)) Bk |
|
2817 = (W1, start_of ly as + 2*n)" |
|
2818 apply(auto simp: ci.simps findnth.simps fetch.simps |
|
2819 nth_of.simps tshift.simps nth_append tdec_b_def) |
|
2820 done |
|
2821 |
|
2822 lemma dec_fetch_locate_n_b_o: |
|
2823 "start_of ly as > 0 \<Longrightarrow> |
|
2824 fetch (ci (layout_of aprog) |
|
2825 (start_of ly as) (Dec n e)) (Suc (Suc (2 * n))) Oc |
|
2826 = (R, start_of ly as + 2*n + 2)" |
|
2827 apply(auto simp: ci.simps findnth.simps fetch.simps |
|
2828 nth_of.simps tshift.simps nth_append tdec_b_def) |
|
2829 done |
|
2830 |
|
2831 |
|
2832 lemma dec_fetch_locate_n_b_b: |
|
2833 "start_of ly as > 0 \<Longrightarrow> |
|
2834 fetch (ci (layout_of aprog) |
|
2835 (start_of ly as) (Dec n e)) (Suc (Suc (2 * n))) Bk |
|
2836 = (L, start_of ly as + 2*n + 13)" |
|
2837 apply(auto simp: ci.simps findnth.simps fetch.simps |
|
2838 nth_of.simps tshift.simps nth_append tdec_b_def) |
|
2839 done |
|
2840 |
|
2841 lemma dec_fetch_first_on_right_move_o: |
|
2842 "start_of ly as > 0 \<Longrightarrow> |
|
2843 fetch (ci (layout_of aprog) |
|
2844 (start_of ly as) (Dec n e)) (Suc (Suc (Suc (2 * n)))) Oc |
|
2845 = (R, start_of ly as + 2*n + 2)" |
|
2846 apply(auto simp: ci.simps findnth.simps fetch.simps |
|
2847 nth_of.simps tshift.simps nth_append tdec_b_def) |
|
2848 done |
|
2849 |
|
2850 lemma dec_fetch_first_on_right_move_b: |
|
2851 "start_of ly as > 0 \<Longrightarrow> |
|
2852 fetch (ci (layout_of aprog) (start_of ly as) (Dec n e)) |
|
2853 (Suc (Suc (Suc (2 * n)))) Bk |
|
2854 = (L, start_of ly as + 2*n + 3)" |
|
2855 apply(auto simp: ci.simps findnth.simps fetch.simps |
|
2856 nth_of.simps tshift.simps nth_append tdec_b_def) |
|
2857 done |
|
2858 |
|
2859 lemma [simp]: "fetch x (a + 2 * n) b = fetch x (2 * n + a) b" |
|
2860 thm arg_cong |
|
2861 apply(rule_tac x = "a + 2*n" and y = "2*n + a" in arg_cong, simp) |
|
2862 done |
|
2863 |
|
2864 lemma dec_fetch_first_after_clear_o: |
|
2865 "start_of ly as > 0 \<Longrightarrow> fetch (ci (layout_of aprog) |
|
2866 (start_of ly as) (Dec n e)) (2 * n + 4) Oc |
|
2867 = (W0, start_of ly as + 2*n + 3)" |
|
2868 apply(auto simp: ci.simps findnth.simps tshift.simps |
|
2869 tdec_b_def add3_Suc) |
|
2870 apply(subgoal_tac "2*n + 4 = Suc (2*n + 3)", simp only: fetch.simps) |
|
2871 apply(auto simp: nth_of.simps nth_append) |
|
2872 done |
|
2873 |
|
2874 lemma dec_fetch_first_after_clear_b: |
|
2875 "start_of ly as > 0 \<Longrightarrow> |
|
2876 fetch (ci (layout_of aprog) |
|
2877 (start_of ly as) (Dec n e)) (2 * n + 4) Bk |
|
2878 = (R, start_of ly as + 2*n + 4)" |
|
2879 apply(auto simp: ci.simps findnth.simps |
|
2880 tshift.simps tdec_b_def add3_Suc) |
|
2881 apply(subgoal_tac "2*n + 4= Suc (2*n + 3)", simp only: fetch.simps) |
|
2882 apply(auto simp: nth_of.simps nth_append) |
|
2883 done |
|
2884 |
|
2885 lemma dec_fetch_right_move_b: |
|
2886 "start_of ly as > 0 \<Longrightarrow> fetch (ci (layout_of aprog) |
|
2887 (start_of ly as) (Dec n e)) (2 * n + 5) Bk |
|
2888 = (R, start_of ly as + 2*n + 5)" |
|
2889 apply(auto simp: ci.simps findnth.simps |
|
2890 tshift.simps tdec_b_def add3_Suc) |
|
2891 apply(subgoal_tac "2*n + 5= Suc (2*n + 4)", simp only: fetch.simps) |
|
2892 apply(auto simp: nth_of.simps nth_append) |
|
2893 done |
|
2894 |
|
2895 lemma dec_fetch_check_right_move_b: |
|
2896 "start_of ly as > 0 \<Longrightarrow> |
|
2897 fetch (ci (layout_of aprog) |
|
2898 (start_of ly as) (Dec n e)) (2 * n + 6) Bk |
|
2899 = (L, start_of ly as + 2*n + 6)" |
|
2900 apply(auto simp: ci.simps findnth.simps |
|
2901 tshift.simps tdec_b_def add3_Suc) |
|
2902 apply(subgoal_tac "2*n + 6 = Suc (2*n + 5)", simp only: fetch.simps) |
|
2903 apply(auto simp: nth_of.simps nth_append) |
|
2904 done |
|
2905 |
|
2906 lemma dec_fetch_check_right_move_o: |
|
2907 "start_of ly as > 0 \<Longrightarrow> |
|
2908 fetch (ci (layout_of aprog) (start_of ly as) |
|
2909 (Dec n e)) (2 * n + 6) Oc |
|
2910 = (L, start_of ly as + 2*n + 7)" |
|
2911 apply(auto simp: ci.simps findnth.simps |
|
2912 tshift.simps tdec_b_def add3_Suc) |
|
2913 apply(subgoal_tac "2*n + 6 = Suc (2*n + 5)", simp only: fetch.simps) |
|
2914 apply(auto simp: nth_of.simps nth_append) |
|
2915 done |
|
2916 |
|
2917 lemma dec_fetch_left_move_b: |
|
2918 "start_of ly as > 0 \<Longrightarrow> |
|
2919 fetch (ci (layout_of aprog) |
|
2920 (start_of ly as) (Dec n e)) (2 * n + 7) Bk |
|
2921 = (L, start_of ly as + 2*n + 10)" |
|
2922 apply(auto simp: ci.simps findnth.simps |
|
2923 tshift.simps tdec_b_def add3_Suc) |
|
2924 apply(subgoal_tac "2*n + 7 = Suc (2*n + 6)", simp only: fetch.simps) |
|
2925 apply(auto simp: nth_of.simps nth_append) |
|
2926 done |
|
2927 |
|
2928 lemma dec_fetch_after_write_b: |
|
2929 "start_of ly as > 0 \<Longrightarrow> |
|
2930 fetch (ci (layout_of aprog) |
|
2931 (start_of ly as) (Dec n e)) (2 * n + 8) Bk |
|
2932 = (W1, start_of ly as + 2*n + 7)" |
|
2933 apply(auto simp: ci.simps findnth.simps |
|
2934 tshift.simps tdec_b_def add3_Suc) |
|
2935 apply(subgoal_tac "2*n + 8 = Suc (2*n + 7)", simp only: fetch.simps) |
|
2936 apply(auto simp: nth_of.simps nth_append) |
|
2937 done |
|
2938 |
|
2939 lemma dec_fetch_after_write_o: |
|
2940 "start_of ly as > 0 \<Longrightarrow> |
|
2941 fetch (ci (layout_of aprog) |
|
2942 (start_of ly as) (Dec n e)) (2 * n + 8) Oc |
|
2943 = (R, start_of ly as + 2*n + 8)" |
|
2944 apply(auto simp: ci.simps findnth.simps |
|
2945 tshift.simps tdec_b_def add3_Suc) |
|
2946 apply(subgoal_tac "2*n + 8 = Suc (2*n + 7)", simp only: fetch.simps) |
|
2947 apply(auto simp: nth_of.simps nth_append) |
|
2948 done |
|
2949 |
|
2950 lemma dec_fetch_on_right_move_b: |
|
2951 "start_of ly as > 0 \<Longrightarrow> |
|
2952 fetch (ci (layout_of aprog) |
|
2953 (start_of ly as) (Dec n e)) (2 * n + 9) Bk |
|
2954 = (L, start_of ly as + 2*n + 9)" |
|
2955 apply(auto simp: ci.simps findnth.simps |
|
2956 tshift.simps tdec_b_def add3_Suc) |
|
2957 apply(subgoal_tac "2*n + 9 = Suc (2*n + 8)", simp only: fetch.simps) |
|
2958 apply(auto simp: nth_of.simps nth_append) |
|
2959 done |
|
2960 |
|
2961 lemma dec_fetch_on_right_move_o: |
|
2962 "start_of ly as > 0 \<Longrightarrow> |
|
2963 fetch (ci (layout_of aprog) |
|
2964 (start_of ly as) (Dec n e)) (2 * n + 9) Oc |
|
2965 = (R, start_of ly as + 2*n + 8)" |
|
2966 apply(auto simp: ci.simps findnth.simps |
|
2967 tshift.simps tdec_b_def add3_Suc) |
|
2968 apply(subgoal_tac "2*n + 9 = Suc (2*n + 8)", simp only: fetch.simps) |
|
2969 apply(auto simp: nth_of.simps nth_append) |
|
2970 done |
|
2971 |
|
2972 lemma dec_fetch_after_clear_b: |
|
2973 "start_of ly as > 0 \<Longrightarrow> |
|
2974 fetch (ci (layout_of aprog) |
|
2975 (start_of ly as) (Dec n e)) (2 * n + 10) Bk |
|
2976 = (R, start_of ly as + 2*n + 4)" |
|
2977 apply(auto simp: ci.simps findnth.simps |
|
2978 tshift.simps tdec_b_def add3_Suc) |
|
2979 apply(subgoal_tac "2*n + 10 = Suc (2*n + 9)", simp only: fetch.simps) |
|
2980 apply(auto simp: nth_of.simps nth_append) |
|
2981 done |
|
2982 |
|
2983 lemma dec_fetch_after_clear_o: |
|
2984 "start_of ly as > 0 \<Longrightarrow> |
|
2985 fetch (ci (layout_of aprog) |
|
2986 (start_of ly as) (Dec n e)) (2 * n + 10) Oc |
|
2987 = (W0, start_of ly as + 2*n + 9)" |
|
2988 apply(auto simp: ci.simps findnth.simps |
|
2989 tshift.simps tdec_b_def add3_Suc) |
|
2990 apply(subgoal_tac "2*n + 10= Suc (2*n + 9)", simp only: fetch.simps) |
|
2991 apply(auto simp: nth_of.simps nth_append) |
|
2992 done |
|
2993 |
|
2994 lemma dec_fetch_on_left_move1_o: |
|
2995 "start_of ly as > 0 \<Longrightarrow> |
|
2996 fetch (ci (layout_of aprog) |
|
2997 (start_of ly as) (Dec n e)) (2 * n + 11) Oc |
|
2998 = (L, start_of ly as + 2*n + 10)" |
|
2999 apply(auto simp: ci.simps findnth.simps |
|
3000 tshift.simps tdec_b_def add3_Suc) |
|
3001 apply(subgoal_tac "2*n + 11= Suc (2*n + 10)", simp only: fetch.simps) |
|
3002 apply(auto simp: nth_of.simps nth_append) |
|
3003 done |
|
3004 |
|
3005 lemma dec_fetch_on_left_move1_b: |
|
3006 "start_of ly as > 0 \<Longrightarrow> |
|
3007 fetch (ci (layout_of aprog) |
|
3008 (start_of ly as) (Dec n e)) (2 * n + 11) Bk |
|
3009 = (L, start_of ly as + 2*n + 11)" |
|
3010 apply(auto simp: ci.simps findnth.simps |
|
3011 tshift.simps tdec_b_def add3_Suc) |
|
3012 apply(subgoal_tac "2*n + 11 = Suc (2*n + 10)", |
|
3013 simp only: fetch.simps) |
|
3014 apply(auto simp: nth_of.simps nth_append) |
|
3015 done |
|
3016 |
|
3017 lemma dec_fetch_check_left_move1_o: |
|
3018 "start_of ly as > 0 \<Longrightarrow> |
|
3019 fetch (ci (layout_of aprog) |
|
3020 (start_of ly as) (Dec n e)) (2 * n + 12) Oc |
|
3021 = (L, start_of ly as + 2*n + 10)" |
|
3022 apply(auto simp: ci.simps findnth.simps |
|
3023 tshift.simps tdec_b_def add3_Suc) |
|
3024 apply(subgoal_tac "2*n + 12= Suc (2*n + 11)", simp only: fetch.simps) |
|
3025 apply(auto simp: nth_of.simps nth_append) |
|
3026 done |
|
3027 |
|
3028 lemma dec_fetch_check_left_move1_b: |
|
3029 "start_of ly as > 0 \<Longrightarrow> |
|
3030 fetch (ci (layout_of aprog) |
|
3031 (start_of ly as) (Dec n e)) (2 * n + 12) Bk |
|
3032 = (R, start_of ly as + 2*n + 12)" |
|
3033 apply(auto simp: ci.simps findnth.simps |
|
3034 tshift.simps tdec_b_def add3_Suc) |
|
3035 apply(subgoal_tac "2*n + 12 = Suc (2*n + 11)", |
|
3036 simp only: fetch.simps) |
|
3037 apply(auto simp: nth_of.simps nth_append) |
|
3038 done |
|
3039 |
|
3040 lemma dec_fetch_after_left_move1_b: |
|
3041 "start_of ly as > 0 \<Longrightarrow> |
|
3042 fetch (ci (layout_of aprog) |
|
3043 (start_of ly as) (Dec n e)) (2 * n + 13) Bk |
|
3044 = (R, start_of ly as + 2*n + 16)" |
|
3045 apply(auto simp: ci.simps findnth.simps |
|
3046 tshift.simps tdec_b_def add3_Suc) |
|
3047 apply(subgoal_tac "2*n + 13 = Suc (2*n + 12)", |
|
3048 simp only: fetch.simps) |
|
3049 apply(auto simp: nth_of.simps nth_append) |
|
3050 done |
|
3051 |
|
3052 lemma dec_fetch_on_left_move2_o: |
|
3053 "start_of ly as > 0 \<Longrightarrow> |
|
3054 fetch (ci (layout_of aprog) |
|
3055 (start_of ly as) (Dec n e)) (2 * n + 14) Oc |
|
3056 = (L, start_of ly as + 2*n + 13)" |
|
3057 apply(auto simp: ci.simps findnth.simps |
|
3058 tshift.simps tdec_b_def add3_Suc) |
|
3059 apply(subgoal_tac "2*n + 14 = Suc (2*n + 13)", |
|
3060 simp only: fetch.simps) |
|
3061 apply(auto simp: nth_of.simps nth_append) |
|
3062 done |
|
3063 |
|
3064 lemma dec_fetch_on_left_move2_b: |
|
3065 "start_of ly as > 0 \<Longrightarrow> |
|
3066 fetch (ci (layout_of aprog) |
|
3067 (start_of ly as) (Dec n e)) (2 * n + 14) Bk |
|
3068 = (L, start_of ly as + 2*n + 14)" |
|
3069 apply(auto simp: ci.simps findnth.simps |
|
3070 tshift.simps tdec_b_def add3_Suc) |
|
3071 apply(subgoal_tac "2*n + 14 = Suc (2*n + 13)", |
|
3072 simp only: fetch.simps) |
|
3073 apply(auto simp: nth_of.simps nth_append) |
|
3074 done |
|
3075 |
|
3076 lemma dec_fetch_check_left_move2_o: |
|
3077 "start_of ly as > 0 \<Longrightarrow> |
|
3078 fetch (ci (layout_of aprog) |
|
3079 (start_of ly as) (Dec n e)) (2 * n + 15) Oc |
|
3080 = (L, start_of ly as + 2*n + 13)" |
|
3081 apply(auto simp: ci.simps findnth.simps |
|
3082 tshift.simps tdec_b_def add3_Suc) |
|
3083 apply(subgoal_tac "2*n + 15 = Suc (2*n + 14)", |
|
3084 simp only: fetch.simps) |
|
3085 apply(auto simp: nth_of.simps nth_append) |
|
3086 done |
|
3087 |
|
3088 lemma dec_fetch_check_left_move2_b: |
|
3089 "start_of ly as > 0 \<Longrightarrow> |
|
3090 fetch (ci (layout_of aprog) |
|
3091 (start_of ly as) (Dec n e)) (2 * n + 15) Bk |
|
3092 = (R, start_of ly as + 2*n + 15)" |
|
3093 apply(auto simp: ci.simps findnth.simps |
|
3094 tshift.simps tdec_b_def add3_Suc) |
|
3095 apply(subgoal_tac "2*n + 15= Suc (2*n + 14)", simp only: fetch.simps) |
|
3096 apply(auto simp: nth_of.simps nth_append) |
|
3097 done |
|
3098 |
|
3099 lemma dec_fetch_after_left_move2_b: |
|
3100 "\<lbrakk>ly = layout_of aprog; |
|
3101 abc_fetch as aprog = Some (Dec n e); |
|
3102 start_of ly as > 0\<rbrakk> \<Longrightarrow> |
|
3103 fetch (ci (layout_of aprog) (start_of ly as) |
|
3104 (Dec n e)) (2 * n + 16) Bk |
|
3105 = (R, start_of ly e)" |
|
3106 apply(auto simp: ci.simps findnth.simps |
|
3107 tshift.simps tdec_b_def add3_Suc) |
|
3108 apply(subgoal_tac "2*n + 16 = Suc (2*n + 15)", |
|
3109 simp only: fetch.simps) |
|
3110 apply(auto simp: nth_of.simps nth_append) |
|
3111 done |
|
3112 |
|
3113 lemma dec_fetch_next_state: |
|
3114 "start_of ly as > 0 \<Longrightarrow> |
|
3115 fetch (ci (layout_of aprog) |
|
3116 (start_of ly as) (Dec n e)) (2* n + 17) b |
|
3117 = (Nop, 0)" |
|
3118 apply(case_tac b) |
|
3119 apply(auto simp: ci.simps findnth.simps |
|
3120 tshift.simps tdec_b_def add3_Suc) |
|
3121 apply(subgoal_tac [!] "2*n + 17 = Suc (2*n + 16)", |
|
3122 simp_all only: fetch.simps) |
|
3123 apply(auto simp: nth_of.simps nth_append) |
|
3124 done |
|
3125 |
|
3126 (*End: dec_fetch lemmas*) |
|
3127 lemmas dec_fetch_simps = |
|
3128 dec_fetch_locate_a_o dec_fetch_locate_a_b dec_fetch_locate_b_o |
|
3129 dec_fetch_locate_b_b dec_fetch_locate_n_a_o |
|
3130 dec_fetch_locate_n_a_b dec_fetch_locate_n_b_o |
|
3131 dec_fetch_locate_n_b_b dec_fetch_first_on_right_move_o |
|
3132 dec_fetch_first_on_right_move_b dec_fetch_first_after_clear_b |
|
3133 dec_fetch_first_after_clear_o dec_fetch_right_move_b |
|
3134 dec_fetch_on_right_move_b dec_fetch_on_right_move_o |
|
3135 dec_fetch_after_clear_b dec_fetch_after_clear_o |
|
3136 dec_fetch_check_right_move_b dec_fetch_check_right_move_o |
|
3137 dec_fetch_left_move_b dec_fetch_on_left_move1_b |
|
3138 dec_fetch_on_left_move1_o dec_fetch_check_left_move1_b |
|
3139 dec_fetch_check_left_move1_o dec_fetch_after_left_move1_b |
|
3140 dec_fetch_on_left_move2_b dec_fetch_on_left_move2_o |
|
3141 dec_fetch_check_left_move2_o dec_fetch_check_left_move2_b |
|
3142 dec_fetch_after_left_move2_b dec_fetch_after_write_b |
|
3143 dec_fetch_after_write_o dec_fetch_next_state |
|
3144 |
|
3145 lemma [simp]: |
|
3146 "\<lbrakk>start_of ly as \<le> a; |
|
3147 a < start_of ly as + 2 * n; |
|
3148 (a - start_of ly as) mod 2 = Suc 0; |
|
3149 inv_locate_b (as, am) ((a - start_of ly as) div 2, aaa, Bk # xs) ires\<rbrakk> |
|
3150 \<Longrightarrow> \<not> Suc a < start_of ly as + 2 * n \<longrightarrow> |
|
3151 inv_locate_a (as, am) (n, Bk # aaa, xs) ires" |
|
3152 apply(insert locate_b_2_locate_a[of a ly as n am aaa xs], simp) |
|
3153 done |
|
3154 |
|
3155 lemma [simp]: |
|
3156 "\<lbrakk>start_of ly as \<le> a; |
|
3157 a < start_of ly as + 2 * n; |
|
3158 (a - start_of ly as) mod 2 = Suc 0; |
|
3159 inv_locate_b (as, am) ((a - start_of ly as) div 2, aaa, []) ires\<rbrakk> |
|
3160 \<Longrightarrow> \<not> Suc a < start_of ly as + 2 * n \<longrightarrow> |
|
3161 inv_locate_a (as, am) (n, Bk # aaa, []) ires" |
|
3162 apply(insert locate_b_2_locate_a_B[of a ly as n am aaa], simp) |
|
3163 done |
|
3164 |
|
3165 (* |
|
3166 lemma [simp]: "a\<^bsup>0\<^esup>=[]" |
|
3167 apply(simp add: exponent_def) |
|
3168 done |
|
3169 *) |
|
3170 |
|
3171 lemma exp_ind: "a\<^bsup>Suc b\<^esup> = a\<^bsup>b\<^esup> @ [a]" |
|
3172 apply(simp only: exponent_def rep_ind) |
|
3173 done |
|
3174 |
|
3175 lemma [simp]: |
|
3176 "inv_locate_b (as, am) (n, l, Oc # r) ires |
|
3177 \<Longrightarrow> dec_first_on_right_moving n (as, abc_lm_s am n (abc_lm_v am n)) |
|
3178 (Suc (Suc (start_of ly as + 2 * n)), Oc # l, r) ires" |
|
3179 apply(simp only: inv_locate_b.simps |
|
3180 dec_first_on_right_moving.simps in_middle.simps |
|
3181 abc_lm_s.simps abc_lm_v.simps) |
|
3182 apply(erule_tac exE)+ |
|
3183 apply(erule conjE)+ |
|
3184 apply(case_tac "n < length am", simp) |
|
3185 apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI, |
|
3186 rule_tac x = m in exI, simp) |
|
3187 apply(rule_tac x = "Suc ml" in exI, rule_tac conjI, rule_tac [1-2] impI) |
|
3188 prefer 3 |
|
3189 apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI, |
|
3190 rule_tac x = m in exI, simp) |
|
3191 apply(subgoal_tac "Suc n - length am = Suc (n - length am)", |
|
3192 simp only:exponent_def rep_ind, simp) |
|
3193 apply(rule_tac x = "Suc ml" in exI, simp_all) |
|
3194 apply(rule_tac [!] x = "mr - 1" in exI, simp_all) |
|
3195 apply(case_tac [!] mr, auto) |
|
3196 done |
|
3197 |
|
3198 lemma [simp]: |
|
3199 "\<lbrakk>inv_locate_b (as, am) (n, l, r) ires; l \<noteq> []\<rbrakk> \<Longrightarrow> |
|
3200 \<not> inv_on_left_moving_in_middle_B (as, abc_lm_s am n (abc_lm_v am n)) |
|
3201 (s, tl l, hd l # r) ires" |
|
3202 apply(auto simp: inv_locate_b.simps |
|
3203 inv_on_left_moving_in_middle_B.simps in_middle.simps) |
|
3204 apply(case_tac [!] ml, auto split: if_splits) |
|
3205 done |
|
3206 |
|
3207 lemma [simp]: "inv_locate_b (as, am) (n, l, r) ires \<Longrightarrow> l \<noteq> []" |
|
3208 apply(auto simp: inv_locate_b.simps in_middle.simps split: if_splits) |
|
3209 done |
|
3210 |
|
3211 lemma [simp]: "\<lbrakk>inv_locate_b (as, am) (n, l, Bk # r) ires; n < length am\<rbrakk> |
|
3212 \<Longrightarrow> inv_on_left_moving_norm (as, am) (s, tl l, hd l # Bk # r) ires" |
|
3213 apply(simp only: inv_locate_b.simps inv_on_left_moving_norm.simps |
|
3214 in_middle.simps) |
|
3215 apply(erule_tac exE)+ |
|
3216 apply(erule_tac conjE)+ |
|
3217 apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI, |
|
3218 rule_tac x = m in exI, simp) |
|
3219 apply(rule_tac x = "ml - 1" in exI, auto) |
|
3220 apply(rule_tac [!] x = "Suc mr" in exI) |
|
3221 apply(case_tac [!] mr, auto) |
|
3222 done |
|
3223 |
|
3224 lemma [simp]: "\<lbrakk>inv_locate_b (as, am) (n, l, Bk # r) ires; \<not> n < length am\<rbrakk> |
|
3225 \<Longrightarrow> inv_on_left_moving_norm (as, am @ |
|
3226 replicate (n - length am) 0 @ [0]) (s, tl l, hd l # Bk # r) ires" |
|
3227 apply(simp only: inv_locate_b.simps inv_on_left_moving_norm.simps |
|
3228 in_middle.simps) |
|
3229 apply(erule_tac exE)+ |
|
3230 apply(erule_tac conjE)+ |
|
3231 apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI, |
|
3232 rule_tac x = m in exI, simp) |
|
3233 apply(subgoal_tac "Suc n - length am = Suc (n - length am)", simp only: rep_ind exponent_def, simp_all) |
|
3234 apply(rule_tac x = "Suc mr" in exI, auto) |
|
3235 done |
|
3236 |
|
3237 lemma inv_locate_b_2_on_left_moving[simp]: |
|
3238 "\<lbrakk>inv_locate_b (as, am) (n, l, Bk # r) ires\<rbrakk> |
|
3239 \<Longrightarrow> (l = [] \<longrightarrow> inv_on_left_moving (as, |
|
3240 abc_lm_s am n (abc_lm_v am n)) (s, [], Bk # Bk # r) ires) \<and> |
|
3241 (l \<noteq> [] \<longrightarrow> inv_on_left_moving (as, |
|
3242 abc_lm_s am n (abc_lm_v am n)) (s, tl l, hd l # Bk # r) ires)" |
|
3243 apply(subgoal_tac "l\<noteq>[]") |
|
3244 apply(subgoal_tac "\<not> inv_on_left_moving_in_middle_B |
|
3245 (as, abc_lm_s am n (abc_lm_v am n)) (s, tl l, hd l # Bk # r) ires") |
|
3246 apply(simp add:inv_on_left_moving.simps |
|
3247 abc_lm_s.simps abc_lm_v.simps split: if_splits, auto) |
|
3248 done |
|
3249 |
|
3250 lemma [simp]: |
|
3251 "inv_locate_b (as, am) (n, l, []) ires \<Longrightarrow> |
|
3252 inv_locate_b (as, am) (n, l, [Bk]) ires" |
|
3253 apply(auto simp: inv_locate_b.simps in_middle.simps) |
|
3254 apply(rule_tac x = lm1 in exI, rule_tac x = "[]" in exI, |
|
3255 rule_tac x = "Suc (length lm1) - length am" in exI, |
|
3256 rule_tac x = m in exI, simp) |
|
3257 apply(rule_tac x = ml in exI, rule_tac x = mr in exI) |
|
3258 apply(auto) |
|
3259 done |
|
3260 |
|
3261 lemma nil_2_nil: "<lm::nat list> = [] \<Longrightarrow> lm = []" |
|
3262 apply(auto simp: tape_of_nl_abv) |
|
3263 apply(case_tac lm, simp) |
|
3264 apply(case_tac list, auto simp: tape_of_nat_list.simps) |
|
3265 done |
|
3266 |
|
3267 lemma inv_locate_b_2_on_left_moving_b[simp]: |
|
3268 "inv_locate_b (as, am) (n, l, []) ires |
|
3269 \<Longrightarrow> (l = [] \<longrightarrow> inv_on_left_moving (as, |
|
3270 abc_lm_s am n (abc_lm_v am n)) (s, [], [Bk]) ires) \<and> |
|
3271 (l \<noteq> [] \<longrightarrow> inv_on_left_moving (as, abc_lm_s am n |
|
3272 (abc_lm_v am n)) (s, tl l, [hd l]) ires)" |
|
3273 apply(insert inv_locate_b_2_on_left_moving[of as am n l "[]" ires s]) |
|
3274 apply(simp only: inv_on_left_moving.simps, simp) |
|
3275 apply(subgoal_tac "\<not> inv_on_left_moving_in_middle_B |
|
3276 (as, abc_lm_s am n (abc_lm_v am n)) (s, tl l, [hd l]) ires", simp) |
|
3277 apply(simp only: inv_on_left_moving_norm.simps) |
|
3278 apply(erule_tac exE)+ |
|
3279 apply(erule_tac conjE)+ |
|
3280 apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI, |
|
3281 rule_tac x = m in exI, rule_tac x = ml in exI, |
|
3282 rule_tac x = mr in exI, simp) |
|
3283 apply(case_tac mr, simp, simp, case_tac nat, auto intro: nil_2_nil) |
|
3284 done |
|
3285 |
|
3286 lemma [simp]: |
|
3287 "\<lbrakk>dec_first_on_right_moving n (as, am) (s, aaa, Oc # xs) ires\<rbrakk> |
|
3288 \<Longrightarrow> dec_first_on_right_moving n (as, am) (s', Oc # aaa, xs) ires" |
|
3289 apply(simp only: dec_first_on_right_moving.simps) |
|
3290 apply(erule exE)+ |
|
3291 apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI, |
|
3292 rule_tac x = m in exI, simp) |
|
3293 apply(rule_tac x = "Suc ml" in exI, |
|
3294 rule_tac x = "mr - 1" in exI, auto) |
|
3295 apply(case_tac [!] mr, auto) |
|
3296 done |
|
3297 |
|
3298 lemma [simp]: |
|
3299 "dec_first_on_right_moving n (as, am) (s, l, Bk # xs) ires \<Longrightarrow> l \<noteq> []" |
|
3300 apply(auto simp: dec_first_on_right_moving.simps split: if_splits) |
|
3301 done |
|
3302 |
|
3303 lemma [elim]: |
|
3304 "\<lbrakk>\<not> length lm1 < length am; |
|
3305 am @ replicate (length lm1 - length am) 0 @ [0::nat] = |
|
3306 lm1 @ m # lm2; |
|
3307 0 < m\<rbrakk> |
|
3308 \<Longrightarrow> RR" |
|
3309 apply(subgoal_tac "lm2 = []", simp) |
|
3310 apply(drule_tac length_equal, simp) |
|
3311 done |
|
3312 |
|
3313 lemma [simp]: |
|
3314 "\<lbrakk>dec_first_on_right_moving n (as, |
|
3315 abc_lm_s am n (abc_lm_v am n)) (s, l, Bk # xs) ires\<rbrakk> |
|
3316 \<Longrightarrow> dec_after_clear (as, abc_lm_s am n |
|
3317 (abc_lm_v am n - Suc 0)) (s', tl l, hd l # Bk # xs) ires" |
|
3318 apply(simp only: dec_first_on_right_moving.simps |
|
3319 dec_after_clear.simps abc_lm_s.simps abc_lm_v.simps) |
|
3320 apply(erule_tac exE)+ |
|
3321 apply(case_tac "n < length am") |
|
3322 apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI, |
|
3323 rule_tac x = "m - 1" in exI, auto simp: ) |
|
3324 apply(case_tac [!] mr, auto) |
|
3325 done |
|
3326 |
|
3327 lemma [simp]: |
|
3328 "\<lbrakk>dec_first_on_right_moving n (as, |
|
3329 abc_lm_s am n (abc_lm_v am n)) (s, l, []) ires\<rbrakk> |
|
3330 \<Longrightarrow> (l = [] \<longrightarrow> dec_after_clear (as, |
|
3331 abc_lm_s am n (abc_lm_v am n - Suc 0)) (s', [], [Bk]) ires) \<and> |
|
3332 (l \<noteq> [] \<longrightarrow> dec_after_clear (as, abc_lm_s am n |
|
3333 (abc_lm_v am n - Suc 0)) (s', tl l, [hd l]) ires)" |
|
3334 apply(subgoal_tac "l \<noteq> []", |
|
3335 simp only: dec_first_on_right_moving.simps |
|
3336 dec_after_clear.simps abc_lm_s.simps abc_lm_v.simps) |
|
3337 apply(erule_tac exE)+ |
|
3338 apply(case_tac "n < length am", simp) |
|
3339 apply(rule_tac x = lm1 in exI, rule_tac x = "m - 1" in exI, auto) |
|
3340 apply(case_tac [1-2] mr, auto) |
|
3341 apply(case_tac [1-2] m, auto simp: dec_first_on_right_moving.simps split: if_splits) |
|
3342 done |
|
3343 |
|
3344 lemma [simp]: "\<lbrakk>dec_after_clear (as, am) (s, l, Oc # r) ires\<rbrakk> |
|
3345 \<Longrightarrow> dec_after_clear (as, am) (s', l, Bk # r) ires" |
|
3346 apply(auto simp: dec_after_clear.simps) |
|
3347 done |
|
3348 |
|
3349 lemma [simp]: "\<lbrakk>dec_after_clear (as, am) (s, l, Bk # r) ires\<rbrakk> |
|
3350 \<Longrightarrow> dec_right_move (as, am) (s', Bk # l, r) ires" |
|
3351 apply(auto simp: dec_after_clear.simps dec_right_move.simps split: if_splits) |
|
3352 done |
|
3353 |
|
3354 lemma [simp]: "\<lbrakk>dec_after_clear (as, am) (s, l, []) ires\<rbrakk> |
|
3355 \<Longrightarrow> dec_right_move (as, am) (s', Bk # l, []) ires" |
|
3356 apply(auto simp: dec_after_clear.simps dec_right_move.simps ) |
|
3357 done |
|
3358 |
|
3359 lemma [simp]: "\<exists>rn. a::block\<^bsup>rn\<^esup> = []" |
|
3360 apply(rule_tac x = 0 in exI, simp) |
|
3361 done |
|
3362 |
|
3363 lemma [simp]: "\<lbrakk>dec_after_clear (as, am) (s, l, []) ires\<rbrakk> |
|
3364 \<Longrightarrow> dec_right_move (as, am) (s', Bk # l, [Bk]) ires" |
|
3365 apply(auto simp: dec_after_clear.simps dec_right_move.simps split: if_splits) |
|
3366 done |
|
3367 |
|
3368 lemma [simp]:"dec_right_move (as, am) (s, l, Oc # r) ires = False" |
|
3369 apply(auto simp: dec_right_move.simps) |
|
3370 done |
|
3371 |
|
3372 lemma dec_right_move_2_check_right_move[simp]: |
|
3373 "\<lbrakk>dec_right_move (as, am) (s, l, Bk # r) ires\<rbrakk> |
|
3374 \<Longrightarrow> dec_check_right_move (as, am) (s', Bk # l, r) ires" |
|
3375 apply(auto simp: dec_right_move.simps dec_check_right_move.simps split: if_splits) |
|
3376 done |
|
3377 |
|
3378 lemma [simp]: |
|
3379 "dec_right_move (as, am) (s, l, []) ires= |
|
3380 dec_right_move (as, am) (s, l, [Bk]) ires" |
|
3381 apply(simp add: dec_right_move.simps) |
|
3382 apply(rule_tac iffI) |
|
3383 apply(erule_tac [!] exE)+ |
|
3384 apply(erule_tac [2] exE) |
|
3385 apply(rule_tac [!] x = lm1 in exI, rule_tac x = "[]" in exI, |
|
3386 rule_tac [!] x = m in exI, auto) |
|
3387 apply(auto intro: nil_2_nil) |
|
3388 done |
|
3389 |
|
3390 lemma [simp]: "\<lbrakk>dec_right_move (as, am) (s, l, []) ires\<rbrakk> |
|
3391 \<Longrightarrow> dec_check_right_move (as, am) (s, Bk # l, []) ires" |
|
3392 apply(insert dec_right_move_2_check_right_move[of as am s l "[]" s'], |
|
3393 simp) |
|
3394 done |
|
3395 |
|
3396 lemma [simp]: "dec_check_right_move (as, am) (s, l, r) ires\<Longrightarrow> l \<noteq> []" |
|
3397 apply(auto simp: dec_check_right_move.simps split: if_splits) |
|
3398 done |
|
3399 |
|
3400 lemma [simp]: "\<lbrakk>dec_check_right_move (as, am) (s, l, Oc # r) ires\<rbrakk> |
|
3401 \<Longrightarrow> dec_after_write (as, am) (s', tl l, hd l # Oc # r) ires" |
|
3402 apply(auto simp: dec_check_right_move.simps dec_after_write.simps) |
|
3403 apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI, |
|
3404 rule_tac x = m in exI, auto) |
|
3405 done |
|
3406 |
|
3407 lemma [simp]: "\<lbrakk>dec_check_right_move (as, am) (s, l, Bk # r) ires\<rbrakk> |
|
3408 \<Longrightarrow> dec_left_move (as, am) (s', tl l, hd l # Bk # r) ires" |
|
3409 apply(auto simp: dec_check_right_move.simps |
|
3410 dec_left_move.simps inv_after_move.simps) |
|
3411 apply(rule_tac x = lm1 in exI, rule_tac x = m in exI, auto) |
|
3412 apply(auto intro: BkCons_nil nil_2_nil dest: BkCons_nil) |
|
3413 apply(rule_tac x = "Suc rn" in exI) |
|
3414 apply(auto intro: BkCons_nil nil_2_nil dest: BkCons_nil) |
|
3415 done |
|
3416 |
|
3417 lemma [simp]: "\<lbrakk>dec_check_right_move (as, am) (s, l, []) ires\<rbrakk> |
|
3418 \<Longrightarrow> dec_left_move (as, am) (s', tl l, [hd l]) ires" |
|
3419 apply(auto simp: dec_check_right_move.simps |
|
3420 dec_left_move.simps inv_after_move.simps) |
|
3421 apply(rule_tac x = lm1 in exI, rule_tac x = m in exI, auto) |
|
3422 apply(auto intro: BkCons_nil nil_2_nil dest: BkCons_nil) |
|
3423 done |
|
3424 |
|
3425 lemma [simp]: "dec_left_move (as, am) (s, aaa, Oc # xs) ires = False" |
|
3426 apply(auto simp: dec_left_move.simps inv_after_move.simps) |
|
3427 apply(case_tac [!] rn, auto) |
|
3428 done |
|
3429 |
|
3430 lemma [simp]: "dec_left_move (as, am) (s, l, r) ires |
|
3431 \<Longrightarrow> l \<noteq> []" |
|
3432 apply(auto simp: dec_left_move.simps split: if_splits) |
|
3433 done |
|
3434 |
|
3435 lemma tape_of_nl_abv_cons_ex[simp]: |
|
3436 "\<exists>lna. Oc # Oc\<^bsup>m\<^esup> @ Bk # <rev lm1> @ Bk\<^bsup>ln\<^esup> = <m # rev lm1> @ Bk\<^bsup>lna\<^esup>" |
|
3437 apply(case_tac "lm1=[]", auto simp: tape_of_nl_abv |
|
3438 tape_of_nat_list.simps) |
|
3439 apply(rule_tac x = "ln" in exI, simp) |
|
3440 apply(simp add: tape_of_nat_list_cons exponent_def) |
|
3441 done |
|
3442 |
|
3443 (* |
|
3444 lemma [simp]: "inv_on_left_moving_in_middle_B (as, lm1 @ [m]) |
|
3445 (s', Oc # Oc\<^bsup>m\<^esup> @ Bk # <rev lm1> @ Bk\<^bsup>ln\<^esup>, Bk # Bk\<^bsup>rn\<^esup>) ires" |
|
3446 apply(simp only: inv_on_left_moving_in_middle_B.simps) |
|
3447 apply(rule_tac x = "lm1 @ [m]" in exI, rule_tac x = "[]" in exI, auto) |
|
3448 done |
|
3449 *) |
|
3450 lemma [simp]: "inv_on_left_moving_in_middle_B (as, [m]) |
|
3451 (s', Oc # Oc\<^bsup>m\<^esup> @ Bk # Bk # ires, Bk # Bk\<^bsup>rn\<^esup>) ires" |
|
3452 apply(simp add: inv_on_left_moving_in_middle_B.simps) |
|
3453 apply(rule_tac x = "[m]" in exI, simp, auto simp: tape_of_nat_def) |
|
3454 done |
|
3455 |
|
3456 lemma [simp]: "inv_on_left_moving_in_middle_B (as, [m]) |
|
3457 (s', Oc # Oc\<^bsup>m\<^esup> @ Bk # Bk # ires, [Bk]) ires" |
|
3458 apply(simp add: inv_on_left_moving_in_middle_B.simps) |
|
3459 apply(rule_tac x = "[m]" in exI, simp, auto simp: tape_of_nat_def) |
|
3460 done |
|
3461 |
|
3462 lemma [simp]: "lm1 \<noteq> [] \<Longrightarrow> |
|
3463 inv_on_left_moving_in_middle_B (as, lm1 @ [m]) (s', |
|
3464 Oc # Oc\<^bsup>m\<^esup> @ Bk # <rev lm1> @ Bk # Bk # ires, Bk # Bk\<^bsup>rn\<^esup>) ires" |
|
3465 apply(simp only: inv_on_left_moving_in_middle_B.simps) |
|
3466 apply(rule_tac x = "lm1 @ [m ]" in exI, rule_tac x = "[]" in exI, simp, auto) |
|
3467 done |
|
3468 |
|
3469 lemma [simp]: "lm1 \<noteq> [] \<Longrightarrow> |
|
3470 inv_on_left_moving_in_middle_B (as, lm1 @ [m]) (s', |
|
3471 Oc # Oc\<^bsup>m\<^esup> @ Bk # <rev lm1> @ Bk # Bk # ires, [Bk]) ires" |
|
3472 apply(simp only: inv_on_left_moving_in_middle_B.simps) |
|
3473 apply(rule_tac x = "lm1 @ [m ]" in exI, rule_tac x = "[]" in exI, simp, auto) |
|
3474 done |
|
3475 |
|
3476 lemma [simp]: "dec_left_move (as, am) (s, l, Bk # r) ires |
|
3477 \<Longrightarrow> inv_on_left_moving (as, am) (s', tl l, hd l # Bk # r) ires" |
|
3478 apply(auto simp: dec_left_move.simps inv_on_left_moving.simps split: if_splits) |
|
3479 done |
|
3480 |
|
3481 (* |
|
3482 lemma [simp]: "inv_on_left_moving_in_middle_B (as, lm1 @ [m]) |
|
3483 (s', Oc # Oc\<^bsup>m\<^esup> @ Bk # <rev lm1> @ Bk\<^bsup>ln\<^esup>, [Bk]) ires" |
|
3484 apply(auto simp: inv_on_left_moving_in_middle_B.simps) |
|
3485 apply(rule_tac x = "lm1 @ [m]" in exI, rule_tac x = "[]" in exI, auto) |
|
3486 done |
|
3487 *) |
|
3488 |
|
3489 lemma [simp]: "dec_left_move (as, am) (s, l, []) ires |
|
3490 \<Longrightarrow> inv_on_left_moving (as, am) (s', tl l, [hd l]) ires" |
|
3491 apply(auto simp: dec_left_move.simps inv_on_left_moving.simps split: if_splits) |
|
3492 done |
|
3493 |
|
3494 lemma [simp]: "dec_after_write (as, am) (s, l, Oc # r) ires |
|
3495 \<Longrightarrow> dec_on_right_moving (as, am) (s', Oc # l, r) ires" |
|
3496 apply(auto simp: dec_after_write.simps dec_on_right_moving.simps) |
|
3497 apply(rule_tac x = "lm1 @ [m]" in exI, rule_tac x = "tl lm2" in exI, |
|
3498 rule_tac x = "hd lm2" in exI, simp) |
|
3499 apply(rule_tac x = "Suc 0" in exI,rule_tac x = "Suc (hd lm2)" in exI) |
|
3500 apply(case_tac lm2, simp, simp) |
|
3501 apply(case_tac "list = []", |
|
3502 auto simp: tape_of_nl_abv tape_of_nat_list.simps split: if_splits ) |
|
3503 apply(case_tac rn, auto) |
|
3504 apply(case_tac "rev lm1", simp, simp add: tape_of_nat_list.simps) |
|
3505 apply(case_tac rn, auto) |
|
3506 apply(case_tac list, simp_all add: tape_of_nat_list.simps, auto) |
|
3507 apply(case_tac "rev lm1", simp, simp add: tape_of_nat_list.simps) |
|
3508 apply(case_tac list, simp_all add: tape_of_nat_list.simps, auto) |
|
3509 done |
|
3510 |
|
3511 lemma [simp]: "dec_after_write (as, am) (s, l, Bk # r) ires |
|
3512 \<Longrightarrow> dec_after_write (as, am) (s', l, Oc # r) ires" |
|
3513 apply(auto simp: dec_after_write.simps) |
|
3514 done |
|
3515 |
|
3516 lemma [simp]: "dec_after_write (as, am) (s, aaa, []) ires |
|
3517 \<Longrightarrow> dec_after_write (as, am) (s', aaa, [Oc]) ires" |
|
3518 apply(auto simp: dec_after_write.simps) |
|
3519 done |
|
3520 |
|
3521 lemma [simp]: "dec_on_right_moving (as, am) (s, l, Oc # r) ires |
|
3522 \<Longrightarrow> dec_on_right_moving (as, am) (s', Oc # l, r) ires" |
|
3523 apply(simp only: dec_on_right_moving.simps) |
|
3524 apply(erule_tac exE)+ |
|
3525 apply(erule conjE)+ |
|
3526 apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI, |
|
3527 rule_tac x = "m" in exI, rule_tac x = "Suc ml" in exI, |
|
3528 rule_tac x = "mr - 1" in exI, simp) |
|
3529 apply(case_tac mr, auto) |
|
3530 done |
|
3531 |
|
3532 lemma [simp]: "dec_on_right_moving (as, am) (s, l, r) ires\<Longrightarrow> l \<noteq> []" |
|
3533 apply(auto simp: dec_on_right_moving.simps split: if_splits) |
|
3534 done |
|
3535 |
|
3536 lemma [simp]: "dec_on_right_moving (as, am) (s, l, Bk # r) ires |
|
3537 \<Longrightarrow> dec_after_clear (as, am) (s', tl l, hd l # Bk # r) ires" |
|
3538 apply(auto simp: dec_on_right_moving.simps dec_after_clear.simps) |
|
3539 apply(case_tac [!] mr, auto split: if_splits) |
|
3540 done |
|
3541 |
|
3542 lemma [simp]: "dec_on_right_moving (as, am) (s, l, []) ires |
|
3543 \<Longrightarrow> dec_after_clear (as, am) (s', tl l, [hd l]) ires" |
|
3544 apply(auto simp: dec_on_right_moving.simps dec_after_clear.simps) |
|
3545 apply(case_tac mr, simp_all split: if_splits) |
|
3546 apply(rule_tac x = lm1 in exI, simp) |
|
3547 done |
|
3548 |
|
3549 lemma start_of_le: "a < b \<Longrightarrow> start_of ly a \<le> start_of ly b" |
|
3550 proof(induct b arbitrary: a, simp, case_tac "a = b", simp) |
|
3551 fix b a |
|
3552 show "start_of ly b \<le> start_of ly (Suc b)" |
|
3553 apply(case_tac "b::nat", |
|
3554 simp add: start_of.simps, simp add: start_of.simps) |
|
3555 done |
|
3556 next |
|
3557 fix b a |
|
3558 assume h1: "\<And>a. a < b \<Longrightarrow> start_of ly a \<le> start_of ly b" |
|
3559 "a < Suc b" "a \<noteq> b" |
|
3560 hence "a < b" |
|
3561 by(simp) |
|
3562 from h1 and this have h2: "start_of ly a \<le> start_of ly b" |
|
3563 by(drule_tac h1, simp) |
|
3564 from h2 show "start_of ly a \<le> start_of ly (Suc b)" |
|
3565 proof - |
|
3566 have "start_of ly b \<le> start_of ly (Suc b)" |
|
3567 apply(case_tac "b::nat", |
|
3568 simp add: start_of.simps, simp add: start_of.simps) |
|
3569 done |
|
3570 from h2 and this show "start_of ly a \<le> start_of ly (Suc b)" |
|
3571 by simp |
|
3572 qed |
|
3573 qed |
|
3574 |
|
3575 lemma start_of_dec_length[simp]: |
|
3576 "\<lbrakk>abc_fetch a aprog = Some (Dec n e)\<rbrakk> \<Longrightarrow> |
|
3577 start_of (layout_of aprog) (Suc a) |
|
3578 = start_of (layout_of aprog) a + 2*n + 16" |
|
3579 apply(case_tac a, auto simp: abc_fetch.simps start_of.simps |
|
3580 layout_of.simps length_of.simps |
|
3581 split: if_splits) |
|
3582 done |
|
3583 |
|
3584 lemma start_of_ge: |
|
3585 "\<lbrakk>abc_fetch a aprog = Some (Dec n e); a < e\<rbrakk> \<Longrightarrow> |
|
3586 start_of (layout_of aprog) e > |
|
3587 start_of (layout_of aprog) a + 2*n + 15" |
|
3588 apply(case_tac "e = Suc a", |
|
3589 simp add: start_of.simps abc_fetch.simps layout_of.simps |
|
3590 length_of.simps split: if_splits) |
|
3591 apply(subgoal_tac "Suc a < e", drule_tac a = "Suc a" |
|
3592 and ly = "layout_of aprog" in start_of_le) |
|
3593 apply(subgoal_tac "start_of (layout_of aprog) (Suc a) |
|
3594 = start_of (layout_of aprog) a + 2*n + 16", simp) |
|
3595 apply(rule_tac start_of_dec_length, simp) |
|
3596 apply(arith) |
|
3597 done |
|
3598 |
|
3599 lemma starte_not_equal[simp]: |
|
3600 "\<lbrakk>abc_fetch as aprog = Some (Dec n e); ly = layout_of aprog\<rbrakk> |
|
3601 \<Longrightarrow> (start_of ly e \<noteq> Suc (Suc (start_of ly as + 2 * n)) \<and> |
|
3602 start_of ly e \<noteq> start_of ly as + 2 * n + 3 \<and> |
|
3603 start_of ly e \<noteq> start_of ly as + 2 * n + 4 \<and> |
|
3604 start_of ly e \<noteq> start_of ly as + 2 * n + 5 \<and> |
|
3605 start_of ly e \<noteq> start_of ly as + 2 * n + 6 \<and> |
|
3606 start_of ly e \<noteq> start_of ly as + 2 * n + 7 \<and> |
|
3607 start_of ly e \<noteq> start_of ly as + 2 * n + 8 \<and> |
|
3608 start_of ly e \<noteq> start_of ly as + 2 * n + 9 \<and> |
|
3609 start_of ly e \<noteq> start_of ly as + 2 * n + 10 \<and> |
|
3610 start_of ly e \<noteq> start_of ly as + 2 * n + 11 \<and> |
|
3611 start_of ly e \<noteq> start_of ly as + 2 * n + 12 \<and> |
|
3612 start_of ly e \<noteq> start_of ly as + 2 * n + 13 \<and> |
|
3613 start_of ly e \<noteq> start_of ly as + 2 * n + 14 \<and> |
|
3614 start_of ly e \<noteq> start_of ly as + 2 * n + 15)" |
|
3615 apply(case_tac "e = as", simp) |
|
3616 apply(case_tac "e < as") |
|
3617 apply(drule_tac a = e and b = as and ly = ly in start_of_le, simp) |
|
3618 apply(drule_tac a = as and e = e in start_of_ge, simp, simp) |
|
3619 done |
|
3620 |
|
3621 lemma [simp]: "\<lbrakk>abc_fetch as aprog = Some (Dec n e); ly = layout_of aprog\<rbrakk> |
|
3622 \<Longrightarrow> (Suc (Suc (start_of ly as + 2 * n)) \<noteq> start_of ly e \<and> |
|
3623 start_of ly as + 2 * n + 3 \<noteq> start_of ly e \<and> |
|
3624 start_of ly as + 2 * n + 4 \<noteq> start_of ly e \<and> |
|
3625 start_of ly as + 2 * n + 5 \<noteq>start_of ly e \<and> |
|
3626 start_of ly as + 2 * n + 6 \<noteq> start_of ly e \<and> |
|
3627 start_of ly as + 2 * n + 7 \<noteq> start_of ly e \<and> |
|
3628 start_of ly as + 2 * n + 8 \<noteq> start_of ly e \<and> |
|
3629 start_of ly as + 2 * n + 9 \<noteq> start_of ly e \<and> |
|
3630 start_of ly as + 2 * n + 10 \<noteq> start_of ly e \<and> |
|
3631 start_of ly as + 2 * n + 11 \<noteq> start_of ly e \<and> |
|
3632 start_of ly as + 2 * n + 12 \<noteq> start_of ly e \<and> |
|
3633 start_of ly as + 2 * n + 13 \<noteq> start_of ly e \<and> |
|
3634 start_of ly as + 2 * n + 14 \<noteq> start_of ly e \<and> |
|
3635 start_of ly as + 2 * n + 15 \<noteq> start_of ly e)" |
|
3636 apply(insert starte_not_equal[of as aprog n e ly], |
|
3637 simp del: starte_not_equal) |
|
3638 apply(erule_tac conjE)+ |
|
3639 apply(rule_tac conjI, simp del: starte_not_equal)+ |
|
3640 apply(rule not_sym, simp) |
|
3641 done |
|
3642 |
|
3643 lemma [simp]: "start_of (layout_of aprog) as > 0 \<Longrightarrow> |
|
3644 fetch (ci (layout_of aprog) (start_of (layout_of aprog) as) |
|
3645 (Dec n as)) (Suc 0) Oc = |
|
3646 (R, Suc (start_of (layout_of aprog) as))" |
|
3647 |
|
3648 apply(auto simp: ci.simps findnth.simps fetch.simps |
|
3649 nth_of.simps tshift.simps nth_append |
|
3650 Suc_pre tdec_b_def) |
|
3651 apply(insert findnth_nth[of 0 n "Suc 0"], simp) |
|
3652 apply(simp add: findnth.simps) |
|
3653 done |
|
3654 |
|
3655 lemma start_of_inj[simp]: |
|
3656 "\<lbrakk>abc_fetch as aprog = Some (Dec n e); e \<noteq> as; ly = layout_of aprog\<rbrakk> |
|
3657 \<Longrightarrow> start_of ly as \<noteq> start_of ly e" |
|
3658 apply(case_tac "e < as") |
|
3659 apply(case_tac "as", simp, simp) |
|
3660 apply(case_tac "e = nat", simp add: start_of.simps |
|
3661 layout_of.simps length_of.simps) |
|
3662 apply(subgoal_tac "e < length aprog", simp add: length_of.simps |
|
3663 split: abc_inst.splits) |
|
3664 apply(simp add: abc_fetch.simps split: if_splits) |
|
3665 apply(subgoal_tac "e < nat", drule_tac a = e and b = nat |
|
3666 and ly =ly in start_of_le, simp) |
|
3667 apply(subgoal_tac "start_of ly nat < start_of ly (Suc nat)", |
|
3668 simp, simp add: start_of.simps layout_of.simps) |
|
3669 apply(subgoal_tac "nat < length aprog", simp) |
|
3670 apply(case_tac "aprog ! nat", auto simp: length_of.simps) |
|
3671 apply(simp add: abc_fetch.simps split: if_splits) |
|
3672 apply(subgoal_tac "e > as", drule_tac start_of_ge, auto) |
|
3673 done |
|
3674 |
|
3675 lemma [simp]: "\<lbrakk>abc_fetch as aprog = Some (Dec n e); e < as\<rbrakk> |
|
3676 \<Longrightarrow> Suc (start_of (layout_of aprog) e) - |
|
3677 start_of (layout_of aprog) as = 0" |
|
3678 apply(frule_tac ly = "layout_of aprog" in start_of_le, simp) |
|
3679 apply(subgoal_tac "start_of (layout_of aprog) as \<noteq> |
|
3680 start_of (layout_of aprog) e", arith) |
|
3681 apply(rule start_of_inj, auto) |
|
3682 done |
|
3683 |
|
3684 lemma [simp]: |
|
3685 "\<lbrakk>abc_fetch as aprog = Some (Dec n e); |
|
3686 0 < start_of (layout_of aprog) as\<rbrakk> |
|
3687 \<Longrightarrow> (fetch (ci (layout_of aprog) (start_of (layout_of aprog) as) |
|
3688 (Dec n e)) (Suc (start_of (layout_of aprog) e) - |
|
3689 start_of (layout_of aprog) as) Oc) |
|
3690 = (if e = as then (R, start_of (layout_of aprog) as + 1) |
|
3691 else (Nop, 0))" |
|
3692 apply(auto split: if_splits) |
|
3693 apply(case_tac "e < as", simp add: fetch.simps) |
|
3694 apply(subgoal_tac " e > as") |
|
3695 apply(drule start_of_ge, simp, |
|
3696 auto simp: fetch.simps ci_length nth_of.simps) |
|
3697 apply(subgoal_tac |
|
3698 "length (ci (layout_of aprog) (start_of (layout_of aprog) as) |
|
3699 (Dec n e)) div 2= length_of (Dec n e)") |
|
3700 defer |
|
3701 apply(simp add: ci_length) |
|
3702 apply(subgoal_tac |
|
3703 "length (ci (layout_of aprog) (start_of (layout_of aprog) as) |
|
3704 (Dec n e)) mod 2 = 0", auto simp: length_of.simps) |
|
3705 done |
|
3706 |
|
3707 lemma [simp]: |
|
3708 "start_of (layout_of aprog) as > 0 \<Longrightarrow> |
|
3709 fetch (ci (layout_of aprog) (start_of (layout_of aprog) as) |
|
3710 (Dec n as)) (Suc 0) Bk |
|
3711 = (W1, start_of (layout_of aprog) as)" |
|
3712 apply(auto simp: ci.simps findnth.simps fetch.simps nth_of.simps |
|
3713 tshift.simps nth_append Suc_pre tdec_b_def) |
|
3714 apply(insert findnth_nth[of 0 n "0"], simp) |
|
3715 apply(simp add: findnth.simps) |
|
3716 done |
|
3717 |
|
3718 lemma [simp]: |
|
3719 "\<lbrakk>abc_fetch as aprog = Some (Dec n e); |
|
3720 0 < start_of (layout_of aprog) as\<rbrakk> |
|
3721 \<Longrightarrow> (fetch (ci (layout_of aprog) (start_of (layout_of aprog) as) |
|
3722 (Dec n e)) (Suc (start_of (layout_of aprog) e) - |
|
3723 start_of (layout_of aprog) as) Bk) |
|
3724 = (if e = as then (W1, start_of (layout_of aprog) as) |
|
3725 else (Nop, 0))" |
|
3726 apply(auto split: if_splits) |
|
3727 apply(case_tac "e < as", simp add: fetch.simps) |
|
3728 apply(subgoal_tac " e > as") |
|
3729 apply(drule start_of_ge, simp, auto simp: fetch.simps |
|
3730 ci_length nth_of.simps) |
|
3731 apply(subgoal_tac |
|
3732 "length (ci (layout_of aprog) (start_of (layout_of aprog) as) |
|
3733 (Dec n e)) div 2= length_of (Dec n e)") |
|
3734 defer |
|
3735 apply(simp add: ci_length) |
|
3736 apply(subgoal_tac |
|
3737 "length (ci (layout_of aprog) (start_of (layout_of aprog) as) |
|
3738 (Dec n e)) mod 2 = 0", auto simp: length_of.simps) |
|
3739 apply(simp add: ci.simps tshift.simps tdec_b_def) |
|
3740 done |
|
3741 |
|
3742 lemma [simp]: |
|
3743 "inv_stop (as, abc_lm_s am n (abc_lm_v am n)) (s, l, r) ires \<Longrightarrow> l \<noteq> []" |
|
3744 apply(auto simp: inv_stop.simps) |
|
3745 done |
|
3746 |
|
3747 lemma [simp]: |
|
3748 "\<lbrakk>abc_fetch as aprog = Some (Dec n e); e \<noteq> as; ly = layout_of aprog\<rbrakk> |
|
3749 \<Longrightarrow> (\<not> (start_of ly as \<le> start_of ly e \<and> |
|
3750 start_of ly e < start_of ly as + 2 * n)) |
|
3751 \<and> start_of ly e \<noteq> start_of ly as + 2*n \<and> |
|
3752 start_of ly e \<noteq> Suc (start_of ly as + 2*n) " |
|
3753 apply(case_tac "e < as") |
|
3754 apply(drule_tac ly = ly in start_of_le, simp) |
|
3755 apply(case_tac n, simp, drule start_of_inj, simp, simp, simp, simp) |
|
3756 apply(drule_tac start_of_ge, simp, simp) |
|
3757 done |
|
3758 |
|
3759 lemma [simp]: |
|
3760 "\<lbrakk>abc_fetch as aprog = Some (Dec n e); start_of ly as \<le> s; |
|
3761 s < start_of ly as + 2 * n; ly = layout_of aprog\<rbrakk> |
|
3762 \<Longrightarrow> Suc s \<noteq> start_of ly e " |
|
3763 apply(case_tac "e = as", simp) |
|
3764 apply(case_tac "e < as") |
|
3765 apply(drule_tac a = e and b = as and ly = ly in start_of_le, simp) |
|
3766 apply(drule_tac start_of_ge, auto) |
|
3767 done |
|
3768 |
|
3769 lemma [simp]: "\<lbrakk>abc_fetch as aprog = Some (Dec n e); |
|
3770 ly = layout_of aprog\<rbrakk> |
|
3771 \<Longrightarrow> Suc (start_of ly as + 2 * n) \<noteq> start_of ly e" |
|
3772 apply(case_tac "e = as", simp) |
|
3773 apply(case_tac "e < as") |
|
3774 apply(drule_tac a = e and b = as and ly = ly in start_of_le, simp) |
|
3775 apply(drule_tac start_of_ge, auto) |
|
3776 done |
|
3777 |
|
3778 lemma dec_false_1[simp]: |
|
3779 "\<lbrakk>abc_lm_v am n = 0; inv_locate_b (as, am) (n, aaa, Oc # xs) ires\<rbrakk> |
|
3780 \<Longrightarrow> False" |
|
3781 apply(auto simp: inv_locate_b.simps in_middle.simps exponent_def) |
|
3782 apply(case_tac "length lm1 \<ge> length am", auto) |
|
3783 apply(subgoal_tac "lm2 = []", simp, subgoal_tac "m = 0", simp) |
|
3784 apply(case_tac mr, auto simp: ) |
|
3785 apply(subgoal_tac "Suc (length lm1) - length am = |
|
3786 Suc (length lm1 - length am)", |
|
3787 simp add: rep_ind del: replicate.simps, simp) |
|
3788 apply(drule_tac xs = "am @ replicate (Suc (length lm1) - length am) 0" |
|
3789 and ys = "lm1 @ m # lm2" in length_equal, simp) |
|
3790 apply(case_tac mr, auto simp: abc_lm_v.simps) |
|
3791 apply(case_tac "mr = 0", simp_all add: exponent_def split: if_splits) |
|
3792 apply(subgoal_tac "Suc (length lm1) - length am = |
|
3793 Suc (length lm1 - length am)", |
|
3794 simp add: rep_ind del: replicate.simps, simp) |
|
3795 done |
|
3796 |
|
3797 lemma [simp]: |
|
3798 "\<lbrakk>inv_locate_b (as, am) (n, aaa, Bk # xs) ires; |
|
3799 abc_lm_v am n = 0\<rbrakk> |
|
3800 \<Longrightarrow> inv_on_left_moving (as, abc_lm_s am n 0) |
|
3801 (s, tl aaa, hd aaa # Bk # xs) ires" |
|
3802 apply(insert inv_locate_b_2_on_left_moving[of as am n aaa xs ires s], simp) |
|
3803 done |
|
3804 |
|
3805 lemma [simp]: |
|
3806 "\<lbrakk>abc_lm_v am n = 0; inv_locate_b (as, am) (n, aaa, []) ires\<rbrakk> |
|
3807 \<Longrightarrow> inv_on_left_moving (as, abc_lm_s am n 0) (s, tl aaa, [hd aaa]) ires" |
|
3808 apply(insert inv_locate_b_2_on_left_moving_b[of as am n aaa ires s], simp) |
|
3809 done |
|
3810 |
|
3811 lemma [simp]: "\<lbrakk>am ! n = (0::nat); n < length am\<rbrakk> \<Longrightarrow> am[n := 0] = am" |
|
3812 apply(simp add: list_update_same_conv) |
|
3813 done |
|
3814 |
|
3815 lemma [simp]: "\<lbrakk>abc_lm_v am n = 0; |
|
3816 inv_locate_b (as, abc_lm_s am n 0) (n, Oc # aaa, xs) ires\<rbrakk> |
|
3817 \<Longrightarrow> inv_locate_b (as, am) (n, Oc # aaa, xs) ires" |
|
3818 apply(simp only: inv_locate_b.simps in_middle.simps abc_lm_s.simps |
|
3819 abc_lm_v.simps) |
|
3820 apply(erule_tac exE)+ |
|
3821 apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI, simp) |
|
3822 apply(case_tac "n < length am", simp_all) |
|
3823 apply(erule_tac conjE)+ |
|
3824 apply(rule_tac x = tn in exI, rule_tac x = m in exI, simp) |
|
3825 apply(rule_tac x = ml in exI, rule_tac x = mr in exI, simp) |
|
3826 defer |
|
3827 apply(rule_tac x = "Suc n - length am" in exI, rule_tac x = m in exI) |
|
3828 apply(subgoal_tac "Suc n - length am = Suc (n - length am)") |
|
3829 apply(simp add: exponent_def rep_ind del: replicate.simps, auto) |
|
3830 done |
|
3831 |
|
3832 lemma [intro]: "\<lbrakk>abc_lm_v (a # list) 0 = 0\<rbrakk> \<Longrightarrow> a = 0" |
|
3833 apply(simp add: abc_lm_v.simps split: if_splits) |
|
3834 done |
|
3835 |
|
3836 lemma [simp]: |
|
3837 "inv_stop (as, abc_lm_s am n 0) |
|
3838 (start_of (layout_of aprog) e, aaa, Oc # xs) ires |
|
3839 \<Longrightarrow> inv_locate_a (as, abc_lm_s am n 0) (0, aaa, Oc # xs) ires" |
|
3840 apply(simp add: inv_locate_a.simps) |
|
3841 apply(rule disjI1) |
|
3842 apply(auto simp: inv_stop.simps at_begin_norm.simps) |
|
3843 done |
|
3844 |
|
3845 lemma [simp]: |
|
3846 "\<lbrakk>abc_lm_v am 0 = 0; |
|
3847 inv_stop (as, abc_lm_s am 0 0) |
|
3848 (start_of (layout_of aprog) e, aaa, Oc # xs) ires\<rbrakk> \<Longrightarrow> |
|
3849 inv_locate_b (as, am) (0, Oc # aaa, xs) ires" |
|
3850 apply(auto simp: inv_stop.simps inv_locate_b.simps |
|
3851 in_middle.simps abc_lm_s.simps) |
|
3852 apply(case_tac "am = []", simp) |
|
3853 apply(rule_tac x = "[]" in exI, rule_tac x = "Suc 0" in exI, |
|
3854 rule_tac x = 0 in exI, simp) |
|
3855 apply(rule_tac x = "Suc 0" in exI, rule_tac x = 0 in exI, |
|
3856 simp add: tape_of_nl_abv tape_of_nat_list.simps, auto) |
|
3857 apply(case_tac rn, auto) |
|
3858 apply(rule_tac x = "tl am" in exI, rule_tac x = 0 in exI, |
|
3859 rule_tac x = "hd am" in exI, simp) |
|
3860 apply(rule_tac x = "Suc 0" in exI, rule_tac x = "hd am" in exI, simp) |
|
3861 apply(case_tac am, simp, simp) |
|
3862 apply(subgoal_tac "a = 0", case_tac list, |
|
3863 auto simp: tape_of_nat_list.simps tape_of_nl_abv) |
|
3864 apply(case_tac rn, auto) |
|
3865 done |
|
3866 |
|
3867 lemma [simp]: |
|
3868 "\<lbrakk>inv_stop (as, abc_lm_s am n 0) |
|
3869 (start_of (layout_of aprog) e, aaa, Oc # xs) ires\<rbrakk> |
|
3870 \<Longrightarrow> inv_locate_b (as, am) (0, Oc # aaa, xs) ires \<or> |
|
3871 inv_locate_b (as, abc_lm_s am n 0) (0, Oc # aaa, xs) ires" |
|
3872 apply(simp) |
|
3873 done |
|
3874 |
|
3875 lemma [simp]: |
|
3876 "\<lbrakk>abc_lm_v am n = 0; |
|
3877 inv_stop (as, abc_lm_s am n 0) |
|
3878 (start_of (layout_of aprog) e, aaa, Oc # xs) ires\<rbrakk> |
|
3879 \<Longrightarrow> \<not> Suc 0 < 2 * n \<longrightarrow> e = as \<longrightarrow> |
|
3880 inv_locate_b (as, am) (n, Oc # aaa, xs) ires" |
|
3881 apply(case_tac n, simp, simp) |
|
3882 done |
|
3883 |
|
3884 lemma dec_false2: |
|
3885 "inv_stop (as, abc_lm_s am n 0) |
|
3886 (start_of (layout_of aprog) e, aaa, Bk # xs) ires = False" |
|
3887 apply(auto simp: inv_stop.simps abc_lm_s.simps) |
|
3888 apply(case_tac "am", simp, case_tac n, simp add: tape_of_nl_abv) |
|
3889 apply(case_tac list, simp add: tape_of_nat_list.simps ) |
|
3890 apply(simp add: tape_of_nat_list.simps , simp) |
|
3891 apply(case_tac "list[nat := 0]", |
|
3892 simp add: tape_of_nat_list.simps tape_of_nl_abv) |
|
3893 apply(simp add: tape_of_nat_list.simps ) |
|
3894 apply(case_tac "am @ replicate (n - length am) 0 @ [0]", simp) |
|
3895 apply(case_tac list, auto simp: tape_of_nl_abv |
|
3896 tape_of_nat_list.simps ) |
|
3897 done |
|
3898 |
|
3899 lemma dec_false3: |
|
3900 "inv_stop (as, abc_lm_s am n 0) |
|
3901 (start_of (layout_of aprog) e, aaa, []) ires = False" |
|
3902 apply(auto simp: inv_stop.simps abc_lm_s.simps) |
|
3903 apply(case_tac "am", case_tac n, auto) |
|
3904 apply(case_tac n, auto simp: tape_of_nl_abv) |
|
3905 apply(case_tac "list::nat list", |
|
3906 simp add: tape_of_nat_list.simps tape_of_nat_list.simps) |
|
3907 apply(simp add: tape_of_nat_list.simps) |
|
3908 apply(case_tac "list[nat := 0]", |
|
3909 simp add: tape_of_nat_list.simps tape_of_nat_list.simps) |
|
3910 apply(simp add: tape_of_nat_list.simps) |
|
3911 apply(case_tac "(am @ replicate (n - length am) 0 @ [0])", simp) |
|
3912 apply(case_tac list, auto simp: tape_of_nat_list.simps) |
|
3913 done |
|
3914 |
|
3915 lemma [simp]: |
|
3916 "fetch (ci (layout_of aprog) |
|
3917 (start_of (layout_of aprog) as) (Dec n e)) 0 b = (Nop, 0)" |
|
3918 by(simp add: fetch.simps) |
|
3919 |
|
3920 declare dec_inv_1.simps[simp del] |
|
3921 |
|
3922 declare inv_locate_n_b.simps [simp del] |
|
3923 |
|
3924 lemma [simp]: |
|
3925 "\<lbrakk>0 < abc_lm_v am n; 0 < n; |
|
3926 at_begin_norm (as, am) (n, aaa, Oc # xs) ires\<rbrakk> |
|
3927 \<Longrightarrow> inv_locate_n_b (as, am) (n, Oc # aaa, xs) ires" |
|
3928 apply(simp only: at_begin_norm.simps inv_locate_n_b.simps) |
|
3929 apply(erule_tac exE)+ |
|
3930 apply(rule_tac x = lm1 in exI, simp) |
|
3931 apply(case_tac "length lm2", simp) |
|
3932 apply(case_tac rn, simp, simp) |
|
3933 apply(rule_tac x = "tl lm2" in exI, rule_tac x = "hd lm2" in exI, simp) |
|
3934 apply(rule conjI) |
|
3935 apply(case_tac "lm2", simp, simp) |
|
3936 apply(case_tac "lm2", auto simp: tape_of_nl_abv tape_of_nat_list.simps) |
|
3937 apply(case_tac [!] "list", auto simp: tape_of_nl_abv tape_of_nat_list.simps) |
|
3938 apply(case_tac rn, auto) |
|
3939 done |
|
3940 lemma [simp]: "(\<exists>rn. Oc # xs = Bk\<^bsup>rn\<^esup>) = False" |
|
3941 apply(auto) |
|
3942 apply(case_tac rn, auto simp: ) |
|
3943 done |
|
3944 |
|
3945 lemma [simp]: |
|
3946 "\<lbrakk>0 < abc_lm_v am n; 0 < n; |
|
3947 at_begin_fst_bwtn (as, am) (n, aaa, Oc # xs) ires\<rbrakk> |
|
3948 \<Longrightarrow> inv_locate_n_b (as, am) (n, Oc # aaa, xs) ires" |
|
3949 apply(simp add: at_begin_fst_bwtn.simps inv_locate_n_b.simps ) |
|
3950 done |
|
3951 |
|
3952 lemma Suc_minus:"length am + tn = n |
|
3953 \<Longrightarrow> Suc tn = Suc n - length am " |
|
3954 apply(arith) |
|
3955 done |
|
3956 |
|
3957 lemma [simp]: |
|
3958 "\<lbrakk>0 < abc_lm_v am n; 0 < n; |
|
3959 at_begin_fst_awtn (as, am) (n, aaa, Oc # xs) ires\<rbrakk> |
|
3960 \<Longrightarrow> inv_locate_n_b (as, am) (n, Oc # aaa, xs) ires" |
|
3961 apply(simp only: at_begin_fst_awtn.simps inv_locate_n_b.simps ) |
|
3962 apply(erule exE)+ |
|
3963 apply(erule conjE)+ |
|
3964 apply(rule_tac x = lm1 in exI, rule_tac x = "[]" in exI, |
|
3965 rule_tac x = "Suc tn" in exI, rule_tac x = 0 in exI) |
|
3966 apply(simp add: exponent_def rep_ind del: replicate.simps) |
|
3967 apply(rule conjI)+ |
|
3968 apply(auto) |
|
3969 apply(case_tac [!] rn, auto) |
|
3970 done |
|
3971 |
|
3972 lemma [simp]: |
|
3973 "\<lbrakk>0 < abc_lm_v am n; 0 < n; inv_locate_a (as, am) (n, aaa, Oc # xs) ires\<rbrakk> |
|
3974 \<Longrightarrow> inv_locate_n_b (as, am) (n, Oc#aaa, xs) ires" |
|
3975 apply(auto simp: inv_locate_a.simps) |
|
3976 done |
|
3977 |
|
3978 lemma [simp]: |
|
3979 "\<lbrakk>inv_locate_n_b (as, am) (n, aaa, Oc # xs) ires\<rbrakk> |
|
3980 \<Longrightarrow> dec_first_on_right_moving n (as, abc_lm_s am n (abc_lm_v am n)) |
|
3981 (s, Oc # aaa, xs) ires" |
|
3982 apply(auto simp: inv_locate_n_b.simps dec_first_on_right_moving.simps |
|
3983 abc_lm_s.simps abc_lm_v.simps) |
|
3984 apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI, |
|
3985 rule_tac x = m in exI, simp) |
|
3986 apply(rule_tac x = "Suc (Suc 0)" in exI, |
|
3987 rule_tac x = "m - 1" in exI, simp) |
|
3988 apply(case_tac m, auto simp: exponent_def) |
|
3989 apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI, |
|
3990 rule_tac x = m in exI, |
|
3991 simp add: Suc_diff_le rep_ind del: replicate.simps) |
|
3992 apply(rule_tac x = "Suc (Suc 0)" in exI, |
|
3993 rule_tac x = "m - 1" in exI, simp) |
|
3994 apply(case_tac m, auto simp: exponent_def) |
|
3995 apply(rule_tac x = lm1 in exI, rule_tac x = "[]" in exI, |
|
3996 rule_tac x = m in exI, simp) |
|
3997 apply(rule_tac x = "Suc (Suc 0)" in exI, |
|
3998 rule_tac x = "m - 1" in exI, simp) |
|
3999 apply(case_tac m, auto) |
|
4000 apply(rule_tac x = lm1 in exI, rule_tac x = lm2 in exI, |
|
4001 rule_tac x = m in exI, |
|
4002 simp add: Suc_diff_le rep_ind del: replicate.simps, simp) |
|
4003 done |
|
4004 |
|
4005 lemma dec_false_2: |
|
4006 "\<lbrakk>0 < abc_lm_v am n; inv_locate_n_b (as, am) (n, aaa, Bk # xs) ires\<rbrakk> |
|
4007 \<Longrightarrow> False" |
|
4008 apply(auto simp: inv_locate_n_b.simps abc_lm_v.simps split: if_splits) |
|
4009 apply(case_tac [!] m, auto) |
|
4010 done |
|
4011 |
|
4012 lemma dec_false_2_b: |
|
4013 "\<lbrakk>0 < abc_lm_v am n; inv_locate_n_b (as, am) |
|
4014 (n, aaa, []) ires\<rbrakk> \<Longrightarrow> False" |
|
4015 apply(auto simp: inv_locate_n_b.simps abc_lm_v.simps split: if_splits) |
|
4016 apply(case_tac [!] m, auto simp: ) |
|
4017 done |
|
4018 |
|
4019 |
|
4020 (*begin: dec halt1 lemmas*) |
|
4021 thm abc_inc_stage1.simps |
|
4022 fun abc_dec_1_stage1:: "t_conf \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat" |
|
4023 where |
|
4024 "abc_dec_1_stage1 (s, l, r) ss n = |
|
4025 (if s > ss \<and> s \<le> ss + 2*n + 1 then 4 |
|
4026 else if s = ss + 2 * n + 13 \<or> s = ss + 2*n + 14 then 3 |
|
4027 else if s = ss + 2*n + 15 then 2 |
|
4028 else 0)" |
|
4029 |
|
4030 fun abc_dec_1_stage2:: "t_conf \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat" |
|
4031 where |
|
4032 "abc_dec_1_stage2 (s, l, r) ss n = |
|
4033 (if s \<le> ss + 2 * n + 1 then (ss + 2 * n + 16 - s) |
|
4034 else if s = ss + 2*n + 13 then length l |
|
4035 else if s = ss + 2*n + 14 then length l |
|
4036 else 0)" |
|
4037 |
|
4038 fun abc_dec_1_stage3 :: "t_conf \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> block list \<Rightarrow> nat" |
|
4039 where |
|
4040 "abc_dec_1_stage3 (s, l, r) ss n ires = |
|
4041 (if s \<le> ss + 2*n + 1 then |
|
4042 if (s - ss) mod 2 = 0 then |
|
4043 if r \<noteq> [] \<and> hd r = Oc then 0 else 1 |
|
4044 else length r |
|
4045 else if s = ss + 2 * n + 13 then |
|
4046 if l = Bk # ires \<and> r \<noteq> [] \<and> hd r = Oc then 2 |
|
4047 else 1 |
|
4048 else if s = ss + 2 * n + 14 then |
|
4049 if r \<noteq> [] \<and> hd r = Oc then 3 else 0 |
|
4050 else 0)" |
|
4051 |
|
4052 fun abc_dec_1_measure :: "(t_conf \<times> nat \<times> nat \<times> block list) \<Rightarrow> (nat \<times> nat \<times> nat)" |
|
4053 where |
|
4054 "abc_dec_1_measure (c, ss, n, ires) = (abc_dec_1_stage1 c ss n, |
|
4055 abc_dec_1_stage2 c ss n, abc_dec_1_stage3 c ss n ires)" |
|
4056 |
|
4057 definition abc_dec_1_LE :: |
|
4058 "(((nat \<times> block list \<times> block list) \<times> nat \<times> |
|
4059 nat \<times> block list) \<times> ((nat \<times> block list \<times> block list) \<times> nat \<times> nat \<times> block list)) set" |
|
4060 where "abc_dec_1_LE \<equiv> (inv_image lex_triple abc_dec_1_measure)" |
|
4061 |
|
4062 lemma wf_dec_le: "wf abc_dec_1_LE" |
|
4063 by(auto intro:wf_inv_image wf_lex_triple simp:abc_dec_1_LE_def) |
|
4064 |
|
4065 declare dec_inv_1.simps[simp del] dec_inv_2.simps[simp del] |
|
4066 |
|
4067 lemma [elim]: |
|
4068 "\<lbrakk>abc_fetch as aprog = Some (Dec n e); |
|
4069 start_of (layout_of aprog) as < start_of (layout_of aprog) e; |
|
4070 start_of (layout_of aprog) e \<le> |
|
4071 Suc (start_of (layout_of aprog) as + 2 * n)\<rbrakk> \<Longrightarrow> False" |
|
4072 apply(case_tac "e = as", simp) |
|
4073 apply(case_tac "e < as") |
|
4074 apply(drule_tac a = e and b = as and ly = "layout_of aprog" in |
|
4075 start_of_le, simp) |
|
4076 apply(drule_tac start_of_ge, auto) |
|
4077 done |
|
4078 |
|
4079 lemma [elim]: "\<lbrakk>abc_fetch as aprog = Some (Dec n e); |
|
4080 start_of (layout_of aprog) e |
|
4081 = start_of (layout_of aprog) as + 2 * n + 13\<rbrakk> |
|
4082 \<Longrightarrow> False" |
|
4083 apply(insert starte_not_equal[of as aprog n e "layout_of aprog"], |
|
4084 simp) |
|
4085 done |
|
4086 |
|
4087 lemma [elim]: "\<lbrakk>abc_fetch as aprog = Some (Dec n e); |
|
4088 start_of (layout_of aprog) e = |
|
4089 start_of (layout_of aprog) as + 2 * n + 14\<rbrakk> |
|
4090 \<Longrightarrow> False" |
|
4091 apply(insert starte_not_equal[of as aprog n e "layout_of aprog"], |
|
4092 simp) |
|
4093 done |
|
4094 |
|
4095 lemma [elim]: |
|
4096 "\<lbrakk>abc_fetch as aprog = Some (Dec n e); |
|
4097 start_of (layout_of aprog) as < start_of (layout_of aprog) e; |
|
4098 start_of (layout_of aprog) e \<le> |
|
4099 Suc (start_of (layout_of aprog) as + 2 * n)\<rbrakk> |
|
4100 \<Longrightarrow> False" |
|
4101 apply(case_tac "e = as", simp) |
|
4102 apply(case_tac "e < as") |
|
4103 apply(drule_tac a = e and b = as and ly = "layout_of aprog" in |
|
4104 start_of_le, simp) |
|
4105 apply(drule_tac start_of_ge, auto) |
|
4106 done |
|
4107 |
|
4108 lemma [elim]: |
|
4109 "\<lbrakk>abc_fetch as aprog = Some (Dec n e); |
|
4110 start_of (layout_of aprog) e = |
|
4111 start_of (layout_of aprog) as + 2 * n + 13\<rbrakk> |
|
4112 \<Longrightarrow> False" |
|
4113 apply(insert starte_not_equal[of as aprog n e "layout_of aprog"], |
|
4114 simp) |
|
4115 done |
|
4116 |
|
4117 lemma [simp]: |
|
4118 "abc_fetch as aprog = Some (Dec n e) \<Longrightarrow> |
|
4119 Suc (start_of (layout_of aprog) as) \<noteq> start_of (layout_of aprog) e" |
|
4120 apply(case_tac "e = as", simp) |
|
4121 apply(case_tac "e < as") |
|
4122 apply(drule_tac a = e and b = as and ly = "(layout_of aprog)" in |
|
4123 start_of_le, simp) |
|
4124 apply(drule_tac a = as and e = e in start_of_ge, simp, simp) |
|
4125 done |
|
4126 |
|
4127 lemma [simp]: "inv_on_left_moving (as, am) (s, [], r) ires |
|
4128 = False" |
|
4129 apply(simp add: inv_on_left_moving.simps inv_on_left_moving_norm.simps |
|
4130 inv_on_left_moving_in_middle_B.simps) |
|
4131 done |
|
4132 |
|
4133 lemma [simp]: |
|
4134 "inv_check_left_moving (as, abc_lm_s am n 0) |
|
4135 (start_of (layout_of aprog) as + 2 * n + 14, [], Oc # xs) ires |
|
4136 = False" |
|
4137 apply(simp add: inv_check_left_moving.simps inv_check_left_moving_in_middle.simps) |
|
4138 done |
|
4139 |
|
4140 lemma dec_inv_stop1_pre: |
|
4141 "\<lbrakk>abc_fetch as aprog = Some (Dec n e); abc_lm_v am n = 0; |
|
4142 start_of (layout_of aprog) as > 0\<rbrakk> |
|
4143 \<Longrightarrow> \<forall>na. \<not> (\<lambda>(s, l, r) (ss, n', ires'). s = start_of (layout_of aprog) e) |
|
4144 (t_steps (Suc (start_of (layout_of aprog) as), l, r) |
|
4145 (ci (layout_of aprog) (start_of (layout_of aprog) as) |
|
4146 (Dec n e), start_of (layout_of aprog) as - Suc 0) na) |
|
4147 (start_of (layout_of aprog) as, n, ires) \<and> |
|
4148 dec_inv_1 (layout_of aprog) n e (as, am) |
|
4149 (t_steps (Suc (start_of (layout_of aprog) as), l, r) |
|
4150 (ci (layout_of aprog) (start_of (layout_of aprog) as) |
|
4151 (Dec n e), start_of (layout_of aprog) as - Suc 0) na) ires |
|
4152 \<longrightarrow> dec_inv_1 (layout_of aprog) n e (as, am) |
|
4153 (t_steps (Suc (start_of (layout_of aprog) as), l, r) |
|
4154 (ci (layout_of aprog) (start_of (layout_of aprog) as) |
|
4155 (Dec n e), start_of (layout_of aprog) as - Suc 0) |
|
4156 (Suc na)) ires \<and> |
|
4157 ((t_steps (Suc (start_of (layout_of aprog) as), l, r) |
|
4158 (ci (layout_of aprog) (start_of (layout_of aprog) as) |
|
4159 (Dec n e), start_of (layout_of aprog) as - Suc 0) (Suc na), |
|
4160 start_of (layout_of aprog) as, n, ires), |
|
4161 t_steps (Suc (start_of (layout_of aprog) as), l, r) |
|
4162 (ci (layout_of aprog) (start_of (layout_of aprog) as) |
|
4163 (Dec n e), start_of (layout_of aprog) as - Suc 0) na, |
|
4164 start_of (layout_of aprog) as, n, ires) |
|
4165 \<in> abc_dec_1_LE" |
|
4166 apply(rule allI, rule impI, simp add: t_steps_ind) |
|
4167 apply(case_tac "(t_steps (Suc (start_of (layout_of aprog) as), l, r) |
|
4168 (ci (layout_of aprog) (start_of (layout_of aprog) as) (Dec n e), |
|
4169 start_of (layout_of aprog) as - Suc 0) na)", simp) |
|
4170 apply(auto split:if_splits simp add:t_step.simps dec_inv_1.simps, |
|
4171 tactic {* ALLGOALS (resolve_tac [@{thm fetch_intro}]) *}) |
|
4172 apply(simp_all add:dec_fetch_simps new_tape.simps dec_inv_1.simps) |
|
4173 apply(auto simp add: abc_dec_1_LE_def lex_square_def |
|
4174 lex_triple_def lex_pair_def |
|
4175 split: if_splits) |
|
4176 apply(rule dec_false_1, simp, simp) |
|
4177 done |
|
4178 |
|
4179 lemma dec_inv_stop1: |
|
4180 "\<lbrakk>ly = layout_of aprog; |
|
4181 dec_inv_1 ly n e (as, am) (start_of ly as + 1, l, r) ires; |
|
4182 abc_fetch as aprog = Some (Dec n e); abc_lm_v am n = 0\<rbrakk> \<Longrightarrow> |
|
4183 (\<exists> stp. (\<lambda> (s', l', r'). s' = start_of ly e \<and> |
|
4184 dec_inv_1 ly n e (as, am) (s', l' , r') ires) |
|
4185 (t_steps (start_of ly as + 1, l, r) |
|
4186 (ci ly (start_of ly as) (Dec n e), start_of ly as - Suc 0) stp))" |
|
4187 apply(insert halt_lemma2[of abc_dec_1_LE |
|
4188 "\<lambda> ((s, l, r), ss, n', ires'). s = start_of ly e" |
|
4189 "(\<lambda> stp. (t_steps (start_of ly as + 1, l, r) |
|
4190 (ci ly (start_of ly as) (Dec n e), start_of ly as - Suc 0) |
|
4191 stp, start_of ly as, n, ires))" |
|
4192 "\<lambda> ((s, l, r), ss, n, ires'). dec_inv_1 ly n e (as, am) (s, l, r) ires'"], |
|
4193 simp) |
|
4194 apply(insert wf_dec_le, simp) |
|
4195 apply(insert dec_inv_stop1_pre[of as aprog n e am l r], simp) |
|
4196 apply(subgoal_tac "start_of (layout_of aprog) as > 0", |
|
4197 simp add: t_steps.simps) |
|
4198 apply(erule_tac exE, rule_tac x = na in exI) |
|
4199 apply(case_tac |
|
4200 "(t_steps (Suc (start_of (layout_of aprog) as), l, r) |
|
4201 (ci (layout_of aprog) (start_of (layout_of aprog) as) |
|
4202 (Dec n e), start_of (layout_of aprog) as - Suc 0) na)", |
|
4203 case_tac b, auto) |
|
4204 apply(rule startof_not0) |
|
4205 done |
|
4206 |
|
4207 (*begin: dec halt2 lemmas*) |
|
4208 |
|
4209 lemma [simp]: |
|
4210 "\<lbrakk>abc_fetch as aprog = Some (Dec n e); |
|
4211 ly = layout_of aprog\<rbrakk> \<Longrightarrow> |
|
4212 start_of ly (Suc as) = start_of ly as + 2*n + 16" |
|
4213 by simp |
|
4214 |
|
4215 fun abc_dec_2_stage1 :: "t_conf \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat" |
|
4216 where |
|
4217 "abc_dec_2_stage1 (s, l, r) ss n = |
|
4218 (if s \<le> ss + 2*n + 1 then 7 |
|
4219 else if s = ss + 2*n + 2 then 6 |
|
4220 else if s = ss + 2*n + 3 then 5 |
|
4221 else if s \<ge> ss + 2*n + 4 \<and> s \<le> ss + 2*n + 9 then 4 |
|
4222 else if s = ss + 2*n + 6 then 3 |
|
4223 else if s = ss + 2*n + 10 \<or> s = ss + 2*n + 11 then 2 |
|
4224 else if s = ss + 2*n + 12 then 1 |
|
4225 else 0)" |
|
4226 |
|
4227 thm new_tape.simps |
|
4228 |
|
4229 fun abc_dec_2_stage2 :: "t_conf \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat" |
|
4230 where |
|
4231 "abc_dec_2_stage2 (s, l, r) ss n = |
|
4232 (if s \<le> ss + 2 * n + 1 then (ss + 2 * n + 16 - s) |
|
4233 else if s = ss + 2*n + 10 then length l |
|
4234 else if s = ss + 2*n + 11 then length l |
|
4235 else if s = ss + 2*n + 4 then length r - 1 |
|
4236 else if s = ss + 2*n + 5 then length r |
|
4237 else if s = ss + 2*n + 7 then length r - 1 |
|
4238 else if s = ss + 2*n + 8 then |
|
4239 length r + length (takeWhile (\<lambda> a. a = Oc) l) - 1 |
|
4240 else if s = ss + 2*n + 9 then |
|
4241 length r + length (takeWhile (\<lambda> a. a = Oc) l) - 1 |
|
4242 else 0)" |
|
4243 |
|
4244 fun abc_dec_2_stage3 :: "t_conf \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> block list \<Rightarrow> nat" |
|
4245 where |
|
4246 "abc_dec_2_stage3 (s, l, r) ss n ires = |
|
4247 (if s \<le> ss + 2*n + 1 then |
|
4248 if (s - ss) mod 2 = 0 then if r \<noteq> [] \<and> |
|
4249 hd r = Oc then 0 else 1 |
|
4250 else length r |
|
4251 else if s = ss + 2 * n + 10 then |
|
4252 if l = Bk # ires \<and> r \<noteq> [] \<and> hd r = Oc then 2 |
|
4253 else 1 |
|
4254 else if s = ss + 2 * n + 11 then |
|
4255 if r \<noteq> [] \<and> hd r = Oc then 3 |
|
4256 else 0 |
|
4257 else (ss + 2 * n + 16 - s))" |
|
4258 |
|
4259 fun abc_dec_2_stage4 :: "t_conf \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat" |
|
4260 where |
|
4261 "abc_dec_2_stage4 (s, l, r) ss n = |
|
4262 (if s = ss + 2*n + 2 then length r |
|
4263 else if s = ss + 2*n + 8 then length r |
|
4264 else if s = ss + 2*n + 3 then |
|
4265 if r \<noteq> [] \<and> hd r = Oc then 1 |
|
4266 else 0 |
|
4267 else if s = ss + 2*n + 7 then |
|
4268 if r \<noteq> [] \<and> hd r = Oc then 0 |
|
4269 else 1 |
|
4270 else if s = ss + 2*n + 9 then |
|
4271 if r \<noteq> [] \<and> hd r = Oc then 1 |
|
4272 else 0 |
|
4273 else 0)" |
|
4274 |
|
4275 fun abc_dec_2_measure :: "(t_conf \<times> nat \<times> nat \<times> block list) \<Rightarrow> |
|
4276 (nat \<times> nat \<times> nat \<times> nat)" |
|
4277 where |
|
4278 "abc_dec_2_measure (c, ss, n, ires) = |
|
4279 (abc_dec_2_stage1 c ss n, abc_dec_2_stage2 c ss n, |
|
4280 abc_dec_2_stage3 c ss n ires, abc_dec_2_stage4 c ss n)" |
|
4281 |
|
4282 definition abc_dec_2_LE :: |
|
4283 "(((nat \<times> block list \<times> block list) \<times> nat \<times> nat \<times> block list) \<times> |
|
4284 ((nat \<times> block list \<times> block list) \<times> nat \<times> nat \<times> block list)) set" |
|
4285 where "abc_dec_2_LE \<equiv> (inv_image lex_square abc_dec_2_measure)" |
|
4286 |
|
4287 lemma wf_dec_2_le: "wf abc_dec_2_LE" |
|
4288 by(auto intro:wf_inv_image wf_lex_triple wf_lex_square |
|
4289 simp:abc_dec_2_LE_def) |
|
4290 |
|
4291 lemma [simp]: "dec_after_write (as, am) (s, aa, r) ires |
|
4292 \<Longrightarrow> takeWhile (\<lambda>a. a = Oc) aa = []" |
|
4293 apply(simp only : dec_after_write.simps) |
|
4294 apply(erule exE)+ |
|
4295 apply(erule_tac conjE)+ |
|
4296 apply(case_tac aa, simp) |
|
4297 apply(case_tac a, simp only: takeWhile.simps , simp, simp split: if_splits) |
|
4298 done |
|
4299 |
|
4300 lemma [simp]: |
|
4301 "\<lbrakk>dec_on_right_moving (as, lm) (s, aa, []) ires; |
|
4302 length (takeWhile (\<lambda>a. a = Oc) (tl aa)) |
|
4303 \<noteq> length (takeWhile (\<lambda>a. a = Oc) aa) - Suc 0\<rbrakk> |
|
4304 \<Longrightarrow> length (takeWhile (\<lambda>a. a = Oc) (tl aa)) < |
|
4305 length (takeWhile (\<lambda>a. a = Oc) aa) - Suc 0" |
|
4306 apply(simp only: dec_on_right_moving.simps) |
|
4307 apply(erule_tac exE)+ |
|
4308 apply(erule_tac conjE)+ |
|
4309 apply(case_tac mr, auto split: if_splits) |
|
4310 done |
|
4311 |
|
4312 lemma [simp]: |
|
4313 "dec_after_clear (as, abc_lm_s am n (abc_lm_v am n - Suc 0)) |
|
4314 (start_of (layout_of aprog) as + 2 * n + 9, aa, Bk # xs) ires |
|
4315 \<Longrightarrow> length xs - Suc 0 < length xs + |
|
4316 length (takeWhile (\<lambda>a. a = Oc) aa)" |
|
4317 apply(simp only: dec_after_clear.simps) |
|
4318 apply(erule_tac exE)+ |
|
4319 apply(erule conjE)+ |
|
4320 apply(simp split: if_splits ) |
|
4321 done |
|
4322 |
|
4323 lemma [simp]: |
|
4324 "\<lbrakk>dec_after_clear (as, abc_lm_s am n (abc_lm_v am n - Suc 0)) |
|
4325 (start_of (layout_of aprog) as + 2 * n + 9, aa, []) ires\<rbrakk> |
|
4326 \<Longrightarrow> Suc 0 < length (takeWhile (\<lambda>a. a = Oc) aa)" |
|
4327 apply(simp add: dec_after_clear.simps split: if_splits) |
|
4328 done |
|
4329 |
|
4330 lemma [simp]: |
|
4331 "\<lbrakk>dec_on_right_moving (as, am) (s, aa, Bk # xs) ires; |
|
4332 Suc (length (takeWhile (\<lambda>a. a = Oc) (tl aa))) |
|
4333 \<noteq> length (takeWhile (\<lambda>a. a = Oc) aa)\<rbrakk> |
|
4334 \<Longrightarrow> Suc (length (takeWhile (\<lambda>a. a = Oc) (tl aa))) |
|
4335 < length (takeWhile (\<lambda>a. a = Oc) aa)" |
|
4336 apply(simp only: dec_on_right_moving.simps) |
|
4337 apply(erule exE)+ |
|
4338 apply(erule conjE)+ |
|
4339 apply(case_tac ml, auto split: if_splits ) |
|
4340 done |
|
4341 |
|
4342 (* |
|
4343 lemma abc_dec_2_wf: |
|
4344 "\<lbrakk>ly = layout_of aprog; dec_inv_2 ly n e (as, am) (start_of ly as + 1, l, r); abc_fetch as aprog = Dec n e; abc_lm_v am n > 0\<rbrakk> |
|
4345 \<Longrightarrow> \<forall>na. \<not> (\<lambda>(s, l, r) (ss, n'). s = start_of (layout_of aprog) as + 2*n + 16) |
|
4346 (t_steps (Suc (start_of (layout_of aprog) as), l, r) (ci (layout_of aprog) (start_of (layout_of aprog) as) (Dec n e), start_of (layout_of aprog) as - Suc 0) na) |
|
4347 (start_of (layout_of aprog) as, n) \<longrightarrow> |
|
4348 ((t_steps (Suc (start_of (layout_of aprog) as), l, r) (ci (layout_of aprog) (start_of (layout_of aprog) as) (Dec n e), start_of (layout_of aprog) as - Suc 0) (Suc na), |
|
4349 start_of (layout_of aprog) as, n), |
|
4350 t_steps (Suc (start_of (layout_of aprog) as), l, r) (ci (layout_of aprog) (start_of (layout_of aprog) as) (Dec n e), start_of (layout_of aprog) as - Suc 0) na, |
|
4351 start_of (layout_of aprog) as, n) |
|
4352 \<in> abc_dec_2_LE" |
|
4353 proof(rule allI, rule impI, simp add: t_steps_ind) |
|
4354 fix na |
|
4355 assume h1 :"ly = layout_of aprog" "dec_inv_2 (layout_of aprog) n e (as, am) (Suc (start_of (layout_of aprog) as), l, r)" |
|
4356 "abc_fetch as aprog = Dec n e" "abc_lm_v am n > 0" |
|
4357 "\<not> (\<lambda>(s, l, r) (ss, n'). s = start_of (layout_of aprog) as + 2*n + 16) |
|
4358 (t_steps (Suc (start_of (layout_of aprog) as), l, r) (ci (layout_of aprog) (start_of (layout_of aprog) as) (Dec n e), start_of (layout_of aprog) as - Suc 0) na) |
|
4359 (start_of (layout_of aprog) as, n)" |
|
4360 thus "((t_step (t_steps (Suc (start_of (layout_of aprog) as), l, r) (ci (layout_of aprog) (start_of (layout_of aprog) as) (Dec n e), start_of (layout_of aprog) as - Suc 0) na) |
|
4361 (ci (layout_of aprog) (start_of (layout_of aprog) as) (Dec n e), start_of (layout_of aprog) as - Suc 0), |
|
4362 start_of (layout_of aprog) as, n), |
|
4363 t_steps (Suc (start_of (layout_of aprog) as), l, r) (ci (layout_of aprog) (start_of (layout_of aprog) as) (Dec n e), start_of (layout_of aprog) as - Suc 0) na, |
|
4364 start_of (layout_of aprog) as, n) |
|
4365 \<in> abc_dec_2_LE" |
|
4366 proof(insert dec_inv_2_steps[of "layout_of aprog" n e as am "(start_of (layout_of aprog) as + 1, l, r)" aprog na], |
|
4367 case_tac "(t_steps (start_of (layout_of aprog) as + 1, l, r) (ci (layout_of aprog) (start_of (layout_of aprog) as) (Dec n e), start_of (layout_of aprog) as - Suc 0) na)", case_tac b, simp) |
|
4368 fix a b aa ba |
|
4369 assume "dec_inv_2 (layout_of aprog) n e (as, am) (a, aa, ba)" " a \<noteq> start_of (layout_of aprog) as + 2*n + 16" "abc_lm_v am n > 0" "abc_fetch as aprog = Dec n e " |
|
4370 thus "((t_step (a, aa, ba) (ci (layout_of aprog) (start_of (layout_of aprog) as) (Dec n e), start_of (layout_of aprog) as - Suc 0), start_of (layout_of aprog) as, n), (a, aa, ba), |
|
4371 start_of (layout_of aprog) as, n) |
|
4372 \<in> abc_dec_2_LE" |
|
4373 apply(case_tac "a = 0", auto split:if_splits simp add:t_step.simps dec_inv_2.simps, |
|
4374 tactic {* ALLGOALS (resolve_tac (thms "fetch_intro")) *}) |
|
4375 apply(simp_all add:dec_fetch_simps new_tape.simps) |
|
4376 apply(auto simp add: abc_dec_2_LE_def lex_square_def lex_triple_def lex_pair_def |
|
4377 split: if_splits) |
|
4378 |
|
4379 done |
|
4380 qed |
|
4381 qed |
|
4382 *) |
|
4383 |
|
4384 lemma [simp]: "inv_check_left_moving (as, abc_lm_s am n (abc_lm_v am n - Suc 0)) |
|
4385 (start_of (layout_of aprog) as + 2 * n + 11, [], Oc # xs) ires = False" |
|
4386 apply(simp add: inv_check_left_moving.simps inv_check_left_moving_in_middle.simps) |
|
4387 done |
|
4388 |
|
4389 lemma dec_inv_stop2_pre: |
|
4390 "\<lbrakk>abc_fetch as aprog = Some (Dec n e); abc_lm_v am n > 0\<rbrakk> \<Longrightarrow> |
|
4391 \<forall>na. \<not> (\<lambda>(s, l, r) (ss, n', ires'). |
|
4392 s = start_of (layout_of aprog) as + 2 * n + 16) |
|
4393 (t_steps (Suc (start_of (layout_of aprog) as), l, r) |
|
4394 (ci (layout_of aprog) (start_of (layout_of aprog) as) (Dec n e), |
|
4395 start_of (layout_of aprog) as - Suc 0) na) |
|
4396 (start_of (layout_of aprog) as, n, ires) \<and> |
|
4397 dec_inv_2 (layout_of aprog) n e (as, am) |
|
4398 (t_steps (Suc (start_of (layout_of aprog) as), l, r) |
|
4399 (ci (layout_of aprog) (start_of (layout_of aprog) as) (Dec n e), |
|
4400 start_of (layout_of aprog) as - Suc 0) na) ires |
|
4401 \<longrightarrow> |
|
4402 dec_inv_2 (layout_of aprog) n e (as, am) |
|
4403 (t_steps (Suc (start_of (layout_of aprog) as), l, r) |
|
4404 (ci (layout_of aprog) (start_of (layout_of aprog) as) (Dec n e), |
|
4405 start_of (layout_of aprog) as - Suc 0) (Suc na)) ires \<and> |
|
4406 ((t_steps (Suc (start_of (layout_of aprog) as), l, r) |
|
4407 (ci (layout_of aprog) (start_of (layout_of aprog) as) (Dec n e), |
|
4408 start_of (layout_of aprog) as - Suc 0) (Suc na), |
|
4409 start_of (layout_of aprog) as, n, ires), |
|
4410 t_steps (Suc (start_of (layout_of aprog) as), l, r) |
|
4411 (ci (layout_of aprog) (start_of (layout_of aprog) as) (Dec n e), |
|
4412 start_of (layout_of aprog) as - Suc 0) na, |
|
4413 start_of (layout_of aprog) as, n, ires) |
|
4414 \<in> abc_dec_2_LE" |
|
4415 apply(subgoal_tac "start_of (layout_of aprog) as > 0") |
|
4416 apply(rule allI, rule impI, simp add: t_steps_ind) |
|
4417 apply(case_tac "(t_steps (Suc (start_of (layout_of aprog) as), l, r) |
|
4418 (ci (layout_of aprog) (start_of (layout_of aprog) as) (Dec n e), |
|
4419 start_of (layout_of aprog) as - Suc 0) na)", simp) |
|
4420 apply(auto split:if_splits simp add:t_step.simps dec_inv_2.simps, |
|
4421 tactic {* ALLGOALS (resolve_tac [@{thm fetch_intro}]) *}) |
|
4422 apply(simp_all add:dec_fetch_simps new_tape.simps dec_inv_2.simps) |
|
4423 apply(auto simp add: abc_dec_2_LE_def lex_square_def lex_triple_def |
|
4424 lex_pair_def split: if_splits) |
|
4425 apply(auto intro: dec_false_2_b dec_false_2) |
|
4426 apply(rule startof_not0) |
|
4427 done |
|
4428 |
|
4429 lemma dec_stop2: |
|
4430 "\<lbrakk>ly = layout_of aprog; |
|
4431 dec_inv_2 ly n e (as, am) (start_of ly as + 1, l, r) ires; |
|
4432 abc_fetch as aprog = Some (Dec n e); |
|
4433 abc_lm_v am n > 0\<rbrakk> \<Longrightarrow> |
|
4434 (\<exists> stp. (\<lambda> (s', l', r'). s' = start_of ly (Suc as) \<and> |
|
4435 dec_inv_2 ly n e (as, am) (s', l', r') ires) |
|
4436 (t_steps (start_of ly as+1, l, r) (ci ly (start_of ly as) |
|
4437 (Dec n e), start_of ly as - Suc 0) stp))" |
|
4438 apply(insert halt_lemma2[of abc_dec_2_LE |
|
4439 "\<lambda> ((s, l, r), ss, n', ires'). s = start_of ly (Suc as)" |
|
4440 "(\<lambda> stp. (t_steps (start_of ly as + 1, l, r) |
|
4441 (ci ly (start_of ly as) (Dec n e), start_of ly as - Suc 0) stp, |
|
4442 start_of ly as, n, ires))" |
|
4443 "(\<lambda> ((s, l, r), ss, n, ires'). dec_inv_2 ly n e (as, am) (s, l, r) ires')"]) |
|
4444 apply(insert wf_dec_2_le, simp) |
|
4445 apply(insert dec_inv_stop2_pre[of as aprog n e am l r], |
|
4446 simp add: t_steps.simps) |
|
4447 apply(erule_tac exE) |
|
4448 apply(rule_tac x = na in exI) |
|
4449 apply(case_tac "(t_steps (Suc (start_of (layout_of aprog) as), l, r) |
|
4450 (ci (layout_of aprog) (start_of (layout_of aprog) as) (Dec n e), |
|
4451 start_of (layout_of aprog) as - Suc 0) na)", |
|
4452 case_tac b, auto) |
|
4453 done |
|
4454 |
|
4455 lemma dec_inv_stop_cond1: |
|
4456 "\<lbrakk>ly = layout_of aprog; |
|
4457 dec_inv_1 ly n e (as, lm) (s, (l, r)) ires; s = start_of ly e; |
|
4458 abc_fetch as aprog = Some (Dec n e); abc_lm_v lm n = 0\<rbrakk> |
|
4459 \<Longrightarrow> crsp_l ly (e, abc_lm_s lm n 0) (s, l, r) ires" |
|
4460 apply(simp add: dec_inv_1.simps split: if_splits) |
|
4461 apply(auto simp: crsp_l.simps inv_stop.simps ) |
|
4462 done |
|
4463 |
|
4464 lemma dec_inv_stop_cond2: |
|
4465 "\<lbrakk>ly = layout_of aprog; s = start_of ly (Suc as); |
|
4466 dec_inv_2 ly n e (as, lm) (s, (l, r)) ires; |
|
4467 abc_fetch as aprog = Some (Dec n e); |
|
4468 abc_lm_v lm n > 0\<rbrakk> |
|
4469 \<Longrightarrow> crsp_l ly (Suc as, |
|
4470 abc_lm_s lm n (abc_lm_v lm n - Suc 0)) (s, l, r) ires" |
|
4471 apply(simp add: dec_inv_2.simps split: if_splits) |
|
4472 apply(auto simp: crsp_l.simps inv_stop.simps ) |
|
4473 done |
|
4474 |
|
4475 lemma [simp]: "(case Bk\<^bsup>rn\<^esup> of [] \<Rightarrow> Bk | |
|
4476 Bk # xs \<Rightarrow> Bk | Oc # xs \<Rightarrow> Oc) = Bk" |
|
4477 apply(case_tac rn, auto) |
|
4478 done |
|
4479 |
|
4480 lemma [simp]: "t_steps tc (p,off) (m + n) = |
|
4481 t_steps (t_steps tc (p, off) m) (p, off) n" |
|
4482 apply(induct m arbitrary: n) |
|
4483 apply(simp add: t_steps.simps) |
|
4484 proof - |
|
4485 fix m n |
|
4486 assume h1: "\<And>n. t_steps tc (p, off) (m + n) = |
|
4487 t_steps (t_steps tc (p, off) m) (p, off) n" |
|
4488 hence h2: "t_steps tc (p, off) (Suc m + n) = |
|
4489 t_steps tc (p, off) (m + Suc n)" |
|
4490 by simp |
|
4491 from h1 and this show |
|
4492 "t_steps tc (p, off) (Suc m + n) = |
|
4493 t_steps (t_steps tc (p, off) (Suc m)) (p, off) n" |
|
4494 proof(simp only: h2, simp add: t_steps.simps) |
|
4495 have h3: "(t_step (t_steps tc (p, off) m) (p, off)) = |
|
4496 (t_steps (t_step tc (p, off)) (p, off) m)" |
|
4497 apply(simp add: t_steps.simps[THEN sym] t_steps_ind[THEN sym]) |
|
4498 done |
|
4499 from h3 show |
|
4500 "t_steps (t_step (t_steps tc (p, off) m) (p, off)) (p, off) n = t_steps (t_steps (t_step tc (p, off)) (p, off) m) (p, off) n" |
|
4501 by simp |
|
4502 qed |
|
4503 qed |
|
4504 |
|
4505 lemma [simp]: " abc_fetch as aprog = Some (Dec n e) \<Longrightarrow> |
|
4506 Suc (start_of (layout_of aprog) as) \<noteq> |
|
4507 start_of (layout_of aprog) e" |
|
4508 apply(case_tac "e = as", simp) |
|
4509 apply(case_tac "e < as") |
|
4510 apply(drule_tac a = e and b = as and ly = "layout_of aprog" |
|
4511 in start_of_le, simp) |
|
4512 apply(drule_tac start_of_ge, auto) |
|
4513 done |
|
4514 |
|
4515 lemma [simp]: "inv_locate_b (as, []) (0, Oc # Bk # Bk # ires, Bk\<^bsup>rn - Suc 0\<^esup>) ires" |
|
4516 apply(auto simp: inv_locate_b.simps in_middle.simps) |
|
4517 apply(rule_tac x = "[]" in exI, rule_tac x = "Suc 0" in exI, |
|
4518 rule_tac x = 0 in exI, simp) |
|
4519 apply(rule_tac x = "Suc 0" in exI, rule_tac x = 0 in exI, auto) |
|
4520 apply(case_tac rn, simp, case_tac nat, auto) |
|
4521 done |
|
4522 |
|
4523 lemma [simp]: |
|
4524 "inv_locate_n_b (as, []) (0, Oc # Bk # Bk # ires, Bk\<^bsup>rn - Suc 0\<^esup>) ires" |
|
4525 apply(auto simp: inv_locate_n_b.simps in_middle.simps) |
|
4526 apply(case_tac rn, simp, case_tac nat, auto) |
|
4527 done |
|
4528 |
|
4529 lemma [simp]: |
|
4530 "abc_fetch as aprog = Some (Dec n e) \<Longrightarrow> |
|
4531 dec_inv_1 (layout_of aprog) n e (as, []) |
|
4532 (Suc (start_of (layout_of aprog) as), Oc # Bk # Bk # ires, Bk\<^bsup>rn - Suc 0\<^esup>) ires |
|
4533 \<and> |
|
4534 dec_inv_2 (layout_of aprog) n e (as, []) |
|
4535 (Suc (start_of (layout_of aprog) as), Oc # Bk # Bk # ires, Bk\<^bsup>rn - Suc 0\<^esup>) ires" |
|
4536 apply(simp add: dec_inv_1.simps dec_inv_2.simps) |
|
4537 apply(case_tac n, auto) |
|
4538 done |
|
4539 |
|
4540 lemma [simp]: |
|
4541 "\<lbrakk>am \<noteq> []; <am> = Oc # r'; |
|
4542 abc_fetch as aprog = Some (Dec n e)\<rbrakk> |
|
4543 \<Longrightarrow> inv_locate_b (as, am) (0, Oc # Bk # Bk # ires, r' @ Bk\<^bsup>rn\<^esup>) ires" |
|
4544 apply(auto simp: inv_locate_b.simps in_middle.simps) |
|
4545 apply(rule_tac x = "tl am" in exI, rule_tac x = 0 in exI, |
|
4546 rule_tac x = "hd am" in exI, simp) |
|
4547 apply(rule_tac x = "Suc 0" in exI) |
|
4548 apply(rule_tac x = "hd am" in exI, simp) |
|
4549 apply(case_tac am, simp, case_tac list, auto simp: tape_of_nl_abv tape_of_nat_list.simps) |
|
4550 apply(case_tac rn, auto) |
|
4551 done |
|
4552 |
|
4553 lemma [simp]: |
|
4554 "\<lbrakk><am> = Oc # r'; abc_fetch as aprog = Some (Dec n e)\<rbrakk> \<Longrightarrow> |
|
4555 inv_locate_n_b (as, am) (0, Oc # Bk # Bk # ires, r' @ Bk\<^bsup>rn\<^esup>) ires" |
|
4556 apply(auto simp: inv_locate_n_b.simps) |
|
4557 apply(rule_tac x = "tl am" in exI, rule_tac x = "hd am" in exI, auto) |
|
4558 apply(case_tac [!] am, auto simp: tape_of_nl_abv tape_of_nat_list.simps ) |
|
4559 apply(case_tac [!]list, auto simp: tape_of_nl_abv tape_of_nat_list.simps) |
|
4560 apply(case_tac rn, simp, simp) |
|
4561 apply(erule_tac x = nat in allE, simp) |
|
4562 done |
|
4563 |
|
4564 lemma [simp]: |
|
4565 "\<lbrakk>am \<noteq> []; |
|
4566 <am> = Oc # r'; |
|
4567 abc_fetch as aprog = Some (Dec n e)\<rbrakk> \<Longrightarrow> |
|
4568 dec_inv_1 (layout_of aprog) n e (as, am) |
|
4569 (Suc (start_of (layout_of aprog) as), |
|
4570 Oc # Bk # Bk # ires, r' @ Bk\<^bsup>rn\<^esup>) ires \<and> |
|
4571 dec_inv_2 (layout_of aprog) n e (as, am) |
|
4572 (Suc (start_of (layout_of aprog) as), |
|
4573 Oc # Bk # Bk # ires, r' @ Bk\<^bsup>rn\<^esup>) ires" |
|
4574 apply(simp add: dec_inv_1.simps dec_inv_2.simps) |
|
4575 apply(case_tac n, auto) |
|
4576 done |
|
4577 |
|
4578 lemma [simp]: "am \<noteq> [] \<Longrightarrow> \<exists>r'. <am::nat list> = Oc # r'" |
|
4579 apply(case_tac am, simp, case_tac list) |
|
4580 apply(auto simp: tape_of_nl_abv tape_of_nat_list.simps ) |
|
4581 done |
|
4582 |
|
4583 lemma [simp]: "start_of (layout_of aprog) as > 0 \<Longrightarrow> |
|
4584 (fetch (ci (layout_of aprog) |
|
4585 (start_of (layout_of aprog) as) (Dec n e)) (Suc 0) Bk) |
|
4586 = (W1, start_of (layout_of aprog) as)" |
|
4587 apply(auto simp: ci.simps findnth.simps fetch.simps |
|
4588 nth_of.simps tshift.simps nth_append Suc_pre tdec_b_def) |
|
4589 thm findnth_nth |
|
4590 apply(insert findnth_nth[of 0 n 0], simp) |
|
4591 apply(simp add: findnth.simps) |
|
4592 done |
|
4593 |
|
4594 lemma [simp]: |
|
4595 "start_of (layout_of aprog) as > 0 |
|
4596 \<Longrightarrow> (t_step (start_of (layout_of aprog) as, Bk # Bk # ires, Bk\<^bsup>rn\<^esup>) |
|
4597 (ci (layout_of aprog) (start_of (layout_of aprog) as) (Dec n e), |
|
4598 start_of (layout_of aprog) as - Suc 0)) |
|
4599 = (start_of (layout_of aprog) as, Bk # Bk # ires, Oc # Bk\<^bsup>rn- Suc 0\<^esup>)" |
|
4600 apply(simp add: t_step.simps) |
|
4601 apply(case_tac "start_of (layout_of aprog) as", |
|
4602 auto simp: new_tape.simps) |
|
4603 apply(case_tac rn, auto) |
|
4604 done |
|
4605 |
|
4606 lemma [simp]: "start_of (layout_of aprog) as > 0 \<Longrightarrow> |
|
4607 (fetch (ci (layout_of aprog) (start_of (layout_of aprog) as) |
|
4608 (Dec n e)) (Suc 0) Oc) |
|
4609 = (R, Suc (start_of (layout_of aprog) as))" |
|
4610 |
|
4611 apply(auto simp: ci.simps findnth.simps fetch.simps |
|
4612 nth_of.simps tshift.simps nth_append |
|
4613 Suc_pre tdec_b_def) |
|
4614 apply(insert findnth_nth[of 0 n "Suc 0"], simp) |
|
4615 apply(simp add: findnth.simps) |
|
4616 done |
|
4617 |
|
4618 lemma [simp]: "start_of (layout_of aprog) as > 0 \<Longrightarrow> |
|
4619 (t_step (start_of (layout_of aprog) as, Bk # Bk # ires, Oc # Bk\<^bsup>rn - Suc 0\<^esup>) |
|
4620 (ci (layout_of aprog) (start_of (layout_of aprog) as) (Dec n e), |
|
4621 start_of (layout_of aprog) as - Suc 0)) = |
|
4622 (Suc (start_of (layout_of aprog) as), Oc # Bk # Bk # ires, Bk\<^bsup>rn-Suc 0\<^esup>)" |
|
4623 apply(simp add: t_step.simps) |
|
4624 apply(case_tac "start_of (layout_of aprog) as", |
|
4625 auto simp: new_tape.simps) |
|
4626 done |
|
4627 |
|
4628 lemma [simp]: "start_of (layout_of aprog) as > 0 \<Longrightarrow> |
|
4629 t_step (start_of (layout_of aprog) as, Bk # Bk # ires, Oc # r' @ Bk\<^bsup>rn\<^esup>) |
|
4630 (ci (layout_of aprog) (start_of (layout_of aprog) as) (Dec n e), |
|
4631 start_of (layout_of aprog) as - Suc 0) = |
|
4632 (Suc (start_of (layout_of aprog) as), Oc # Bk # Bk # ires, r' @ Bk\<^bsup>rn\<^esup>)" |
|
4633 apply(simp add: t_step.simps) |
|
4634 apply(case_tac "start_of (layout_of aprog) as", |
|
4635 auto simp: new_tape.simps) |
|
4636 done |
|
4637 |
|
4638 lemma crsp_next_state: |
|
4639 "\<lbrakk>crsp_l (layout_of aprog) (as, am) tc ires; |
|
4640 abc_fetch as aprog = Some (Dec n e)\<rbrakk> |
|
4641 \<Longrightarrow> \<exists> stp' > 0. (\<lambda> (s, l, r). |
|
4642 (s = Suc (start_of (layout_of aprog) as) |
|
4643 \<and> (dec_inv_1 (layout_of aprog) n e (as, am) (s, l, r) ires) |
|
4644 \<and> (dec_inv_2 (layout_of aprog) n e (as, am) (s, l, r)) ires)) |
|
4645 (t_steps tc (ci (layout_of aprog) (start_of (layout_of aprog) as) |
|
4646 (Dec n e), start_of (layout_of aprog) as - Suc 0) stp')" |
|
4647 apply(subgoal_tac "start_of (layout_of aprog) as > 0") |
|
4648 apply(case_tac tc, case_tac b, auto simp: crsp_l.simps) |
|
4649 apply(case_tac "am = []", simp) |
|
4650 apply(rule_tac x = "Suc (Suc 0)" in exI, simp add: t_steps.simps) |
|
4651 proof- |
|
4652 fix rn |
|
4653 assume h1: "am \<noteq> []" "abc_fetch as aprog = Some (Dec n e)" |
|
4654 "start_of (layout_of aprog) as > 0" |
|
4655 hence h2: "\<exists> r'. <am> = Oc # r'" |
|
4656 by simp |
|
4657 from h1 and h2 show |
|
4658 "\<exists>stp'>0. case t_steps (start_of (layout_of aprog) as, Bk # Bk # ires, <am> @ Bk\<^bsup>rn\<^esup>) |
|
4659 (ci (layout_of aprog) (start_of (layout_of aprog) as) (Dec n e), |
|
4660 start_of (layout_of aprog) as - Suc 0) stp' of |
|
4661 (s, ab) \<Rightarrow> s = Suc (start_of (layout_of aprog) as) \<and> |
|
4662 dec_inv_1 (layout_of aprog) n e (as, am) (s, ab) ires \<and> |
|
4663 dec_inv_2 (layout_of aprog) n e (as, am) (s, ab) ires" |
|
4664 proof(erule_tac exE, simp, rule_tac x = "Suc 0" in exI, |
|
4665 simp add: t_steps.simps) |
|
4666 qed |
|
4667 next |
|
4668 assume "abc_fetch as aprog = Some (Dec n e)" |
|
4669 thus "0 < start_of (layout_of aprog) as" |
|
4670 apply(insert startof_not0[of "layout_of aprog" as], simp) |
|
4671 done |
|
4672 qed |
|
4673 |
|
4674 lemma dec_crsp_ex1: |
|
4675 "\<lbrakk>crsp_l (layout_of aprog) (as, am) tc ires; |
|
4676 abc_fetch as aprog = Some (Dec n e); |
|
4677 abc_lm_v am n = 0\<rbrakk> |
|
4678 \<Longrightarrow> \<exists>stp > 0. crsp_l (layout_of aprog) (e, abc_lm_s am n 0) |
|
4679 (t_steps tc (ci (layout_of aprog) (start_of (layout_of aprog) as) |
|
4680 (Dec n e), start_of (layout_of aprog) as - Suc 0) stp) ires" |
|
4681 proof - |
|
4682 assume h1: "crsp_l (layout_of aprog) (as, am) tc ires" |
|
4683 "abc_fetch as aprog = Some (Dec n e)" "abc_lm_v am n = 0" |
|
4684 hence h2: "\<exists> stp' > 0. (\<lambda> (s, l, r). |
|
4685 (s = Suc (start_of (layout_of aprog) as) \<and> |
|
4686 (dec_inv_1 (layout_of aprog) n e (as, am) (s, l, r)) ires)) |
|
4687 (t_steps tc (ci (layout_of aprog) (start_of (layout_of aprog) as) |
|
4688 (Dec n e), start_of (layout_of aprog) as - Suc 0) stp')" |
|
4689 apply(insert crsp_next_state[of aprog as am tc ires n e], auto) |
|
4690 done |
|
4691 from h1 and h2 show |
|
4692 "\<exists>stp > 0. crsp_l (layout_of aprog) (e, abc_lm_s am n 0) |
|
4693 (t_steps tc (ci (layout_of aprog) (start_of |
|
4694 (layout_of aprog) as) (Dec n e), |
|
4695 start_of (layout_of aprog) as - Suc 0) stp) ires" |
|
4696 proof(erule_tac exE, case_tac "(t_steps tc (ci (layout_of aprog) |
|
4697 (start_of (layout_of aprog) as) (Dec n e), start_of |
|
4698 (layout_of aprog) as - Suc 0) stp')", simp) |
|
4699 fix stp' a b c |
|
4700 assume h3: "stp' > 0 \<and> a = Suc (start_of (layout_of aprog) as) \<and> |
|
4701 dec_inv_1 (layout_of aprog) n e (as, am) (a, b, c) ires" |
|
4702 "abc_fetch as aprog = Some (Dec n e)" "abc_lm_v am n = 0" |
|
4703 "t_steps tc (ci (layout_of aprog) (start_of (layout_of aprog) as) |
|
4704 (Dec n e), start_of (layout_of aprog) as - Suc 0) stp' |
|
4705 = (Suc (start_of (layout_of aprog) as), b, c)" |
|
4706 thus "\<exists>stp > 0. crsp_l (layout_of aprog) (e, abc_lm_s am n 0) |
|
4707 (t_steps tc (ci (layout_of aprog) (start_of (layout_of aprog) as) |
|
4708 (Dec n e), start_of (layout_of aprog) as - Suc 0) stp) ires" |
|
4709 proof(erule_tac conjE, simp) |
|
4710 assume "dec_inv_1 (layout_of aprog) n e (as, am) |
|
4711 (Suc (start_of (layout_of aprog) as), b, c) ires" |
|
4712 "abc_fetch as aprog = Some (Dec n e)" |
|
4713 "abc_lm_v am n = 0" |
|
4714 " t_steps tc (ci (layout_of aprog) |
|
4715 (start_of (layout_of aprog) as) (Dec n e), |
|
4716 start_of (layout_of aprog) as - Suc 0) stp' |
|
4717 = (Suc (start_of (layout_of aprog) as), b, c)" |
|
4718 hence h4: "\<exists>stp. (\<lambda>(s', l', r'). s' = |
|
4719 start_of (layout_of aprog) e \<and> |
|
4720 dec_inv_1 (layout_of aprog) n e (as, am) (s', l', r') ires) |
|
4721 (t_steps (start_of (layout_of aprog) as + 1, b, c) |
|
4722 (ci (layout_of aprog) |
|
4723 (start_of (layout_of aprog) as) (Dec n e), |
|
4724 start_of (layout_of aprog) as - Suc 0) stp)" |
|
4725 apply(rule_tac dec_inv_stop1, auto) |
|
4726 done |
|
4727 from h3 and h4 show ?thesis |
|
4728 apply(erule_tac exE) |
|
4729 apply(rule_tac x = "stp' + stp" in exI, simp) |
|
4730 apply(case_tac "(t_steps (Suc (start_of (layout_of aprog) as), |
|
4731 b, c) (ci (layout_of aprog) |
|
4732 (start_of (layout_of aprog) as) (Dec n e), |
|
4733 start_of (layout_of aprog) as - Suc 0) stp)", |
|
4734 simp) |
|
4735 apply(rule_tac dec_inv_stop_cond1, auto) |
|
4736 done |
|
4737 qed |
|
4738 qed |
|
4739 qed |
|
4740 |
|
4741 lemma dec_crsp_ex2: |
|
4742 "\<lbrakk>crsp_l (layout_of aprog) (as, am) tc ires; |
|
4743 abc_fetch as aprog = Some (Dec n e); |
|
4744 0 < abc_lm_v am n\<rbrakk> |
|
4745 \<Longrightarrow> \<exists>stp > 0. crsp_l (layout_of aprog) |
|
4746 (Suc as, abc_lm_s am n (abc_lm_v am n - Suc 0)) |
|
4747 (t_steps tc (ci (layout_of aprog) (start_of (layout_of aprog) as) |
|
4748 (Dec n e), start_of (layout_of aprog) as - Suc 0) stp) ires" |
|
4749 proof - |
|
4750 assume h1: |
|
4751 "crsp_l (layout_of aprog) (as, am) tc ires" |
|
4752 "abc_fetch as aprog = Some (Dec n e)" |
|
4753 "abc_lm_v am n > 0" |
|
4754 hence h2: |
|
4755 "\<exists> stp' > 0. (\<lambda> (s, l, r). (s = Suc (start_of (layout_of aprog) as) |
|
4756 \<and> (dec_inv_2 (layout_of aprog) n e (as, am) (s, l, r)) ires)) |
|
4757 (t_steps tc (ci (layout_of aprog) (start_of (layout_of aprog) as) |
|
4758 (Dec n e), start_of (layout_of aprog) as - Suc 0) stp')" |
|
4759 apply(insert crsp_next_state[of aprog as am tc ires n e], auto) |
|
4760 done |
|
4761 from h1 and h2 show |
|
4762 "\<exists>stp >0. crsp_l (layout_of aprog) |
|
4763 (Suc as, abc_lm_s am n (abc_lm_v am n - Suc 0)) |
|
4764 (t_steps tc (ci (layout_of aprog) (start_of (layout_of aprog) as) |
|
4765 (Dec n e), start_of (layout_of aprog) as - Suc 0) stp) ires" |
|
4766 proof(erule_tac exE, |
|
4767 case_tac |
|
4768 "(t_steps tc (ci (layout_of aprog) (start_of (layout_of aprog) as) |
|
4769 (Dec n e), start_of (layout_of aprog) as - Suc 0) stp')", simp) |
|
4770 fix stp' a b c |
|
4771 assume h3: "0 < stp' \<and> a = Suc (start_of (layout_of aprog) as) \<and> |
|
4772 dec_inv_2 (layout_of aprog) n e (as, am) (a, b, c) ires" |
|
4773 "abc_fetch as aprog = Some (Dec n e)" |
|
4774 "abc_lm_v am n > 0" |
|
4775 "t_steps tc (ci (layout_of aprog) |
|
4776 (start_of (layout_of aprog) as) (Dec n e), |
|
4777 start_of (layout_of aprog) as - Suc 0) stp' |
|
4778 = (Suc (start_of (layout_of aprog) as), b, c)" |
|
4779 thus "?thesis" |
|
4780 proof(erule_tac conjE, simp) |
|
4781 assume |
|
4782 "dec_inv_2 (layout_of aprog) n e (as, am) |
|
4783 (Suc (start_of (layout_of aprog) as), b, c) ires" |
|
4784 "abc_fetch as aprog = Some (Dec n e)" "abc_lm_v am n > 0" |
|
4785 "t_steps tc (ci (layout_of aprog) (start_of (layout_of aprog) as) |
|
4786 (Dec n e), start_of (layout_of aprog) as - Suc 0) stp' |
|
4787 = (Suc (start_of (layout_of aprog) as), b, c)" |
|
4788 hence h4: |
|
4789 "\<exists>stp. (\<lambda>(s', l', r'). s' = start_of (layout_of aprog) (Suc as) \<and> |
|
4790 dec_inv_2 (layout_of aprog) n e (as, am) (s', l', r') ires) |
|
4791 (t_steps (start_of (layout_of aprog) as + 1, b, c) |
|
4792 (ci (layout_of aprog) (start_of (layout_of aprog) as) |
|
4793 (Dec n e), start_of (layout_of aprog) as - Suc 0) stp)" |
|
4794 apply(rule_tac dec_stop2, auto) |
|
4795 done |
|
4796 from h3 and h4 show ?thesis |
|
4797 apply(erule_tac exE) |
|
4798 apply(rule_tac x = "stp' + stp" in exI, simp) |
|
4799 apply(case_tac |
|
4800 "(t_steps (Suc (start_of (layout_of aprog) as), b, c) |
|
4801 (ci (layout_of aprog) (start_of (layout_of aprog) as) |
|
4802 (Dec n e), start_of (layout_of aprog) as - Suc 0) stp)" |
|
4803 ,simp) |
|
4804 apply(rule_tac dec_inv_stop_cond2, auto) |
|
4805 done |
|
4806 qed |
|
4807 qed |
|
4808 qed |
|
4809 |
|
4810 lemma dec_crsp_ex_pre: |
|
4811 "\<lbrakk>ly = layout_of aprog; crsp_l ly (as, am) tc ires; |
|
4812 abc_fetch as aprog = Some (Dec n e)\<rbrakk> |
|
4813 \<Longrightarrow> \<exists>stp > 0. crsp_l ly (abc_step_l (as, am) (Some (Dec n e))) |
|
4814 (t_steps tc (ci (layout_of aprog) (start_of ly as) (Dec n e), |
|
4815 start_of ly as - Suc 0) stp) ires" |
|
4816 apply(auto simp: abc_step_l.simps intro: dec_crsp_ex2 dec_crsp_ex1) |
|
4817 done |
|
4818 |
|
4819 lemma dec_crsp_ex: |
|
4820 assumes layout: -- {* There is an Abacus program @{text "aprog"} with layout @{text "ly"} *} |
|
4821 "ly = layout_of aprog" |
|
4822 and dec: -- {* There is an @{text "Dec n e"} instruction at postion @{text "as"} of @{text "aprog"} *} |
|
4823 "abc_fetch as aprog = Some (Dec n e)" |
|
4824 and correspond: |
|
4825 -- {* Abacus configuration @{text "(as, am)"} is in correspondence with TM |
|
4826 configuration @{text "tc"} |
|
4827 *} |
|
4828 "crsp_l ly (as, am) tc ires" |
|
4829 shows |
|
4830 "\<exists>stp > 0. crsp_l ly (abc_step_l (as, am) (Some (Dec n e))) |
|
4831 (t_steps tc (ci (layout_of aprog) (start_of ly as) (Dec n e), |
|
4832 start_of ly as - Suc 0) stp) ires" |
|
4833 proof - |
|
4834 from dec_crsp_ex_pre layout dec correspond show ?thesis by blast |
|
4835 qed |
|
4836 |
|
4837 (* |
|
4838 subsection {* Compilation of @{text "Goto n"}*} |
|
4839 *) |
|
4840 |
|
4841 lemma goto_fetch: |
|
4842 "fetch (ci (layout_of aprog) |
|
4843 (start_of (layout_of aprog) as) (Goto n)) (Suc 0) b |
|
4844 = (Nop, start_of (layout_of aprog) n)" |
|
4845 apply(auto simp: ci.simps fetch.simps nth_of.simps |
|
4846 split: block.splits) |
|
4847 done |
|
4848 |
|
4849 text {* |
|
4850 Correctness of complied @{text "Goto n"} |
|
4851 *} |
|
4852 |
|
4853 lemma goto_crsp_ex_pre: |
|
4854 "\<lbrakk>ly = layout_of aprog; |
|
4855 crsp_l ly (as, am) tc ires; |
|
4856 abc_fetch as aprog = Some (Goto n)\<rbrakk> |
|
4857 \<Longrightarrow> \<exists>stp > 0. crsp_l ly (abc_step_l (as, am) (Some (Goto n))) |
|
4858 (t_steps tc (ci (layout_of aprog) (start_of ly as) (Goto n), |
|
4859 start_of ly as - Suc 0) stp) ires" |
|
4860 apply(rule_tac x = 1 in exI) |
|
4861 apply(simp add: abc_step_l.simps t_steps.simps t_step.simps) |
|
4862 apply(case_tac tc, simp) |
|
4863 apply(subgoal_tac "a = start_of (layout_of aprog) as", auto) |
|
4864 apply(subgoal_tac "start_of (layout_of aprog) as > 0", simp) |
|
4865 apply(auto simp: goto_fetch new_tape.simps crsp_l.simps) |
|
4866 apply(rule startof_not0) |
|
4867 done |
|
4868 |
|
4869 lemma goto_crsp_ex: |
|
4870 assumes layout: "ly = layout_of aprog" |
|
4871 and goto: "abc_fetch as aprog = Some (Goto n)" |
|
4872 and correspondence: "crsp_l ly (as, am) tc ires" |
|
4873 shows "\<exists>stp>0. crsp_l ly (abc_step_l (as, am) (Some (Goto n))) |
|
4874 (t_steps tc (ci (layout_of aprog) (start_of ly as) (Goto n), |
|
4875 start_of ly as - Suc 0) stp) ires" |
|
4876 proof - |
|
4877 from goto_crsp_ex_pre and layout goto correspondence show "?thesis" by blast |
|
4878 qed |
|
4879 |
|
4880 subsection {* |
|
4881 The correctness of the compiler |
|
4882 *} |
|
4883 |
|
4884 declare abc_step_l.simps[simp del] |
|
4885 |
|
4886 lemma tm_crsp_ex: |
|
4887 "\<lbrakk>ly = layout_of aprog; |
|
4888 crsp_l ly (as, am) tc ires; |
|
4889 as < length aprog; |
|
4890 abc_fetch as aprog = Some ins\<rbrakk> |
|
4891 \<Longrightarrow> \<exists> n > 0. crsp_l ly (abc_step_l (as,am) (Some ins)) |
|
4892 (t_steps tc (ci (layout_of aprog) (start_of ly as) |
|
4893 (ins), (start_of ly as) - (Suc 0)) n) ires" |
|
4894 apply(case_tac "ins", simp) |
|
4895 apply(auto intro: inc_crsp_ex_pre dec_crsp_ex goto_crsp_ex) |
|
4896 done |
|
4897 |
|
4898 lemma start_of_pre: |
|
4899 "n < length aprog \<Longrightarrow> start_of (layout_of aprog) n |
|
4900 = start_of (layout_of (butlast aprog)) n" |
|
4901 apply(induct n, simp add: start_of.simps, simp) |
|
4902 apply(simp add: layout_of.simps start_of.simps) |
|
4903 apply(subgoal_tac "n < length aprog - Suc 0", simp) |
|
4904 apply(subgoal_tac "(aprog ! n) = (butlast aprog ! n)", simp) |
|
4905 proof - |
|
4906 fix n |
|
4907 assume h1: "Suc n < length aprog" |
|
4908 thus "aprog ! n = butlast aprog ! n" |
|
4909 apply(case_tac "length aprog", simp, simp) |
|
4910 apply(insert nth_append[of "butlast aprog" "[last aprog]" n]) |
|
4911 apply(subgoal_tac "(butlast aprog @ [last aprog]) = aprog") |
|
4912 apply(simp split: if_splits) |
|
4913 apply(rule append_butlast_last_id, case_tac aprog, simp, simp) |
|
4914 done |
|
4915 next |
|
4916 fix n |
|
4917 assume "Suc n < length aprog" |
|
4918 thus "n < length aprog - Suc 0" |
|
4919 apply(case_tac aprog, simp, simp) |
|
4920 done |
|
4921 qed |
|
4922 |
|
4923 lemma zip_eq: "xs = ys \<Longrightarrow> zip xs zs = zip ys zs" |
|
4924 by simp |
|
4925 |
|
4926 lemma tpairs_of_append_iff: "length aprog = Suc n \<Longrightarrow> |
|
4927 tpairs_of aprog = tpairs_of (butlast aprog) @ |
|
4928 [(start_of (layout_of aprog) n, aprog ! n)]" |
|
4929 apply(simp add: tpairs_of.simps) |
|
4930 apply(insert zip_append[of "map (start_of (layout_of aprog)) [0..<n]" |
|
4931 "butlast aprog" "[start_of (layout_of aprog) n]" "[last aprog]"]) |
|
4932 apply(simp del: zip_append) |
|
4933 apply(subgoal_tac "(butlast aprog @ [last aprog]) = aprog", auto) |
|
4934 apply(rule_tac zip_eq, auto) |
|
4935 apply(rule_tac start_of_pre, simp) |
|
4936 apply(insert last_conv_nth[of aprog], case_tac aprog, simp, simp) |
|
4937 apply(rule append_butlast_last_id, case_tac aprog, simp, simp) |
|
4938 done |
|
4939 |
|
4940 lemma [simp]: "list_all (\<lambda>(n, tm). abacus.t_ncorrect (ci layout n tm)) |
|
4941 (zip (map (start_of layout) [0..<length aprog]) aprog)" |
|
4942 proof(induct "length aprog" arbitrary: aprog, simp) |
|
4943 fix x aprog |
|
4944 assume ind: "\<And>aprog. x = length aprog \<Longrightarrow> |
|
4945 list_all (\<lambda>(n, tm). abacus.t_ncorrect (ci layout n tm)) |
|
4946 (zip (map (start_of layout) [0..<length aprog]) aprog)" |
|
4947 and h: "Suc x = length (aprog::abc_inst list)" |
|
4948 have g1: "list_all (\<lambda>(n, tm). abacus.t_ncorrect (ci layout n tm)) |
|
4949 (zip (map (start_of layout) [0..<length (butlast aprog)]) |
|
4950 (butlast aprog))" |
|
4951 using h |
|
4952 apply(rule_tac ind, auto) |
|
4953 done |
|
4954 have g2: "(map (start_of layout) [0..<length aprog]) = |
|
4955 map (start_of layout) ([0..<length aprog - 1] |
|
4956 @ [length aprog - 1])" |
|
4957 using h |
|
4958 apply(case_tac aprog, simp, simp) |
|
4959 done |
|
4960 have "\<exists> xs a. aprog = xs @ [a]" |
|
4961 using h |
|
4962 apply(rule_tac x = "butlast aprog" in exI, |
|
4963 rule_tac x = "last aprog" in exI) |
|
4964 apply(case_tac "aprog = []", simp, simp) |
|
4965 done |
|
4966 from this obtain xs where "\<exists> a. aprog = xs @ [a]" .. |
|
4967 from this obtain a where g3: "aprog = xs @ [a]" .. |
|
4968 from g1 and g2 and g3 show "list_all (\<lambda>(n, tm). |
|
4969 abacus.t_ncorrect (ci layout n tm)) |
|
4970 (zip (map (start_of layout) [0..<length aprog]) aprog)" |
|
4971 apply(simp) |
|
4972 apply(auto simp: t_ncorrect.simps ci.simps tshift.simps |
|
4973 tinc_b_def tdec_b_def split: abc_inst.splits) |
|
4974 apply arith+ |
|
4975 done |
|
4976 qed |
|
4977 |
|
4978 lemma [intro]: "abc2t_correct aprog" |
|
4979 apply(simp add: abc2t_correct.simps tpairs_of.simps |
|
4980 split: abc_inst.splits) |
|
4981 done |
|
4982 |
|
4983 lemma as_out: "\<lbrakk>ly = layout_of aprog; tprog = tm_of aprog; |
|
4984 crsp_l ly (as, am) tc ires; length aprog \<le> as\<rbrakk> |
|
4985 \<Longrightarrow> abc_step_l (as, am) (abc_fetch as aprog) = (as, am)" |
|
4986 apply(simp add: abc_fetch.simps abc_step_l.simps) |
|
4987 done |
|
4988 |
|
4989 lemma tm_merge_ex: |
|
4990 "\<lbrakk>crsp_l (layout_of aprog) (as, am) tc ires; |
|
4991 as < length aprog; |
|
4992 abc_fetch as aprog = Some a; |
|
4993 abc2t_correct aprog; |
|
4994 crsp_l (layout_of aprog) (abc_step_l (as, am) (Some a)) |
|
4995 (t_steps tc (ci (layout_of aprog) (start_of (layout_of aprog) as) |
|
4996 a, start_of (layout_of aprog) as - Suc 0) n) ires; |
|
4997 n > 0\<rbrakk> |
|
4998 \<Longrightarrow> \<exists>stp > 0. crsp_l (layout_of aprog) (abc_step_l (as, am) |
|
4999 (Some a)) (t_steps tc (tm_of aprog, 0) stp) ires" |
|
5000 apply(case_tac "(t_steps tc (ci (layout_of aprog) |
|
5001 (start_of (layout_of aprog) as) a, |
|
5002 start_of (layout_of aprog) as - Suc 0) n)", simp) |
|
5003 apply(case_tac "(abc_step_l (as, am) (Some a))", simp) |
|
5004 proof - |
|
5005 fix aa b c aaa ba |
|
5006 assume h: |
|
5007 "crsp_l (layout_of aprog) (as, am) tc ires" |
|
5008 "as < length aprog" |
|
5009 "abc_fetch as aprog = Some a" |
|
5010 "crsp_l (layout_of aprog) (aaa, ba) (aa, b, c) ires" |
|
5011 "abc2t_correct aprog" |
|
5012 "n>0" |
|
5013 "t_steps tc (ci (layout_of aprog) (start_of (layout_of aprog) as) a, |
|
5014 start_of (layout_of aprog) as - Suc 0) n = (aa, b, c)" |
|
5015 "abc_step_l (as, am) (Some a) = (aaa, ba)" |
|
5016 hence "aa = start_of (layout_of aprog) aaa" |
|
5017 apply(simp add: crsp_l.simps) |
|
5018 done |
|
5019 from this and h show |
|
5020 "\<exists>stp > 0. crsp_l (layout_of aprog) (aaa, ba) |
|
5021 (t_steps tc (tm_of aprog, 0) stp) ires" |
|
5022 apply(insert tms_out_ex[of "layout_of aprog" aprog |
|
5023 "tm_of aprog" as am tc ires a n aa b c aaa ba], auto) |
|
5024 done |
|
5025 qed |
|
5026 |
|
5027 lemma crsp_inside: |
|
5028 "\<lbrakk>ly = layout_of aprog; |
|
5029 tprog = tm_of aprog; |
|
5030 crsp_l ly (as, am) tc ires; |
|
5031 as < length aprog\<rbrakk> \<Longrightarrow> |
|
5032 (\<exists> stp > 0. crsp_l ly (abc_step_l (as,am) (abc_fetch as aprog)) |
|
5033 (t_steps tc (tprog, 0) stp) ires)" |
|
5034 apply(case_tac "abc_fetch as aprog", simp add: abc_fetch.simps) |
|
5035 proof - |
|
5036 fix a |
|
5037 assume "ly = layout_of aprog" |
|
5038 "tprog = tm_of aprog" |
|
5039 "crsp_l ly (as, am) tc ires" |
|
5040 "as < length aprog" |
|
5041 "abc_fetch as aprog = Some a" |
|
5042 thus "\<exists>stp > 0. crsp_l ly (abc_step_l (as, am) |
|
5043 (abc_fetch as aprog)) (t_steps tc (tprog, 0) stp) ires" |
|
5044 proof(insert tm_crsp_ex[of ly aprog as am tc ires a], |
|
5045 auto intro: tm_merge_ex) |
|
5046 qed |
|
5047 qed |
|
5048 |
|
5049 lemma crsp_outside: |
|
5050 "\<lbrakk>ly = layout_of aprog; tprog = tm_of aprog; |
|
5051 crsp_l ly (as, am) tc ires; as \<ge> length aprog\<rbrakk> |
|
5052 \<Longrightarrow> (\<exists> stp. crsp_l ly (abc_step_l (as,am) (abc_fetch as aprog)) |
|
5053 (t_steps tc (tprog, 0) stp) ires)" |
|
5054 apply(subgoal_tac "abc_step_l (as, am) (abc_fetch as aprog) |
|
5055 = (as, am)", simp) |
|
5056 apply(rule_tac x = 0 in exI, simp add: t_steps.simps) |
|
5057 apply(rule as_out, simp+) |
|
5058 done |
|
5059 |
|
5060 text {* |
|
5061 Single-step correntess of the compiler. |
|
5062 *} |
|
5063 lemma astep_crsp_pre: |
|
5064 "\<lbrakk>ly = layout_of aprog; |
|
5065 tprog = tm_of aprog; |
|
5066 crsp_l ly (as, am) tc ires\<rbrakk> |
|
5067 \<Longrightarrow> (\<exists> stp. crsp_l ly (abc_step_l (as,am) |
|
5068 (abc_fetch as aprog)) (t_steps tc (tprog, 0) stp) ires)" |
|
5069 apply(case_tac "as < length aprog") |
|
5070 apply(drule_tac crsp_inside, auto) |
|
5071 apply(rule_tac crsp_outside, simp+) |
|
5072 done |
|
5073 |
|
5074 text {* |
|
5075 Single-step correntess of the compiler. |
|
5076 *} |
|
5077 lemma astep_crsp_pre1: |
|
5078 "\<lbrakk>ly = layout_of aprog; |
|
5079 tprog = tm_of aprog; |
|
5080 crsp_l ly (as, am) tc ires\<rbrakk> |
|
5081 \<Longrightarrow> (\<exists> stp. crsp_l ly (abc_step_l (as,am) |
|
5082 (abc_fetch as aprog)) (t_steps tc (tprog, 0) stp) ires)" |
|
5083 apply(case_tac "as < length aprog") |
|
5084 apply(drule_tac crsp_inside, auto) |
|
5085 apply(rule_tac crsp_outside, simp+) |
|
5086 done |
|
5087 |
|
5088 lemma astep_crsp: |
|
5089 assumes layout: |
|
5090 -- {* There is a Abacus program @{text "aprog"} with layout @{text "ly"} *} |
|
5091 "ly = layout_of aprog" |
|
5092 and compiled: |
|
5093 -- {* @{text "tprog"} is the TM compiled from @{text "aprog"} *} |
|
5094 "tprog = tm_of aprog" |
|
5095 and corresponds: |
|
5096 -- {* Abacus configuration @{text "(as, am)"} is in correspondence with TM configuration |
|
5097 @{text "tc"} *} |
|
5098 "crsp_l ly (as, am) tc ires" |
|
5099 -- {* One step execution of @{text "aprog"} can be simulated by multi-step execution |
|
5100 of @{text "tprog"} *} |
|
5101 shows "(\<exists> stp. crsp_l ly (abc_step_l (as,am) |
|
5102 (abc_fetch as aprog)) (t_steps tc (tprog, 0) stp) ires)" |
|
5103 proof - |
|
5104 from astep_crsp_pre1 [OF layout compiled corresponds] show ?thesis . |
|
5105 qed |
|
5106 |
|
5107 lemma steps_crsp_pre: |
|
5108 "\<lbrakk>ly = layout_of aprog; tprog = tm_of aprog; |
|
5109 crsp_l ly ac tc ires; ac' = abc_steps_l ac aprog n\<rbrakk> \<Longrightarrow> |
|
5110 (\<exists> n'. crsp_l ly ac' (t_steps tc (tprog, 0) n') ires)" |
|
5111 apply(induct n arbitrary: ac' ac tc, simp add: abc_steps_l.simps) |
|
5112 apply(rule_tac x = 0 in exI) |
|
5113 apply(case_tac ac, simp add: abc_steps_l.simps t_steps.simps) |
|
5114 apply(case_tac ac, simp add: abc_steps_l.simps) |
|
5115 apply(subgoal_tac |
|
5116 "(\<exists> stp. crsp_l ly (abc_step_l (a, b) |
|
5117 (abc_fetch a aprog)) (t_steps tc (tprog, 0) stp) ires)") |
|
5118 apply(erule exE) |
|
5119 apply(subgoal_tac |
|
5120 "\<exists>n'. crsp_l (layout_of aprog) |
|
5121 (abc_steps_l (abc_step_l (a, b) (abc_fetch a aprog)) aprog n) |
|
5122 (t_steps ((t_steps tc (tprog, 0) stp)) (tm_of aprog, 0) n') ires") |
|
5123 apply(erule exE) |
|
5124 apply(subgoal_tac |
|
5125 "t_steps (t_steps tc (tprog, 0) stp) (tm_of aprog, 0) n' = |
|
5126 t_steps tc (tprog, 0) (stp + n')") |
|
5127 apply(rule_tac x = "stp + n'" in exI, simp) |
|
5128 apply(auto intro: astep_crsp simp: t_step_add) |
|
5129 done |
|
5130 |
|
5131 text {* |
|
5132 Multi-step correctess of the compiler. |
|
5133 *} |
|
5134 |
|
5135 lemma steps_crsp: |
|
5136 assumes layout: |
|
5137 -- {* There is an Abacus program @{text "aprog"} with layout @{text "ly"} *} |
|
5138 "ly = layout_of aprog" |
|
5139 and compiled: |
|
5140 -- {* @{text "tprog"} is the TM compiled from @{text "aprog"} *} |
|
5141 "tprog = tm_of aprog" |
|
5142 and correspond: |
|
5143 -- {* Abacus configuration @{text "ac"} is in correspondence with TM configuration @{text "tc"} *} |
|
5144 "crsp_l ly ac tc ires" |
|
5145 and execution: |
|
5146 -- {* @{text "ac'"} is the configuration obtained from @{text "n"}-step execution |
|
5147 of @{text "aprog"} starting from configuration @{text "ac"} *} |
|
5148 "ac' = abc_steps_l ac aprog n" |
|
5149 -- {* There exists steps @{text "n'"} steps, after these steps of execution, |
|
5150 the Turing configuration such obtained is in correspondence with @{text "ac'"} *} |
|
5151 shows "(\<exists> n'. crsp_l ly ac' (t_steps tc (tprog, 0) n') ires)" |
|
5152 proof - |
|
5153 from steps_crsp_pre [OF layout compiled correspond execution] show ?thesis . |
|
5154 qed |
|
5155 |
|
5156 subsection {* The Mop-up machine *} |
|
5157 |
|
5158 fun mop_bef :: "nat \<Rightarrow> tprog" |
|
5159 where |
|
5160 "mop_bef 0 = []" | |
|
5161 "mop_bef (Suc n) = mop_bef n @ |
|
5162 [(R, 2*n + 3), (W0, 2*n + 2), (R, 2*n + 1), (W1, 2*n + 2)]" |
|
5163 |
|
5164 definition mp_up :: "tprog" |
|
5165 where |
|
5166 "mp_up \<equiv> [(R, 2), (R, 1), (L, 5), (W0, 3), (R, 4), (W0, 3), |
|
5167 (R, 2), (W0, 3), (L, 5), (L, 6), (R, 0), (L, 6)]" |
|
5168 |
|
5169 fun tMp :: "nat \<Rightarrow> nat \<Rightarrow> tprog" |
|
5170 where |
|
5171 "tMp n off = tshift (mop_bef n @ tshift mp_up (2*n)) off" |
|
5172 |
|
5173 declare mp_up_def[simp del] tMp.simps[simp del] mop_bef.simps[simp del] |
|
5174 (**********Begin: equiv among aba and turing***********) |
|
5175 |
|
5176 lemma tm_append_step: |
|
5177 "\<lbrakk>t_ncorrect tp1; t_step tc (tp1, 0) = (s, l, r); s \<noteq> 0\<rbrakk> |
|
5178 \<Longrightarrow> t_step tc (tp1 @ tp2, 0) = (s, l, r)" |
|
5179 apply(simp add: t_step.simps) |
|
5180 apply(case_tac tc, simp) |
|
5181 apply(case_tac |
|
5182 "(fetch tp1 a (case c of [] \<Rightarrow> Bk | |
|
5183 Bk # xs \<Rightarrow> Bk | Oc # xs \<Rightarrow> Oc))", simp) |
|
5184 apply(case_tac a, simp add: fetch.simps) |
|
5185 apply(simp add: fetch.simps) |
|
5186 apply(case_tac c, simp) |
|
5187 apply(case_tac [!] "ab::block") |
|
5188 apply(auto simp: nth_of.simps nth_append t_ncorrect.simps |
|
5189 split: if_splits) |
|
5190 done |
|
5191 |
|
5192 lemma state0_ind: "t_steps (0, l, r) (tp, 0) stp = (0, l, r)" |
|
5193 apply(induct stp, simp add: t_steps.simps) |
|
5194 apply(simp add: t_steps.simps t_step.simps fetch.simps new_tape.simps) |
|
5195 done |
|
5196 |
|
5197 lemma tm_append_steps: |
|
5198 "\<lbrakk>t_ncorrect tp1; t_steps tc (tp1, 0) stp = (s, l ,r); s \<noteq> 0\<rbrakk> |
|
5199 \<Longrightarrow> t_steps tc (tp1 @ tp2, 0) stp = (s, l, r)" |
|
5200 apply(induct stp arbitrary: tc s l r) |
|
5201 apply(case_tac tc, simp) |
|
5202 apply(simp add: t_steps.simps) |
|
5203 proof - |
|
5204 fix stp tc s l r |
|
5205 assume h1: "\<And>tc s l r. \<lbrakk>t_ncorrect tp1; t_steps tc (tp1, 0) stp = |
|
5206 (s, l, r); s \<noteq> 0\<rbrakk> \<Longrightarrow> t_steps tc (tp1 @ tp2, 0) stp = (s, l, r)" |
|
5207 and h2: "t_steps tc (tp1, 0) (Suc stp) = (s, l, r)" "s \<noteq> 0" |
|
5208 "t_ncorrect tp1" |
|
5209 thus "t_steps tc (tp1 @ tp2, 0) (Suc stp) = (s, l, r)" |
|
5210 apply(simp add: t_steps.simps) |
|
5211 apply(case_tac "(t_step tc (tp1, 0))", simp) |
|
5212 proof- |
|
5213 fix a b c |
|
5214 assume g1: "\<And>tc s l r. \<lbrakk>t_steps tc (tp1, 0) stp = (s, l, r); |
|
5215 0 < s\<rbrakk> \<Longrightarrow> t_steps tc (tp1 @ tp2, 0) stp = (s, l, r)" |
|
5216 and g2: "t_step tc (tp1, 0) = (a, b, c)" |
|
5217 "t_steps (a, b, c) (tp1, 0) stp = (s, l, r)" |
|
5218 "0 < s" |
|
5219 "t_ncorrect tp1" |
|
5220 hence g3: "a > 0" |
|
5221 apply(case_tac "a::nat", auto simp: t_steps.simps) |
|
5222 apply(simp add: state0_ind) |
|
5223 done |
|
5224 from g1 and g2 and this have g4: |
|
5225 "(t_step tc (tp1 @ tp2, 0)) = (a, b, c)" |
|
5226 apply(rule_tac tm_append_step, simp, simp, simp) |
|
5227 done |
|
5228 from g1 and g2 and g3 and g4 show |
|
5229 "t_steps (t_step tc (tp1 @ tp2, 0)) (tp1 @ tp2, 0) stp |
|
5230 = (s, l, r)" |
|
5231 apply(simp) |
|
5232 done |
|
5233 qed |
|
5234 qed |
|
5235 |
|
5236 lemma shift_fetch: |
|
5237 "\<lbrakk>n < length tp; |
|
5238 (tp:: (taction \<times> nat) list) ! n = (aa, ba); |
|
5239 ba \<noteq> 0\<rbrakk> |
|
5240 \<Longrightarrow> (tshift tp (length tp div 2)) ! n = |
|
5241 (aa , ba + length tp div 2)" |
|
5242 apply(simp add: tshift.simps) |
|
5243 done |
|
5244 |
|
5245 lemma tshift_length_equal: "length (tshift tp q) = length tp" |
|
5246 apply(auto simp: tshift.simps) |
|
5247 done |
|
5248 |
|
5249 thm nth_of.simps |
|
5250 |
|
5251 lemma [simp]: "t_ncorrect tp \<Longrightarrow> 2 * (length tp div 2) = length tp" |
|
5252 apply(auto simp: t_ncorrect.simps) |
|
5253 done |
|
5254 |
|
5255 lemma tm_append_step_equal': |
|
5256 "\<lbrakk>t_ncorrect tp; t_ncorrect tp'; off = length tp div 2\<rbrakk> \<Longrightarrow> |
|
5257 (\<lambda> (s, l, r). ((\<lambda> (s', l', r'). |
|
5258 (s'\<noteq> 0 \<longrightarrow> (s = s' + off \<and> l = l' \<and> r = r'))) |
|
5259 (t_step (a, b, c) (tp', 0)))) |
|
5260 (t_step (a + off, b, c) (tp @ tshift tp' off, 0))" |
|
5261 apply(simp add: t_step.simps) |
|
5262 apply(case_tac a, simp add: fetch.simps) |
|
5263 apply(case_tac |
|
5264 "(fetch tp' a (case c of [] \<Rightarrow> Bk | Bk # xs \<Rightarrow> Bk | Oc # xs \<Rightarrow> Oc))", |
|
5265 simp) |
|
5266 apply(case_tac |
|
5267 "(fetch (tp @ tshift tp' (length tp div 2)) |
|
5268 (Suc (nat + length tp div 2)) |
|
5269 (case c of [] \<Rightarrow> Bk | Bk # xs \<Rightarrow> Bk | Oc # xs \<Rightarrow> Oc))", |
|
5270 simp) |
|
5271 apply(case_tac "(new_tape aa (b, c))", |
|
5272 case_tac "(new_tape aaa (b, c))", simp, |
|
5273 rule impI, simp add: fetch.simps split: block.splits option.splits) |
|
5274 apply (auto simp: nth_of.simps t_ncorrect.simps |
|
5275 nth_append tshift_length_equal tshift.simps split: if_splits) |
|
5276 done |
|
5277 |
|
5278 |
|
5279 lemma tm_append_step_equal: |
|
5280 "\<lbrakk>t_ncorrect tp; t_ncorrect tp'; off = length tp div 2; |
|
5281 t_step (a, b, c) (tp', 0) = (aa, ab, bb); aa \<noteq> 0\<rbrakk> |
|
5282 \<Longrightarrow> t_step (a + length tp div 2, b, c) |
|
5283 (tp @ tshift tp' (length tp div 2), 0) |
|
5284 = (aa + length tp div 2, ab, bb)" |
|
5285 apply(insert tm_append_step_equal'[of tp tp' off a b c], simp) |
|
5286 apply(case_tac "(t_step (a + length tp div 2, b, c) |
|
5287 (tp @ tshift tp' (length tp div 2), 0))", simp) |
|
5288 done |
|
5289 |
|
5290 lemma tm_append_steps_equal: |
|
5291 "\<lbrakk>t_ncorrect tp; t_ncorrect tp'; off = length tp div 2\<rbrakk> \<Longrightarrow> |
|
5292 (\<lambda> (s, l, r). ((\<lambda> (s', l', r'). ((s'\<noteq> 0 \<longrightarrow> s = s' + off \<and> l = l' |
|
5293 \<and> r = r'))) (t_steps (a, b, c) (tp', 0) stp))) |
|
5294 (t_steps (a + off, b, c) (tp @ tshift tp' off, 0) stp)" |
|
5295 apply(induct stp arbitrary : a b c, simp add: t_steps.simps) |
|
5296 apply(simp add: t_steps.simps) |
|
5297 apply(case_tac "(t_step (a, b, c) (tp', 0))", simp) |
|
5298 apply(case_tac "aa = 0", simp add: state0_ind) |
|
5299 apply(subgoal_tac "(t_step (a + length tp div 2, b, c) |
|
5300 (tp @ tshift tp' (length tp div 2), 0)) |
|
5301 = (aa + length tp div 2, ba, ca)", simp) |
|
5302 apply(rule tm_append_step_equal, auto) |
|
5303 done |
|
5304 |
|
5305 (*********Begin: mop_up***************) |
|
5306 type_synonym mopup_type = "t_conf \<Rightarrow> nat list \<Rightarrow> nat \<Rightarrow> block list \<Rightarrow> bool" |
|
5307 |
|
5308 fun mopup_stop :: "mopup_type" |
|
5309 where |
|
5310 "mopup_stop (s, l, r) lm n ires= |
|
5311 (\<exists> ln rn. l = Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires \<and> r = <abc_lm_v lm n> @ Bk\<^bsup>rn\<^esup>)" |
|
5312 |
|
5313 fun mopup_bef_erase_a :: "mopup_type" |
|
5314 where |
|
5315 "mopup_bef_erase_a (s, l, r) lm n ires= |
|
5316 (\<exists> ln m rn. l = Bk \<^bsup>ln\<^esup> @ Bk # Bk # ires \<and> |
|
5317 r = Oc\<^bsup>m \<^esup>@ Bk # <(drop ((s + 1) div 2) lm)> @ Bk\<^bsup>rn\<^esup>)" |
|
5318 |
|
5319 fun mopup_bef_erase_b :: "mopup_type" |
|
5320 where |
|
5321 "mopup_bef_erase_b (s, l, r) lm n ires = |
|
5322 (\<exists> ln m rn. l = Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires \<and> r = Bk # Oc\<^bsup>m\<^esup> @ Bk # |
|
5323 <(drop (s div 2) lm)> @ Bk\<^bsup>rn\<^esup>)" |
|
5324 |
|
5325 |
|
5326 fun mopup_jump_over1 :: "mopup_type" |
|
5327 where |
|
5328 "mopup_jump_over1 (s, l, r) lm n ires = |
|
5329 (\<exists> ln m1 m2 rn. m1 + m2 = Suc (abc_lm_v lm n) \<and> |
|
5330 l = Oc\<^bsup>m1\<^esup> @ Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires \<and> |
|
5331 (r = Oc\<^bsup>m2\<^esup> @ Bk # <(drop (Suc n) lm)> @ Bk\<^bsup>rn \<^esup>\<or> |
|
5332 (r = Oc\<^bsup>m2\<^esup> \<and> (drop (Suc n) lm) = [])))" |
|
5333 |
|
5334 fun mopup_aft_erase_a :: "mopup_type" |
|
5335 where |
|
5336 "mopup_aft_erase_a (s, l, r) lm n ires = |
|
5337 (\<exists> lnl lnr rn (ml::nat list) m. |
|
5338 m = Suc (abc_lm_v lm n) \<and> l = Bk\<^bsup>lnr \<^esup>@ Oc\<^bsup>m \<^esup>@ Bk\<^bsup>lnl\<^esup> @ Bk # Bk # ires \<and> |
|
5339 (r = <ml> @ Bk\<^bsup>rn\<^esup>))" |
|
5340 |
|
5341 fun mopup_aft_erase_b :: "mopup_type" |
|
5342 where |
|
5343 "mopup_aft_erase_b (s, l, r) lm n ires= |
|
5344 (\<exists> lnl lnr rn (ml::nat list) m. |
|
5345 m = Suc (abc_lm_v lm n) \<and> |
|
5346 l = Bk\<^bsup>lnr \<^esup>@ Oc\<^bsup>m \<^esup>@ Bk\<^bsup>lnl\<^esup> @ Bk # Bk # ires \<and> |
|
5347 (r = Bk # <ml> @ Bk\<^bsup>rn \<^esup>\<or> |
|
5348 r = Bk # Bk # <ml> @ Bk\<^bsup>rn\<^esup>))" |
|
5349 |
|
5350 fun mopup_aft_erase_c :: "mopup_type" |
|
5351 where |
|
5352 "mopup_aft_erase_c (s, l, r) lm n ires = |
|
5353 (\<exists> lnl lnr rn (ml::nat list) m. |
|
5354 m = Suc (abc_lm_v lm n) \<and> |
|
5355 l = Bk\<^bsup>lnr \<^esup>@ Oc\<^bsup>m \<^esup>@ Bk\<^bsup>lnl\<^esup> @ Bk # Bk # ires \<and> |
|
5356 (r = <ml> @ Bk\<^bsup>rn \<^esup>\<or> r = Bk # <ml> @ Bk\<^bsup>rn\<^esup>))" |
|
5357 |
|
5358 fun mopup_left_moving :: "mopup_type" |
|
5359 where |
|
5360 "mopup_left_moving (s, l, r) lm n ires = |
|
5361 (\<exists> lnl lnr rn m. |
|
5362 m = Suc (abc_lm_v lm n) \<and> |
|
5363 ((l = Bk\<^bsup>lnr \<^esup>@ Oc\<^bsup>m \<^esup>@ Bk\<^bsup>lnl\<^esup> @ Bk # Bk # ires \<and> r = Bk\<^bsup>rn\<^esup>) \<or> |
|
5364 (l = Oc\<^bsup>m - 1\<^esup> @ Bk\<^bsup>lnl\<^esup> @ Bk # Bk # ires \<and> r = Oc # Bk\<^bsup>rn\<^esup>)))" |
|
5365 |
|
5366 fun mopup_jump_over2 :: "mopup_type" |
|
5367 where |
|
5368 "mopup_jump_over2 (s, l, r) lm n ires = |
|
5369 (\<exists> ln rn m1 m2. |
|
5370 m1 + m2 = Suc (abc_lm_v lm n) |
|
5371 \<and> r \<noteq> [] |
|
5372 \<and> (hd r = Oc \<longrightarrow> (l = Oc\<^bsup>m1\<^esup> @ Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires \<and> r = Oc\<^bsup>m2\<^esup> @ Bk\<^bsup>rn\<^esup>)) |
|
5373 \<and> (hd r = Bk \<longrightarrow> (l = Bk\<^bsup>ln\<^esup> @ Bk # ires \<and> r = Bk # Oc\<^bsup>m1 + m2\<^esup> @ Bk\<^bsup>rn\<^esup>)))" |
|
5374 |
|
5375 |
|
5376 fun mopup_inv :: "mopup_type" |
|
5377 where |
|
5378 "mopup_inv (s, l, r) lm n ires = |
|
5379 (if s = 0 then mopup_stop (s, l, r) lm n ires |
|
5380 else if s \<le> 2*n then |
|
5381 if s mod 2 = 1 then mopup_bef_erase_a (s, l, r) lm n ires |
|
5382 else mopup_bef_erase_b (s, l, r) lm n ires |
|
5383 else if s = 2*n + 1 then |
|
5384 mopup_jump_over1 (s, l, r) lm n ires |
|
5385 else if s = 2*n + 2 then mopup_aft_erase_a (s, l, r) lm n ires |
|
5386 else if s = 2*n + 3 then mopup_aft_erase_b (s, l, r) lm n ires |
|
5387 else if s = 2*n + 4 then mopup_aft_erase_c (s, l, r) lm n ires |
|
5388 else if s = 2*n + 5 then mopup_left_moving (s, l, r) lm n ires |
|
5389 else if s = 2*n + 6 then mopup_jump_over2 (s, l, r) lm n ires |
|
5390 else False)" |
|
5391 |
|
5392 declare |
|
5393 mopup_jump_over2.simps[simp del] mopup_left_moving.simps[simp del] |
|
5394 mopup_aft_erase_c.simps[simp del] mopup_aft_erase_b.simps[simp del] |
|
5395 mopup_aft_erase_a.simps[simp del] mopup_jump_over1.simps[simp del] |
|
5396 mopup_bef_erase_a.simps[simp del] mopup_bef_erase_b.simps[simp del] |
|
5397 mopup_stop.simps[simp del] |
|
5398 |
|
5399 lemma mopup_fetch_0[simp]: |
|
5400 "(fetch (mop_bef n @ tshift mp_up (2 * n)) 0 b) = (Nop, 0)" |
|
5401 by(simp add: fetch.simps) |
|
5402 |
|
5403 lemma mop_bef_length[simp]: "length (mop_bef n) = 4 * n" |
|
5404 apply(induct n, simp add: mop_bef.simps, simp add: mop_bef.simps) |
|
5405 done |
|
5406 |
|
5407 thm findnth_nth |
|
5408 lemma mop_bef_nth: |
|
5409 "\<lbrakk>q < n; x < 4\<rbrakk> \<Longrightarrow> mop_bef n ! (4 * q + x) = |
|
5410 mop_bef (Suc q) ! ((4 * q) + x)" |
|
5411 apply(induct n, simp) |
|
5412 apply(case_tac "q < n", simp add: mop_bef.simps, auto) |
|
5413 apply(simp add: nth_append) |
|
5414 apply(subgoal_tac "q = n", simp) |
|
5415 apply(arith) |
|
5416 done |
|
5417 |
|
5418 lemma fetch_bef_erase_a_o[simp]: |
|
5419 "\<lbrakk>0 < s; s \<le> 2 * n; s mod 2 = Suc 0\<rbrakk> |
|
5420 \<Longrightarrow> (fetch (mop_bef n @ tshift mp_up (2 * n)) s Oc) = (W0, s + 1)" |
|
5421 apply(subgoal_tac "\<exists> q. s = 2*q + 1", auto) |
|
5422 apply(subgoal_tac "length (mop_bef n) = 4*n") |
|
5423 apply(auto simp: fetch.simps nth_of.simps nth_append) |
|
5424 apply(subgoal_tac "mop_bef n ! (4 * q + 1) = |
|
5425 mop_bef (Suc q) ! ((4 * q) + 1)", |
|
5426 simp add: mop_bef.simps nth_append) |
|
5427 apply(rule mop_bef_nth, auto) |
|
5428 done |
|
5429 |
|
5430 lemma fetch_bef_erase_a_b[simp]: |
|
5431 "\<lbrakk>n < length lm; 0 < s; s \<le> 2 * n; s mod 2 = Suc 0\<rbrakk> |
|
5432 \<Longrightarrow> (fetch (mop_bef n @ tshift mp_up (2 * n)) s Bk) = (R, s + 2)" |
|
5433 apply(subgoal_tac "\<exists> q. s = 2*q + 1", auto) |
|
5434 apply(subgoal_tac "length (mop_bef n) = 4*n") |
|
5435 apply(auto simp: fetch.simps nth_of.simps nth_append) |
|
5436 apply(subgoal_tac "mop_bef n ! (4 * q + 0) = |
|
5437 mop_bef (Suc q) ! ((4 * q + 0))", |
|
5438 simp add: mop_bef.simps nth_append) |
|
5439 apply(rule mop_bef_nth, auto) |
|
5440 done |
|
5441 |
|
5442 lemma fetch_bef_erase_b_b: |
|
5443 "\<lbrakk>n < length lm; 0 < s; s \<le> 2 * n; s mod 2 = 0\<rbrakk> \<Longrightarrow> |
|
5444 (fetch (mop_bef n @ tshift mp_up (2 * n)) s Bk) = (R, s - 1)" |
|
5445 apply(subgoal_tac "\<exists> q. s = 2 * q", auto) |
|
5446 apply(case_tac qa, simp, simp) |
|
5447 apply(auto simp: fetch.simps nth_of.simps nth_append) |
|
5448 apply(subgoal_tac "mop_bef n ! (4 * nat + 2) = |
|
5449 mop_bef (Suc nat) ! ((4 * nat) + 2)", |
|
5450 simp add: mop_bef.simps nth_append) |
|
5451 apply(rule mop_bef_nth, auto) |
|
5452 done |
|
5453 |
|
5454 lemma fetch_jump_over1_o: |
|
5455 "fetch (mop_bef n @ tshift mp_up (2 * n)) (Suc (2 * n)) Oc |
|
5456 = (R, Suc (2 * n))" |
|
5457 apply(subgoal_tac "length (mop_bef n) = 4 * n") |
|
5458 apply(auto simp: fetch.simps nth_of.simps mp_up_def nth_append |
|
5459 tshift.simps) |
|
5460 done |
|
5461 |
|
5462 lemma fetch_jump_over1_b: |
|
5463 "fetch (mop_bef n @ tshift mp_up (2 * n)) (Suc (2 * n)) Bk |
|
5464 = (R, Suc (Suc (2 * n)))" |
|
5465 apply(subgoal_tac "length (mop_bef n) = 4 * n") |
|
5466 apply(auto simp: fetch.simps nth_of.simps mp_up_def |
|
5467 nth_append tshift.simps) |
|
5468 done |
|
5469 |
|
5470 lemma fetch_aft_erase_a_o: |
|
5471 "fetch (mop_bef n @ tshift mp_up (2 * n)) (Suc (Suc (2 * n))) Oc |
|
5472 = (W0, Suc (2 * n + 2))" |
|
5473 apply(subgoal_tac "length (mop_bef n) = 4 * n") |
|
5474 apply(auto simp: fetch.simps nth_of.simps mp_up_def |
|
5475 nth_append tshift.simps) |
|
5476 done |
|
5477 |
|
5478 lemma fetch_aft_erase_a_b: |
|
5479 "fetch (mop_bef n @ tshift mp_up (2 * n)) (Suc (Suc (2 * n))) Bk |
|
5480 = (L, Suc (2 * n + 4))" |
|
5481 apply(subgoal_tac "length (mop_bef n) = 4 * n") |
|
5482 apply(auto simp: fetch.simps nth_of.simps mp_up_def |
|
5483 nth_append tshift.simps) |
|
5484 done |
|
5485 |
|
5486 lemma fetch_aft_erase_b_b: |
|
5487 "fetch (mop_bef n @ tshift mp_up (2 * n)) (2*n + 3) Bk |
|
5488 = (R, Suc (2 * n + 3))" |
|
5489 apply(subgoal_tac "length (mop_bef n) = 4 * n") |
|
5490 apply(subgoal_tac "2*n + 3 = Suc (2*n + 2)", simp only: fetch.simps) |
|
5491 apply(auto simp: nth_of.simps mp_up_def nth_append tshift.simps) |
|
5492 done |
|
5493 |
|
5494 lemma fetch_aft_erase_c_o: |
|
5495 "fetch (mop_bef n @ tshift mp_up (2 * n)) (2 * n + 4) Oc |
|
5496 = (W0, Suc (2 * n + 2))" |
|
5497 apply(subgoal_tac "length (mop_bef n) = 4 * n") |
|
5498 apply(subgoal_tac "2*n + 4 = Suc (2*n + 3)", simp only: fetch.simps) |
|
5499 apply(auto simp: nth_of.simps mp_up_def nth_append tshift.simps) |
|
5500 done |
|
5501 |
|
5502 lemma fetch_aft_erase_c_b: |
|
5503 "fetch (mop_bef n @ tshift mp_up (2 * n)) (2 * n + 4) Bk |
|
5504 = (R, Suc (2 * n + 1))" |
|
5505 apply(subgoal_tac "length (mop_bef n) = 4 * n") |
|
5506 apply(subgoal_tac "2*n + 4 = Suc (2*n + 3)", simp only: fetch.simps) |
|
5507 apply(auto simp: nth_of.simps mp_up_def nth_append tshift.simps) |
|
5508 done |
|
5509 |
|
5510 lemma fetch_left_moving_o: |
|
5511 "(fetch (mop_bef n @ tshift mp_up (2 * n)) (2 * n + 5) Oc) |
|
5512 = (L, 2*n + 6)" |
|
5513 apply(subgoal_tac "length (mop_bef n) = 4 * n") |
|
5514 apply(subgoal_tac "2*n + 5 = Suc (2*n + 4)", simp only: fetch.simps) |
|
5515 apply(auto simp: nth_of.simps mp_up_def nth_append tshift.simps) |
|
5516 done |
|
5517 |
|
5518 lemma fetch_left_moving_b: |
|
5519 "(fetch (mop_bef n @ tshift mp_up (2 * n)) (2 * n + 5) Bk) |
|
5520 = (L, 2*n + 5)" |
|
5521 apply(subgoal_tac "length (mop_bef n) = 4 * n") |
|
5522 apply(subgoal_tac "2*n + 5 = Suc (2*n + 4)", simp only: fetch.simps) |
|
5523 apply(auto simp: nth_of.simps mp_up_def nth_append tshift.simps) |
|
5524 done |
|
5525 |
|
5526 lemma fetch_jump_over2_b: |
|
5527 "(fetch (mop_bef n @ tshift mp_up (2 * n)) (2 * n + 6) Bk) |
|
5528 = (R, 0)" |
|
5529 apply(subgoal_tac "length (mop_bef n) = 4 * n") |
|
5530 apply(subgoal_tac "2*n + 6 = Suc (2*n + 5)", simp only: fetch.simps) |
|
5531 apply(auto simp: nth_of.simps mp_up_def nth_append tshift.simps) |
|
5532 done |
|
5533 |
|
5534 lemma fetch_jump_over2_o: |
|
5535 "(fetch (mop_bef n @ tshift mp_up (2 * n)) (2 * n + 6) Oc) |
|
5536 = (L, 2*n + 6)" |
|
5537 apply(subgoal_tac "length (mop_bef n) = 4 * n") |
|
5538 apply(subgoal_tac "2*n + 6 = Suc (2*n + 5)", simp only: fetch.simps) |
|
5539 apply(auto simp: nth_of.simps mp_up_def nth_append tshift.simps) |
|
5540 done |
|
5541 |
|
5542 lemmas mopupfetchs = |
|
5543 fetch_bef_erase_a_o fetch_bef_erase_a_b fetch_bef_erase_b_b |
|
5544 fetch_jump_over1_o fetch_jump_over1_b fetch_aft_erase_a_o |
|
5545 fetch_aft_erase_a_b fetch_aft_erase_b_b fetch_aft_erase_c_o |
|
5546 fetch_aft_erase_c_b fetch_left_moving_o fetch_left_moving_b |
|
5547 fetch_jump_over2_b fetch_jump_over2_o |
|
5548 |
|
5549 lemma [simp]: |
|
5550 "\<lbrakk>n < length lm; 0 < s; s mod 2 = Suc 0; |
|
5551 mopup_bef_erase_a (s, l, Oc # xs) lm n ires; |
|
5552 Suc s \<le> 2 * n\<rbrakk> \<Longrightarrow> |
|
5553 mopup_bef_erase_b (Suc s, l, Bk # xs) lm n ires" |
|
5554 apply(auto simp: mopup_bef_erase_a.simps mopup_bef_erase_b.simps ) |
|
5555 apply(rule_tac x = "m - 1" in exI, rule_tac x = rn in exI) |
|
5556 apply(case_tac m, simp, simp) |
|
5557 done |
|
5558 |
|
5559 lemma mopup_false1: |
|
5560 "\<lbrakk>0 < s; s \<le> 2 * n; s mod 2 = Suc 0; \<not> Suc s \<le> 2 * n\<rbrakk> |
|
5561 \<Longrightarrow> RR" |
|
5562 apply(arith) |
|
5563 done |
|
5564 |
|
5565 lemma [simp]: |
|
5566 "\<lbrakk>n < length lm; 0 < s; s \<le> 2 * n; s mod 2 = Suc 0; |
|
5567 mopup_bef_erase_a (s, l, Oc # xs) lm n ires; r = Oc # xs\<rbrakk> |
|
5568 \<Longrightarrow> (Suc s \<le> 2 * n \<longrightarrow> mopup_bef_erase_b (Suc s, l, Bk # xs) lm n ires) \<and> |
|
5569 (\<not> Suc s \<le> 2 * n \<longrightarrow> mopup_jump_over1 (Suc s, l, Bk # xs) lm n ires) " |
|
5570 apply(auto elim: mopup_false1) |
|
5571 done |
|
5572 |
|
5573 lemma drop_abc_lm_v_simp[simp]: |
|
5574 "n < length lm \<Longrightarrow> drop n lm = abc_lm_v lm n # drop (Suc n) lm" |
|
5575 apply(auto simp: abc_lm_v.simps) |
|
5576 apply(drule drop_Suc_conv_tl, simp) |
|
5577 done |
|
5578 lemma [simp]: "(\<exists>rna. Bk\<^bsup>rn\<^esup> = Bk # Bk\<^bsup>rna\<^esup>) \<or> Bk\<^bsup>rn\<^esup> = []" |
|
5579 apply(case_tac rn, simp, auto) |
|
5580 done |
|
5581 |
|
5582 lemma [simp]: "\<exists>lna. Bk # Bk\<^bsup>ln\<^esup> = Bk\<^bsup>lna\<^esup>" |
|
5583 apply(rule_tac x = "Suc ln" in exI, auto) |
|
5584 done |
|
5585 |
|
5586 lemma mopup_bef_erase_a_2_jump_over[simp]: |
|
5587 "\<lbrakk>n < length lm; 0 < s; s mod 2 = Suc 0; |
|
5588 mopup_bef_erase_a (s, l, Bk # xs) lm n ires; Suc s = 2 * n\<rbrakk> |
|
5589 \<Longrightarrow> mopup_jump_over1 (Suc (2 * n), Bk # l, xs) lm n ires" |
|
5590 apply(auto simp: mopup_bef_erase_a.simps mopup_jump_over1.simps) |
|
5591 apply(case_tac m, simp) |
|
5592 apply(rule_tac x = "Suc ln" in exI, rule_tac x = 0 in exI, |
|
5593 simp add: tape_of_nl_abv) |
|
5594 apply(case_tac "drop (Suc n) lm", auto simp: tape_of_nat_list.simps ) |
|
5595 done |
|
5596 |
|
5597 lemma Suc_Suc_div: "\<lbrakk>0 < s; s mod 2 = Suc 0; Suc (Suc s) \<le> 2 * n\<rbrakk> |
|
5598 \<Longrightarrow> (Suc (Suc (s div 2))) \<le> n" |
|
5599 apply(arith) |
|
5600 done |
|
5601 |
|
5602 lemma mopup_bef_erase_a_2_a[simp]: |
|
5603 "\<lbrakk>n < length lm; 0 < s; s mod 2 = Suc 0; |
|
5604 mopup_bef_erase_a (s, l, Bk # xs) lm n ires; |
|
5605 Suc (Suc s) \<le> 2 * n\<rbrakk> \<Longrightarrow> |
|
5606 mopup_bef_erase_a (Suc (Suc s), Bk # l, xs) lm n ires" |
|
5607 apply(auto simp: mopup_bef_erase_a.simps ) |
|
5608 apply(subgoal_tac "drop (Suc (Suc (s div 2))) lm \<noteq> []") |
|
5609 apply(case_tac m, simp) |
|
5610 apply(rule_tac x = "Suc (abc_lm_v lm (Suc (s div 2)))" in exI, |
|
5611 rule_tac x = rn in exI, simp, simp) |
|
5612 apply(subgoal_tac "(Suc (Suc (s div 2))) \<le> n", simp, |
|
5613 rule_tac Suc_Suc_div, auto) |
|
5614 done |
|
5615 |
|
5616 lemma mopup_false2: |
|
5617 "\<lbrakk>n < length lm; 0 < s; s \<le> 2 * n; |
|
5618 s mod 2 = Suc 0; Suc s \<noteq> 2 * n; |
|
5619 \<not> Suc (Suc s) \<le> 2 * n\<rbrakk> \<Longrightarrow> RR" |
|
5620 apply(arith) |
|
5621 done |
|
5622 |
|
5623 lemma [simp]: |
|
5624 "\<lbrakk>n < length lm; 0 < s; s \<le> 2 * n; |
|
5625 s mod 2 = Suc 0; |
|
5626 mopup_bef_erase_a (s, l, Bk # xs) lm n ires; |
|
5627 r = Bk # xs\<rbrakk> |
|
5628 \<Longrightarrow> (Suc s = 2 * n \<longrightarrow> |
|
5629 mopup_jump_over1 (Suc (2 * n), Bk # l, xs) lm n ires) \<and> |
|
5630 (Suc s \<noteq> 2 * n \<longrightarrow> |
|
5631 (Suc (Suc s) \<le> 2 * n \<longrightarrow> |
|
5632 mopup_bef_erase_a (Suc (Suc s), Bk # l, xs) lm n ires) \<and> |
|
5633 (\<not> Suc (Suc s) \<le> 2 * n \<longrightarrow> |
|
5634 mopup_aft_erase_a (Suc (Suc s), Bk # l, xs) lm n ires))" |
|
5635 apply(auto elim: mopup_false2) |
|
5636 done |
|
5637 |
|
5638 lemma [simp]: "mopup_bef_erase_a (s, l, []) lm n ires \<Longrightarrow> |
|
5639 mopup_bef_erase_a (s, l, [Bk]) lm n ires" |
|
5640 apply(auto simp: mopup_bef_erase_a.simps) |
|
5641 done |
|
5642 |
|
5643 lemma [simp]: |
|
5644 "\<lbrakk>n < length lm; 0 < s; s \<le> 2 * n; s mod 2 = Suc 0; |
|
5645 mopup_bef_erase_a (s, l, []) lm n ires; r = []\<rbrakk> |
|
5646 \<Longrightarrow> (Suc s = 2 * n \<longrightarrow> |
|
5647 mopup_jump_over1 (Suc (2 * n), Bk # l, []) lm n ires) \<and> |
|
5648 (Suc s \<noteq> 2 * n \<longrightarrow> |
|
5649 (Suc (Suc s) \<le> 2 * n \<longrightarrow> |
|
5650 mopup_bef_erase_a (Suc (Suc s), Bk # l, []) lm n ires) \<and> |
|
5651 (\<not> Suc (Suc s) \<le> 2 * n \<longrightarrow> |
|
5652 mopup_aft_erase_a (Suc (Suc s), Bk # l, []) lm n ires))" |
|
5653 apply(auto) |
|
5654 done |
|
5655 |
|
5656 lemma "mopup_bef_erase_b (s, l, Oc # xs) lm n ires \<Longrightarrow> l \<noteq> []" |
|
5657 apply(auto simp: mopup_bef_erase_b.simps) |
|
5658 done |
|
5659 |
|
5660 lemma [simp]: "mopup_bef_erase_b (s, l, Oc # xs) lm n ires = False" |
|
5661 apply(auto simp: mopup_bef_erase_b.simps ) |
|
5662 done |
|
5663 |
|
5664 lemma [simp]: "\<lbrakk>0 < s; s \<le> 2 *n; s mod 2 \<noteq> Suc 0\<rbrakk> \<Longrightarrow> |
|
5665 (s - Suc 0) mod 2 = Suc 0" |
|
5666 apply(arith) |
|
5667 done |
|
5668 |
|
5669 lemma [simp]: "\<lbrakk>0 < s; s \<le> 2 *n; s mod 2 \<noteq> Suc 0\<rbrakk> \<Longrightarrow> |
|
5670 s - Suc 0 \<le> 2 * n" |
|
5671 apply(simp) |
|
5672 done |
|
5673 |
|
5674 lemma [simp]: "\<lbrakk>0 < s; s \<le> 2 *n; s mod 2 \<noteq> Suc 0\<rbrakk> \<Longrightarrow> \<not> s \<le> Suc 0" |
|
5675 apply(arith) |
|
5676 done |
|
5677 |
|
5678 lemma [simp]: "\<lbrakk>n < length lm; 0 < s; s \<le> 2 * n; |
|
5679 s mod 2 \<noteq> Suc 0; |
|
5680 mopup_bef_erase_b (s, l, Bk # xs) lm n ires; r = Bk # xs\<rbrakk> |
|
5681 \<Longrightarrow> mopup_bef_erase_a (s - Suc 0, Bk # l, xs) lm n ires" |
|
5682 apply(auto simp: mopup_bef_erase_b.simps mopup_bef_erase_a.simps) |
|
5683 done |
|
5684 |
|
5685 lemma [simp]: "\<lbrakk>mopup_bef_erase_b (s, l, []) lm n ires\<rbrakk> \<Longrightarrow> |
|
5686 mopup_bef_erase_a (s - Suc 0, Bk # l, []) lm n ires" |
|
5687 apply(auto simp: mopup_bef_erase_b.simps mopup_bef_erase_a.simps) |
|
5688 done |
|
5689 |
|
5690 lemma [simp]: |
|
5691 "\<lbrakk>n < length lm; |
|
5692 mopup_jump_over1 (Suc (2 * n), l, Oc # xs) lm n ires; |
|
5693 r = Oc # xs\<rbrakk> |
|
5694 \<Longrightarrow> mopup_jump_over1 (Suc (2 * n), Oc # l, xs) lm n ires" |
|
5695 apply(auto simp: mopup_jump_over1.simps) |
|
5696 apply(rule_tac x = ln in exI, rule_tac x = "Suc m1" in exI, |
|
5697 rule_tac x = "m2 - 1" in exI) |
|
5698 apply(case_tac "m2", simp, simp, rule_tac x = rn in exI, simp) |
|
5699 apply(rule_tac x = ln in exI, rule_tac x = "Suc m1" in exI, |
|
5700 rule_tac x = "m2 - 1" in exI) |
|
5701 apply(case_tac m2, simp, simp) |
|
5702 done |
|
5703 |
|
5704 lemma mopup_jump_over1_2_aft_erase_a[simp]: |
|
5705 "\<lbrakk>n < length lm; mopup_jump_over1 (Suc (2 * n), l, Bk # xs) lm n ires\<rbrakk> |
|
5706 \<Longrightarrow> mopup_aft_erase_a (Suc (Suc (2 * n)), Bk # l, xs) lm n ires" |
|
5707 apply(simp only: mopup_jump_over1.simps mopup_aft_erase_a.simps) |
|
5708 apply(erule_tac exE)+ |
|
5709 apply(rule_tac x = ln in exI, rule_tac x = "Suc 0" in exI) |
|
5710 apply(case_tac m2, simp) |
|
5711 apply(rule_tac x = rn in exI, rule_tac x = "drop (Suc n) lm" in exI, |
|
5712 simp) |
|
5713 apply(simp) |
|
5714 done |
|
5715 |
|
5716 lemma [simp]: |
|
5717 "\<lbrakk>n < length lm; mopup_jump_over1 (Suc (2 * n), l, []) lm n ires\<rbrakk> \<Longrightarrow> |
|
5718 mopup_aft_erase_a (Suc (Suc (2 * n)), Bk # l, []) lm n ires" |
|
5719 apply(rule mopup_jump_over1_2_aft_erase_a, simp) |
|
5720 apply(auto simp: mopup_jump_over1.simps) |
|
5721 apply(rule_tac x = ln in exI, rule_tac x = m1 in exI, |
|
5722 rule_tac x = m2 in exI, simp add: ) |
|
5723 apply(rule_tac x = 0 in exI, auto) |
|
5724 done |
|
5725 |
|
5726 lemma [simp]: |
|
5727 "\<lbrakk>n < length lm; |
|
5728 mopup_aft_erase_a (Suc (Suc (2 * n)), l, Oc # xs) lm n ires\<rbrakk> |
|
5729 \<Longrightarrow> mopup_aft_erase_b (Suc (Suc (Suc (2 * n))), l, Bk # xs) lm n ires" |
|
5730 apply(auto simp: mopup_aft_erase_a.simps mopup_aft_erase_b.simps ) |
|
5731 apply(case_tac ml, simp, case_tac rn, simp, simp) |
|
5732 apply(case_tac list, auto simp: tape_of_nl_abv |
|
5733 tape_of_nat_list.simps ) |
|
5734 apply(case_tac a, simp, rule_tac x = rn in exI, |
|
5735 rule_tac x = "[]" in exI, |
|
5736 simp add: tape_of_nat_list.simps, simp) |
|
5737 apply(rule_tac x = rn in exI, rule_tac x = "[nat]" in exI, |
|
5738 simp add: tape_of_nat_list.simps ) |
|
5739 apply(case_tac a, simp, rule_tac x = rn in exI, |
|
5740 rule_tac x = "aa # lista" in exI, simp, simp) |
|
5741 apply(rule_tac x = rn in exI, rule_tac x = "nat # aa # lista" in exI, |
|
5742 simp add: tape_of_nat_list.simps ) |
|
5743 done |
|
5744 |
|
5745 lemma [simp]: |
|
5746 "mopup_aft_erase_a (Suc (Suc (2 * n)), l, Bk # xs) lm n ires \<Longrightarrow> l \<noteq> []" |
|
5747 apply(auto simp: mopup_aft_erase_a.simps) |
|
5748 done |
|
5749 |
|
5750 lemma [simp]: |
|
5751 "\<lbrakk>n < length lm; |
|
5752 mopup_aft_erase_a (Suc (Suc (2 * n)), l, Bk # xs) lm n ires\<rbrakk> |
|
5753 \<Longrightarrow> mopup_left_moving (5 + 2 * n, tl l, hd l # Bk # xs) lm n ires" |
|
5754 apply(simp only: mopup_aft_erase_a.simps mopup_left_moving.simps) |
|
5755 apply(erule exE)+ |
|
5756 apply(case_tac lnr, simp) |
|
5757 apply(rule_tac x = lnl in exI, simp, rule_tac x = rn in exI, simp) |
|
5758 apply(subgoal_tac "ml = []", simp) |
|
5759 apply(rule_tac xs = xs and rn = rn in BkCons_nil, simp, auto) |
|
5760 apply(subgoal_tac "ml = []", auto) |
|
5761 apply(rule_tac xs = xs and rn = rn in BkCons_nil, simp) |
|
5762 done |
|
5763 |
|
5764 lemma [simp]: |
|
5765 "mopup_aft_erase_a (Suc (Suc (2 * n)), l, []) lm n ires \<Longrightarrow> l \<noteq> []" |
|
5766 apply(simp only: mopup_aft_erase_a.simps) |
|
5767 apply(erule exE)+ |
|
5768 apply(auto) |
|
5769 done |
|
5770 |
|
5771 lemma [simp]: |
|
5772 "\<lbrakk>n < length lm; mopup_aft_erase_a (Suc (Suc (2 * n)), l, []) lm n ires\<rbrakk> |
|
5773 \<Longrightarrow> mopup_left_moving (5 + 2 * n, tl l, [hd l]) lm n ires" |
|
5774 apply(simp only: mopup_aft_erase_a.simps mopup_left_moving.simps) |
|
5775 apply(erule exE)+ |
|
5776 apply(subgoal_tac "ml = [] \<and> rn = 0", erule conjE, erule conjE, simp) |
|
5777 apply(case_tac lnr, simp, rule_tac x = lnl in exI, simp, |
|
5778 rule_tac x = 0 in exI, simp) |
|
5779 apply(rule_tac x = lnl in exI, rule_tac x = nat in exI, |
|
5780 rule_tac x = "Suc 0" in exI, simp) |
|
5781 apply(case_tac ml, simp, case_tac rn, simp, simp) |
|
5782 apply(case_tac list, auto simp: tape_of_nl_abv tape_of_nat_list.simps) |
|
5783 done |
|
5784 |
|
5785 lemma [simp]: "mopup_aft_erase_b (2 * n + 3, l, Oc # xs) lm n ires = False" |
|
5786 apply(auto simp: mopup_aft_erase_b.simps ) |
|
5787 done |
|
5788 |
|
5789 lemma [simp]: |
|
5790 "\<lbrakk>n < length lm; |
|
5791 mopup_aft_erase_c (2 * n + 4, l, Oc # xs) lm n ires\<rbrakk> |
|
5792 \<Longrightarrow> mopup_aft_erase_b (Suc (Suc (Suc (2 * n))), l, Bk # xs) lm n ires" |
|
5793 apply(auto simp: mopup_aft_erase_c.simps mopup_aft_erase_b.simps ) |
|
5794 apply(case_tac ml, simp, case_tac rn, simp, simp, simp) |
|
5795 apply(case_tac list, auto simp: tape_of_nl_abv |
|
5796 tape_of_nat_list.simps tape_of_nat_abv ) |
|
5797 apply(case_tac a, rule_tac x = rn in exI, |
|
5798 rule_tac x = "[]" in exI, simp add: tape_of_nat_list.simps) |
|
5799 apply(rule_tac x = rn in exI, rule_tac x = "[nat]" in exI, |
|
5800 simp add: tape_of_nat_list.simps ) |
|
5801 apply(case_tac a, simp, rule_tac x = rn in exI, |
|
5802 rule_tac x = "aa # lista" in exI, simp) |
|
5803 apply(rule_tac x = rn in exI, rule_tac x = "nat # aa # lista" in exI, |
|
5804 simp add: tape_of_nat_list.simps ) |
|
5805 done |
|
5806 |
|
5807 lemma mopup_aft_erase_c_aft_erase_a[simp]: |
|
5808 "\<lbrakk>n < length lm; mopup_aft_erase_c (2 * n + 4, l, Bk # xs) lm n ires\<rbrakk> |
|
5809 \<Longrightarrow> mopup_aft_erase_a (Suc (Suc (2 * n)), Bk # l, xs) lm n ires" |
|
5810 apply(simp only: mopup_aft_erase_c.simps mopup_aft_erase_a.simps ) |
|
5811 apply(erule_tac exE)+ |
|
5812 apply(erule conjE, erule conjE, erule disjE) |
|
5813 apply(subgoal_tac "ml = []", simp, case_tac rn, |
|
5814 simp, simp, rule conjI) |
|
5815 apply(rule_tac x = lnl in exI, rule_tac x = "Suc lnr" in exI, simp) |
|
5816 apply(rule_tac x = nat in exI, rule_tac x = "[]" in exI, simp) |
|
5817 apply(rule_tac xs = xs and rn = rn in BkCons_nil, simp, simp, |
|
5818 rule conjI) |
|
5819 apply(rule_tac x = lnl in exI, rule_tac x = "Suc lnr" in exI, simp) |
|
5820 apply(rule_tac x = rn in exI, rule_tac x = "ml" in exI, simp) |
|
5821 done |
|
5822 |
|
5823 lemma [simp]: |
|
5824 "\<lbrakk>n < length lm; mopup_aft_erase_c (2 * n + 4, l, []) lm n ires\<rbrakk> |
|
5825 \<Longrightarrow> mopup_aft_erase_a (Suc (Suc (2 * n)), Bk # l, []) lm n ires" |
|
5826 apply(rule mopup_aft_erase_c_aft_erase_a, simp) |
|
5827 apply(simp only: mopup_aft_erase_c.simps) |
|
5828 apply(erule exE)+ |
|
5829 apply(rule_tac x = lnl in exI, rule_tac x = lnr in exI, simp add: ) |
|
5830 apply(rule_tac x = 0 in exI, rule_tac x = "[]" in exI, simp) |
|
5831 done |
|
5832 |
|
5833 lemma mopup_aft_erase_b_2_aft_erase_c[simp]: |
|
5834 "\<lbrakk>n < length lm; mopup_aft_erase_b (2 * n + 3, l, Bk # xs) lm n ires\<rbrakk> |
|
5835 \<Longrightarrow> mopup_aft_erase_c (4 + 2 * n, Bk # l, xs) lm n ires" |
|
5836 apply(auto simp: mopup_aft_erase_b.simps mopup_aft_erase_c.simps) |
|
5837 apply(rule_tac x = "lnl" in exI, rule_tac x = "Suc lnr" in exI, simp) |
|
5838 apply(rule_tac x = "lnl" in exI, rule_tac x = "Suc lnr" in exI, simp) |
|
5839 done |
|
5840 |
|
5841 lemma [simp]: |
|
5842 "\<lbrakk>n < length lm; mopup_aft_erase_b (2 * n + 3, l, []) lm n ires\<rbrakk> |
|
5843 \<Longrightarrow> mopup_aft_erase_c (4 + 2 * n, Bk # l, []) lm n ires" |
|
5844 apply(rule_tac mopup_aft_erase_b_2_aft_erase_c, simp) |
|
5845 apply(simp add: mopup_aft_erase_b.simps) |
|
5846 done |
|
5847 |
|
5848 lemma [simp]: |
|
5849 "mopup_left_moving (2 * n + 5, l, Oc # xs) lm n ires \<Longrightarrow> l \<noteq> []" |
|
5850 apply(auto simp: mopup_left_moving.simps) |
|
5851 done |
|
5852 |
|
5853 lemma [simp]: |
|
5854 "\<lbrakk>n < length lm; mopup_left_moving (2 * n + 5, l, Oc # xs) lm n ires\<rbrakk> |
|
5855 \<Longrightarrow> mopup_jump_over2 (2 * n + 6, tl l, hd l # Oc # xs) lm n ires" |
|
5856 apply(simp only: mopup_left_moving.simps mopup_jump_over2.simps) |
|
5857 apply(erule_tac exE)+ |
|
5858 apply(erule conjE, erule disjE, erule conjE) |
|
5859 apply(case_tac rn, simp, simp add: ) |
|
5860 apply(case_tac "hd l", simp add: ) |
|
5861 apply(case_tac "abc_lm_v lm n", simp) |
|
5862 apply(rule_tac x = "lnl" in exI, rule_tac x = rn in exI, |
|
5863 rule_tac x = "Suc 0" in exI, rule_tac x = 0 in exI) |
|
5864 apply(case_tac lnl, simp, simp, simp add: exp_ind[THEN sym], simp) |
|
5865 apply(case_tac "abc_lm_v lm n", simp) |
|
5866 apply(case_tac lnl, simp, simp) |
|
5867 apply(rule_tac x = lnl in exI, rule_tac x = rn in exI) |
|
5868 apply(rule_tac x = nat in exI, rule_tac x = "Suc (Suc 0)" in exI, simp) |
|
5869 done |
|
5870 |
|
5871 lemma [simp]: "mopup_left_moving (2 * n + 5, l, xs) lm n ires \<Longrightarrow> l \<noteq> []" |
|
5872 apply(auto simp: mopup_left_moving.simps) |
|
5873 done |
|
5874 |
|
5875 lemma [simp]: |
|
5876 "\<lbrakk>n < length lm; mopup_left_moving (2 * n + 5, l, Bk # xs) lm n ires\<rbrakk> |
|
5877 \<Longrightarrow> mopup_left_moving (2 * n + 5, tl l, hd l # Bk # xs) lm n ires" |
|
5878 apply(simp only: mopup_left_moving.simps) |
|
5879 apply(erule exE)+ |
|
5880 apply(case_tac lnr, simp) |
|
5881 apply(rule_tac x = lnl in exI, rule_tac x = 0 in exI, |
|
5882 rule_tac x = rn in exI, simp, simp) |
|
5883 apply(rule_tac x = lnl in exI, rule_tac x = nat in exI, simp) |
|
5884 done |
|
5885 |
|
5886 lemma [simp]: |
|
5887 "\<lbrakk>n < length lm; mopup_left_moving (2 * n + 5, l, []) lm n ires\<rbrakk> |
|
5888 \<Longrightarrow> mopup_left_moving (2 * n + 5, tl l, [hd l]) lm n ires" |
|
5889 apply(simp only: mopup_left_moving.simps) |
|
5890 apply(erule exE)+ |
|
5891 apply(case_tac lnr, simp) |
|
5892 apply(rule_tac x = lnl in exI, rule_tac x = 0 in exI, |
|
5893 rule_tac x = 0 in exI, simp, auto) |
|
5894 done |
|
5895 |
|
5896 lemma [simp]: |
|
5897 "mopup_jump_over2 (2 * n + 6, l, Oc # xs) lm n ires \<Longrightarrow> l \<noteq> []" |
|
5898 apply(auto simp: mopup_jump_over2.simps ) |
|
5899 done |
|
5900 |
|
5901 lemma [intro]: "\<exists>lna. Bk # Bk\<^bsup>ln\<^esup> = Bk\<^bsup>lna\<^esup> @ [Bk]" |
|
5902 apply(simp only: exp_ind[THEN sym], auto) |
|
5903 done |
|
5904 |
|
5905 lemma [simp]: |
|
5906 "\<lbrakk>n < length lm; mopup_jump_over2 (2 * n + 6, l, Oc # xs) lm n ires\<rbrakk> |
|
5907 \<Longrightarrow> mopup_jump_over2 (2 * n + 6, tl l, hd l # Oc # xs) lm n ires" |
|
5908 apply(simp only: mopup_jump_over2.simps) |
|
5909 apply(erule_tac exE)+ |
|
5910 apply(simp add: , erule conjE, erule_tac conjE) |
|
5911 apply(case_tac m1, simp) |
|
5912 apply(rule_tac x = ln in exI, rule_tac x = rn in exI, |
|
5913 rule_tac x = 0 in exI, simp) |
|
5914 apply(case_tac ln, simp, simp, simp only: exp_ind[THEN sym], simp) |
|
5915 apply(rule_tac x = ln in exI, rule_tac x = rn in exI, |
|
5916 rule_tac x = nat in exI, rule_tac x = "Suc m2" in exI, simp) |
|
5917 done |
|
5918 |
|
5919 lemma [simp]: "\<exists>rna. Oc # Oc\<^bsup>a\<^esup> @ Bk\<^bsup>rn\<^esup> = <a> @ Bk\<^bsup>rna\<^esup>" |
|
5920 apply(case_tac a, auto simp: tape_of_nat_abv ) |
|
5921 done |
|
5922 |
|
5923 lemma [simp]: |
|
5924 "\<lbrakk>n < length lm; mopup_jump_over2 (2 * n + 6, l, Bk # xs) lm n ires\<rbrakk> |
|
5925 \<Longrightarrow> mopup_stop (0, Bk # l, xs) lm n ires" |
|
5926 apply(auto simp: mopup_jump_over2.simps mopup_stop.simps) |
|
5927 done |
|
5928 |
|
5929 lemma [simp]: "mopup_jump_over2 (2 * n + 6, l, []) lm n ires = False" |
|
5930 apply(simp only: mopup_jump_over2.simps, simp) |
|
5931 done |
|
5932 |
|
5933 lemma mopup_inv_step: |
|
5934 "\<lbrakk>n < length lm; mopup_inv (s, l, r) lm n ires\<rbrakk> |
|
5935 \<Longrightarrow> mopup_inv (t_step (s, l, r) |
|
5936 ((mop_bef n @ tshift mp_up (2 * n)), 0)) lm n ires" |
|
5937 apply(auto split:if_splits simp add:t_step.simps, |
|
5938 tactic {* ALLGOALS (resolve_tac [@{thm "fetch_intro"}]) *}) |
|
5939 apply(simp_all add: mopupfetchs new_tape.simps) |
|
5940 done |
|
5941 |
|
5942 declare mopup_inv.simps[simp del] |
|
5943 |
|
5944 lemma mopup_inv_steps: |
|
5945 "\<lbrakk>n < length lm; mopup_inv (s, l, r) lm n ires\<rbrakk> \<Longrightarrow> |
|
5946 mopup_inv (t_steps (s, l, r) |
|
5947 ((mop_bef n @ tshift mp_up (2 * n)), 0) stp) lm n ires" |
|
5948 apply(induct stp, simp add: t_steps.simps) |
|
5949 apply(simp add: t_steps_ind) |
|
5950 apply(case_tac "(t_steps (s, l, r) |
|
5951 (mop_bef n @ tshift mp_up (2 * n), 0) stp)", simp) |
|
5952 apply(rule_tac mopup_inv_step, simp, simp) |
|
5953 done |
|
5954 |
|
5955 lemma [simp]: |
|
5956 "\<lbrakk>n < length lm; Suc 0 \<le> n\<rbrakk> \<Longrightarrow> |
|
5957 mopup_bef_erase_a (Suc 0, Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, <lm> @ Bk\<^bsup>rn\<^esup>) lm n ires" |
|
5958 apply(auto simp: mopup_bef_erase_a.simps abc_lm_v.simps) |
|
5959 apply(case_tac lm, simp, case_tac list, simp, simp) |
|
5960 apply(rule_tac x = "Suc a" in exI, rule_tac x = rn in exI, simp) |
|
5961 done |
|
5962 |
|
5963 lemma [simp]: |
|
5964 "lm \<noteq> [] \<Longrightarrow> mopup_jump_over1 (Suc 0, Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires, <lm> @ Bk\<^bsup>rn\<^esup>) lm 0 ires" |
|
5965 apply(auto simp: mopup_jump_over1.simps) |
|
5966 apply(rule_tac x = ln in exI, rule_tac x = 0 in exI, simp add: ) |
|
5967 apply(case_tac lm, simp, simp add: abc_lm_v.simps) |
|
5968 apply(case_tac rn, simp) |
|
5969 apply(case_tac list, rule_tac disjI2, |
|
5970 simp add: tape_of_nl_abv tape_of_nat_list.simps) |
|
5971 apply(rule_tac disjI1, |
|
5972 simp add: tape_of_nl_abv tape_of_nat_list.simps ) |
|
5973 apply(rule_tac disjI1, case_tac list, |
|
5974 simp add: tape_of_nl_abv tape_of_nat_list.simps, |
|
5975 rule_tac x = nat in exI, simp) |
|
5976 apply(simp add: tape_of_nl_abv tape_of_nat_list.simps ) |
|
5977 done |
|
5978 |
|
5979 lemma mopup_init: |
|
5980 "\<lbrakk>n < length lm; crsp_l ly (as, lm) (ac, l, r) ires\<rbrakk> \<Longrightarrow> |
|
5981 mopup_inv (Suc 0, l, r) lm n ires" |
|
5982 apply(auto simp: crsp_l.simps mopup_inv.simps) |
|
5983 apply(case_tac n, simp, auto simp: mopup_bef_erase_a.simps ) |
|
5984 apply(rule_tac x = "Suc (hd lm)" in exI, rule_tac x = rn in exI, simp) |
|
5985 apply(case_tac lm, simp, case_tac list, simp, case_tac lista, simp add: abc_lm_v.simps) |
|
5986 apply(simp add: tape_of_nl_abv tape_of_nat_list.simps abc_lm_v.simps) |
|
5987 apply(simp add: mopup_jump_over1.simps) |
|
5988 apply(rule_tac x = 0 in exI, rule_tac x = 0 in exI, auto) |
|
5989 apply(case_tac [!] n, simp_all) |
|
5990 apply(case_tac [!] lm, simp, case_tac list, simp) |
|
5991 apply(case_tac rn, simp add: tape_of_nl_abv tape_of_nat_list.simps abc_lm_v.simps) |
|
5992 apply(erule_tac x = nat in allE, simp add: tape_of_nl_abv tape_of_nat_list.simps abc_lm_v.simps) |
|
5993 apply(simp add: abc_lm_v.simps, auto) |
|
5994 apply(case_tac list, simp_all add: tape_of_nl_abv tape_of_nat_list.simps abc_lm_v.simps) |
|
5995 apply(erule_tac x = rn in allE, simp_all) |
|
5996 done |
|
5997 |
|
5998 fun abc_mopup_stage1 :: "t_conf \<Rightarrow> nat \<Rightarrow> nat" |
|
5999 where |
|
6000 "abc_mopup_stage1 (s, l, r) n = |
|
6001 (if s > 0 \<and> s \<le> 2*n then 6 |
|
6002 else if s = 2*n + 1 then 4 |
|
6003 else if s \<ge> 2*n + 2 \<and> s \<le> 2*n + 4 then 3 |
|
6004 else if s = 2*n + 5 then 2 |
|
6005 else if s = 2*n + 6 then 1 |
|
6006 else 0)" |
|
6007 |
|
6008 fun abc_mopup_stage2 :: "t_conf \<Rightarrow> nat \<Rightarrow> nat" |
|
6009 where |
|
6010 "abc_mopup_stage2 (s, l, r) n = |
|
6011 (if s > 0 \<and> s \<le> 2*n then length r |
|
6012 else if s = 2*n + 1 then length r |
|
6013 else if s = 2*n + 5 then length l |
|
6014 else if s = 2*n + 6 then length l |
|
6015 else if s \<ge> 2*n + 2 \<and> s \<le> 2*n + 4 then length r |
|
6016 else 0)" |
|
6017 |
|
6018 fun abc_mopup_stage3 :: "t_conf \<Rightarrow> nat \<Rightarrow> nat" |
|
6019 where |
|
6020 "abc_mopup_stage3 (s, l, r) n = |
|
6021 (if s > 0 \<and> s \<le> 2*n then |
|
6022 if hd r = Bk then 0 |
|
6023 else 1 |
|
6024 else if s = 2*n + 2 then 1 |
|
6025 else if s = 2*n + 3 then 0 |
|
6026 else if s = 2*n + 4 then 2 |
|
6027 else 0)" |
|
6028 |
|
6029 fun abc_mopup_measure :: "(t_conf \<times> nat) \<Rightarrow> (nat \<times> nat \<times> nat)" |
|
6030 where |
|
6031 "abc_mopup_measure (c, n) = |
|
6032 (abc_mopup_stage1 c n, abc_mopup_stage2 c n, |
|
6033 abc_mopup_stage3 c n)" |
|
6034 |
|
6035 definition abc_mopup_LE :: |
|
6036 "(((nat \<times> block list \<times> block list) \<times> nat) \<times> |
|
6037 ((nat \<times> block list \<times> block list) \<times> nat)) set" |
|
6038 where |
|
6039 "abc_mopup_LE \<equiv> (inv_image lex_triple abc_mopup_measure)" |
|
6040 |
|
6041 lemma wf_abc_mopup_le[intro]: "wf abc_mopup_LE" |
|
6042 by(auto intro:wf_inv_image wf_lex_triple simp:abc_mopup_LE_def) |
|
6043 |
|
6044 lemma [simp]: "mopup_bef_erase_a (a, aa, []) lm n ires = False" |
|
6045 apply(auto simp: mopup_bef_erase_a.simps) |
|
6046 done |
|
6047 |
|
6048 lemma [simp]: "mopup_bef_erase_b (a, aa, []) lm n ires = False" |
|
6049 apply(auto simp: mopup_bef_erase_b.simps) |
|
6050 done |
|
6051 |
|
6052 lemma [simp]: "mopup_aft_erase_b (2 * n + 3, aa, []) lm n ires = False" |
|
6053 apply(auto simp: mopup_aft_erase_b.simps) |
|
6054 done |
|
6055 |
|
6056 lemma mopup_halt_pre: |
|
6057 "\<lbrakk>n < length lm; mopup_inv (Suc 0, l, r) lm n ires; wf abc_mopup_LE\<rbrakk> |
|
6058 \<Longrightarrow> \<forall>na. \<not> (\<lambda>(s, l, r) n. s = 0) (t_steps (Suc 0, l, r) |
|
6059 (mop_bef n @ tshift mp_up (2 * n), 0) na) n \<longrightarrow> |
|
6060 ((t_steps (Suc 0, l, r) (mop_bef n @ tshift mp_up (2 * n), 0) |
|
6061 (Suc na), n), |
|
6062 t_steps (Suc 0, l, r) (mop_bef n @ tshift mp_up (2 * n), 0) |
|
6063 na, n) \<in> abc_mopup_LE" |
|
6064 apply(rule allI, rule impI, simp add: t_steps_ind) |
|
6065 apply(subgoal_tac "mopup_inv (t_steps (Suc 0, l, r) |
|
6066 (mop_bef n @ tshift mp_up (2 * n), 0) na) lm n ires") |
|
6067 apply(case_tac "(t_steps (Suc 0, l, r) |
|
6068 (mop_bef n @ tshift mp_up (2 * n), 0) na)", simp) |
|
6069 proof - |
|
6070 fix na a b c |
|
6071 assume "n < length lm" "mopup_inv (a, b, c) lm n ires" "0 < a" |
|
6072 thus "((t_step (a, b, c) (mop_bef n @ tshift mp_up (2 * n), 0), n), |
|
6073 (a, b, c), n) \<in> abc_mopup_LE" |
|
6074 apply(auto split:if_splits simp add:t_step.simps mopup_inv.simps, |
|
6075 tactic {* ALLGOALS (resolve_tac [@{thm "fetch_intro"}]) *}) |
|
6076 apply(simp_all add: mopupfetchs new_tape.simps abc_mopup_LE_def |
|
6077 lex_triple_def lex_pair_def ) |
|
6078 done |
|
6079 next |
|
6080 fix na |
|
6081 assume "n < length lm" "mopup_inv (Suc 0, l, r) lm n ires" |
|
6082 thus "mopup_inv (t_steps (Suc 0, l, r) |
|
6083 (mop_bef n @ tshift mp_up (2 * n), 0) na) lm n ires" |
|
6084 apply(rule mopup_inv_steps) |
|
6085 done |
|
6086 qed |
|
6087 |
|
6088 lemma mopup_halt: "\<lbrakk>n < length lm; crsp_l ly (as, lm) (s, l, r) ires\<rbrakk> \<Longrightarrow> |
|
6089 \<exists> stp. (\<lambda> (s, l, r). s = 0) (t_steps (Suc 0, l, r) |
|
6090 ((mop_bef n @ tshift mp_up (2 * n)), 0) stp)" |
|
6091 apply(subgoal_tac "mopup_inv (Suc 0, l, r) lm n ires") |
|
6092 apply(insert wf_abc_mopup_le) |
|
6093 apply(insert halt_lemma[of abc_mopup_LE |
|
6094 "\<lambda> ((s, l, r), n). s = 0" |
|
6095 "\<lambda> stp. (t_steps (Suc 0, l, r) ((mop_bef n @ tshift mp_up (2 * n)) |
|
6096 , 0) stp, n)"], auto) |
|
6097 apply(insert mopup_halt_pre[of n lm l r], simp, erule exE) |
|
6098 apply(rule_tac x = na in exI, case_tac "(t_steps (Suc 0, l, r) |
|
6099 (mop_bef n @ tshift mp_up (2 * n), 0) na)", simp) |
|
6100 apply(rule_tac mopup_init, auto) |
|
6101 done |
|
6102 (***End: mopup stop****) |
|
6103 |
|
6104 lemma mopup_halt_conf_pre: |
|
6105 "\<lbrakk>n < length lm; crsp_l ly (as, lm) (s, l, r) ires\<rbrakk> |
|
6106 \<Longrightarrow> \<exists> na. (\<lambda> (s', l', r'). s' = 0 \<and> mopup_stop (s', l', r') lm n ires) |
|
6107 (t_steps (Suc 0, l, r) |
|
6108 ((mop_bef n @ tshift mp_up (2 * n)), 0) na)" |
|
6109 apply(subgoal_tac "\<exists> stp. (\<lambda> (s, l, r). s = 0) |
|
6110 (t_steps (Suc 0, l, r) ((mop_bef n @ tshift mp_up (2 * n)), 0) stp)", |
|
6111 erule exE) |
|
6112 apply(rule_tac x = stp in exI, |
|
6113 case_tac "(t_steps (Suc 0, l, r) |
|
6114 (mop_bef n @ tshift mp_up (2 * n), 0) stp)", simp) |
|
6115 apply(subgoal_tac " mopup_inv (Suc 0, l, r) lm n ires") |
|
6116 apply(subgoal_tac "mopup_inv (t_steps (Suc 0, l, r) |
|
6117 (mop_bef n @ tshift mp_up (2 * n), 0) stp) lm n ires", simp) |
|
6118 apply(simp only: mopup_inv.simps) |
|
6119 apply(rule_tac mopup_inv_steps, simp, simp) |
|
6120 apply(rule_tac mopup_init, simp, simp) |
|
6121 apply(rule_tac mopup_halt, simp, simp) |
|
6122 done |
|
6123 |
|
6124 lemma mopup_halt_conf: |
|
6125 assumes len: "n < length lm" |
|
6126 and correspond: "crsp_l ly (as, lm) (s, l, r) ires" |
|
6127 shows |
|
6128 "\<exists> na. (\<lambda> (s', l', r'). ((\<exists>ln rn. s' = 0 \<and> l' = Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires |
|
6129 \<and> r' = Oc\<^bsup>Suc (abc_lm_v lm n)\<^esup> @ Bk\<^bsup>rn\<^esup>))) |
|
6130 (t_steps (Suc 0, l, r) |
|
6131 ((mop_bef n @ tshift mp_up (2 * n)), 0) na)" |
|
6132 using len correspond mopup_halt_conf_pre[of n lm ly as s l r ires] |
|
6133 apply(simp add: mopup_stop.simps tape_of_nat_abv tape_of_nat_list.simps) |
|
6134 done |
|
6135 |
|
6136 subsection {* Final results about Abacus machine *} |
|
6137 |
|
6138 lemma mopup_halt_bef: "\<lbrakk>n < length lm; crsp_l ly (as, lm) (s, l, r) ires\<rbrakk> |
|
6139 \<Longrightarrow> \<exists>stp. (\<lambda>(s, l, r). s \<noteq> 0 \<and> ((\<lambda> (s', l', r'). s' = 0) |
|
6140 (t_step (s, l, r) (mop_bef n @ tshift mp_up (2 * n), 0)))) |
|
6141 (t_steps (Suc 0, l, r) (mop_bef n @ tshift mp_up (2 * n), 0) stp)" |
|
6142 apply(insert mopup_halt[of n lm ly as s l r ires], simp, erule_tac exE) |
|
6143 proof - |
|
6144 fix stp |
|
6145 assume "n < length lm" |
|
6146 "crsp_l ly (as, lm) (s, l, r) ires" |
|
6147 "(\<lambda>(s, l, r). s = 0) |
|
6148 (t_steps (Suc 0, l, r) |
|
6149 (mop_bef n @ tshift mp_up (2 * n), 0) stp)" |
|
6150 thus "\<exists>stp. (\<lambda>(s, ab). 0 < s \<and> (\<lambda>(s', l', r'). s' = 0) |
|
6151 (t_step (s, ab) (mop_bef n @ tshift mp_up (2 * n), 0))) |
|
6152 (t_steps (Suc 0, l, r) (mop_bef n @ tshift mp_up (2 * n), 0) stp)" |
|
6153 proof(induct stp, simp add: t_steps.simps, simp) |
|
6154 fix stpa |
|
6155 assume h1: |
|
6156 "(\<lambda>(s, l, r). s = 0) (t_steps (Suc 0, l, r) |
|
6157 (mop_bef n @ tshift mp_up (2 * n), 0) stpa) \<Longrightarrow> |
|
6158 \<exists>stp. (\<lambda>(s, ab). 0 < s \<and> (\<lambda>(s', l', r'). s' = 0) |
|
6159 (t_step (s, ab) (mop_bef n @ tshift mp_up (2 * n), 0))) |
|
6160 (t_steps (Suc 0, l, r) |
|
6161 (mop_bef n @ tshift mp_up (2 * n), 0) stp)" |
|
6162 and h2: |
|
6163 "(\<lambda>(s, l, r). s = 0) (t_steps (Suc 0, l, r) |
|
6164 (mop_bef n @ tshift mp_up (2 * n), 0) (Suc stpa))" |
|
6165 "n < length lm" |
|
6166 "crsp_l ly (as, lm) (s, l, r) ires" |
|
6167 thus "\<exists>stp. (\<lambda>(s, ab). 0 < s \<and> (\<lambda>(s', l', r'). s' = 0) |
|
6168 (t_step (s, ab) (mop_bef n @ tshift mp_up (2 * n), 0))) ( |
|
6169 t_steps (Suc 0, l, r) |
|
6170 (mop_bef n @ tshift mp_up (2 * n), 0) stp)" |
|
6171 apply(case_tac "(\<lambda>(s, l, r). s = 0) (t_steps (Suc 0, l, r) |
|
6172 (mop_bef n @ tshift mp_up (2 * n), 0) stpa)", |
|
6173 simp) |
|
6174 apply(rule_tac x = "stpa" in exI) |
|
6175 apply(case_tac "(t_steps (Suc 0, l, r) |
|
6176 (mop_bef n @ tshift mp_up (2 * n), 0) stpa)", |
|
6177 simp add: t_steps_ind) |
|
6178 done |
|
6179 qed |
|
6180 qed |
|
6181 |
|
6182 lemma tshift_nth_state0: "\<lbrakk>n < length tp; tp ! n = (a, 0)\<rbrakk> |
|
6183 \<Longrightarrow> tshift tp off ! n = (a, 0)" |
|
6184 apply(induct n, case_tac tp, simp) |
|
6185 apply(auto simp: tshift.simps) |
|
6186 done |
|
6187 |
|
6188 lemma shift_length: "length (tshift tp n) = length tp" |
|
6189 apply(auto simp: tshift.simps) |
|
6190 done |
|
6191 |
|
6192 lemma even_Suc_le: "\<lbrakk>y mod 2 = 0; 2 * x < y\<rbrakk> \<Longrightarrow> Suc (2 * x) < y" |
|
6193 by arith |
|
6194 |
|
6195 lemma [simp]: "(4::nat) * n mod 2 = 0" |
|
6196 by arith |
|
6197 |
|
6198 lemma tm_append_fetch_equal: |
|
6199 "\<lbrakk>t_ncorrect (tm_of aprog); s'> 0; |
|
6200 fetch (mop_bef n @ tshift mp_up (2 * n)) s' b = (a, 0)\<rbrakk> |
|
6201 \<Longrightarrow> fetch (tm_of aprog @ tshift (mop_bef n @ tshift mp_up (2 * n)) |
|
6202 (length (tm_of aprog) div 2)) (s' + length (tm_of aprog) div 2) b |
|
6203 = (a, 0)" |
|
6204 apply(case_tac s', simp) |
|
6205 apply(auto simp: fetch.simps nth_of.simps t_ncorrect.simps shift_length nth_append |
|
6206 tshift.simps split: list.splits block.splits split: if_splits) |
|
6207 done |
|
6208 |
|
6209 lemma [simp]: |
|
6210 "\<lbrakk>t_ncorrect (tm_of aprog); |
|
6211 t_step (s', l', r') (mop_bef n @ tshift mp_up (2 * n), 0) = |
|
6212 (0, l'', r''); s' > 0\<rbrakk> |
|
6213 \<Longrightarrow> t_step (s' + length (tm_of aprog) div 2, l', r') |
|
6214 (tm_of aprog @ tshift (mop_bef n @ tshift mp_up (2 * n)) |
|
6215 (length (tm_of aprog) div 2), 0) = (0, l'', r'')" |
|
6216 apply(simp add: t_step.simps) |
|
6217 apply(subgoal_tac |
|
6218 "(fetch (mop_bef n @ tshift mp_up (2 * n)) s' |
|
6219 (case r' of [] \<Rightarrow> Bk | Bk # xs \<Rightarrow> Bk | Oc # xs \<Rightarrow> Oc)) |
|
6220 = (fetch (tm_of aprog @ tshift (mop_bef n @ tshift mp_up (2 * n)) |
|
6221 (length (tm_of aprog) div 2)) (s' + length (tm_of aprog) div 2) |
|
6222 (case r' of [] \<Rightarrow> Bk | Bk # xs \<Rightarrow> Bk | Oc # xs \<Rightarrow> Oc))", simp) |
|
6223 apply(case_tac "(fetch (mop_bef n @ tshift mp_up (2 * n)) s' |
|
6224 (case r' of [] \<Rightarrow> Bk | Bk # xs \<Rightarrow> Bk | Oc # xs \<Rightarrow> Oc))", simp) |
|
6225 apply(drule_tac tm_append_fetch_equal, auto) |
|
6226 done |
|
6227 |
|
6228 lemma [intro]: |
|
6229 "start_of (layout_of aprog) (length aprog) - Suc 0 = |
|
6230 length (tm_of aprog) div 2" |
|
6231 apply(subgoal_tac "abc2t_correct aprog") |
|
6232 apply(insert pre_lheq[of "concat (take (length aprog) |
|
6233 (tms_of aprog))" "length aprog" aprog], simp add: tm_of.simps) |
|
6234 by auto |
|
6235 |
|
6236 lemma tm_append_stop_step: |
|
6237 "\<lbrakk>t_ncorrect (tm_of aprog); |
|
6238 t_ncorrect (mop_bef n @ tshift mp_up (2 * n)); n < length lm; |
|
6239 (t_steps (Suc 0, l, r) (mop_bef n @ tshift mp_up (2 * n), 0) stp) = |
|
6240 (s', l', r'); |
|
6241 s' \<noteq> 0; |
|
6242 t_step (s', l', r') (mop_bef n @ tshift mp_up (2 * n), 0) |
|
6243 = (0, l'', r'')\<rbrakk> |
|
6244 \<Longrightarrow> |
|
6245 (t_steps ((start_of (layout_of aprog) (length aprog), l, r)) |
|
6246 (tm_of aprog @ tshift (mop_bef n @ tshift mp_up (2 * n)) |
|
6247 (start_of (layout_of aprog) (length aprog) - Suc 0), 0) (Suc stp)) |
|
6248 = (0, l'', r'')" |
|
6249 apply(insert tm_append_steps_equal[of "tm_of aprog" |
|
6250 "(mop_bef n @ tshift mp_up (2 * n))" |
|
6251 "(start_of (layout_of aprog) (length aprog) - Suc 0)" |
|
6252 "Suc 0" l r stp], simp) |
|
6253 apply(subgoal_tac "(start_of (layout_of aprog) (length aprog) - Suc 0) |
|
6254 = (length (tm_of aprog) div 2)", simp add: t_steps_ind) |
|
6255 apply(case_tac |
|
6256 "(t_steps (start_of (layout_of aprog) (length aprog), l, r) |
|
6257 (tm_of aprog @ tshift (mop_bef n @ tshift mp_up (2 * n)) |
|
6258 (length (tm_of aprog) div 2), 0) stp)", simp) |
|
6259 apply(subgoal_tac "start_of (layout_of aprog) (length aprog) > 0", |
|
6260 case_tac "start_of (layout_of aprog) (length aprog)", |
|
6261 simp, simp) |
|
6262 apply(rule startof_not0, auto) |
|
6263 done |
|
6264 |
|
6265 lemma start_of_out_range: |
|
6266 "as \<ge> length aprog \<Longrightarrow> |
|
6267 start_of (layout_of aprog) as = |
|
6268 start_of (layout_of aprog) (length aprog)" |
|
6269 apply(induct as, simp) |
|
6270 apply(case_tac "length aprog = Suc as", simp) |
|
6271 apply(simp add: start_of.simps) |
|
6272 done |
|
6273 |
|
6274 lemma [intro]: "t_ncorrect (tm_of aprog)" |
|
6275 apply(simp add: tm_of.simps) |
|
6276 apply(insert tms_mod2[of "length aprog" aprog], |
|
6277 simp add: t_ncorrect.simps) |
|
6278 done |
|
6279 |
|
6280 lemma abacus_turing_eq_halt_case_pre: |
|
6281 "\<lbrakk>ly = layout_of aprog; |
|
6282 tprog = tm_of aprog; |
|
6283 crsp_l ly ac tc ires; |
|
6284 n < length am; |
|
6285 abc_steps_l ac aprog stp = (as, am); |
|
6286 mop_ss = start_of ly (length aprog); |
|
6287 as \<ge> length aprog\<rbrakk> |
|
6288 \<Longrightarrow> \<exists> stp. (\<lambda> (s, l, r). s = 0 \<and> mopup_inv (0, l, r) am n ires) |
|
6289 (t_steps tc (tprog @ (tMp n (mop_ss - 1)), 0) stp)" |
|
6290 apply(insert steps_crsp[of ly aprog tprog ac tc ires "(as, am)" stp], auto) |
|
6291 apply(case_tac "(t_steps tc (tm_of aprog, 0) n')", |
|
6292 simp add: tMp.simps) |
|
6293 apply(subgoal_tac "t_ncorrect (mop_bef n @ tshift mp_up (2 * n))") |
|
6294 proof - |
|
6295 fix n' a b c |
|
6296 assume h1: |
|
6297 "crsp_l (layout_of aprog) ac tc ires" |
|
6298 "abc_steps_l ac aprog stp = (as, am)" |
|
6299 "length aprog \<le> as" |
|
6300 "crsp_l (layout_of aprog) (as, am) (a, b, c) ires" |
|
6301 "t_steps tc (tm_of aprog, 0) n' = (a, b, c)" |
|
6302 "n < length am" |
|
6303 "t_ncorrect (mop_bef n @ tshift mp_up (2 * n))" |
|
6304 hence h2: |
|
6305 "t_steps tc (tm_of aprog @ tshift (mop_bef n @ tshift mp_up (2 * n)) |
|
6306 (start_of (layout_of aprog) (length aprog) - Suc 0), 0) n' |
|
6307 = (a, b, c)" |
|
6308 apply(rule_tac tm_append_steps, simp) |
|
6309 apply(simp add: crsp_l.simps, auto) |
|
6310 apply(simp add: crsp_l.simps) |
|
6311 apply(rule startof_not0) |
|
6312 done |
|
6313 from h1 have h3: |
|
6314 "\<exists>stp. (\<lambda>(s, l, r). s \<noteq> 0 \<and> ((\<lambda> (s', l', r'). s' = 0) |
|
6315 (t_step (s, l, r) (mop_bef n @ tshift mp_up (2 * n), 0)))) |
|
6316 (t_steps (Suc 0, b, c) |
|
6317 (mop_bef n @ tshift mp_up (2 * n), 0) stp)" |
|
6318 apply(rule_tac mopup_halt_bef, auto) |
|
6319 done |
|
6320 from h1 and h2 and h3 show |
|
6321 "\<exists>stp. case t_steps tc (tm_of aprog @ tshift (mop_bef n @ tshift mp_up (2 * n)) |
|
6322 (start_of (layout_of aprog) (length aprog) - Suc 0), 0) stp of (s, ab) |
|
6323 \<Rightarrow> s = 0 \<and> mopup_inv (0, ab) am n ires" |
|
6324 proof(erule_tac exE, |
|
6325 case_tac "(t_steps (Suc 0, b, c) |
|
6326 (mop_bef n @ tshift mp_up (2 * n), 0) stpa)", simp, |
|
6327 case_tac "(t_step (aa, ba, ca) |
|
6328 (mop_bef n @ tshift mp_up (2 * n), 0))", simp) |
|
6329 fix stpa aa ba ca aaa baa caa |
|
6330 assume g1: "0 < aa \<and> aaa = 0" |
|
6331 "t_steps (Suc 0, b, c) |
|
6332 (mop_bef n @ tshift mp_up (2 * n), 0) stpa = (aa, ba,ca)" |
|
6333 "t_step (aa, ba, ca) (mop_bef n @ tshift mp_up (2 * n), 0) |
|
6334 = (0, baa, caa)" |
|
6335 from h1 and this have g2: |
|
6336 "t_steps (start_of (layout_of aprog) (length aprog), b, c) |
|
6337 (tm_of aprog @ tshift (mop_bef n @ tshift mp_up (2 * n)) |
|
6338 (start_of (layout_of aprog) (length aprog) - Suc 0), 0) |
|
6339 (Suc stpa) = (0, baa, caa)" |
|
6340 apply(rule_tac tm_append_stop_step, auto) |
|
6341 done |
|
6342 from h1 and h2 and g1 and this show "?thesis" |
|
6343 apply(rule_tac x = "n' + Suc stpa" in exI) |
|
6344 apply(simp add: t_steps_ind del: t_steps.simps) |
|
6345 apply(subgoal_tac "a = start_of (layout_of aprog) |
|
6346 (length aprog)", simp) |
|
6347 apply(insert mopup_inv_steps[of n am "Suc 0" b c ires "Suc stpa"], |
|
6348 simp add: t_steps_ind) |
|
6349 apply(subgoal_tac "mopup_inv (Suc 0, b, c) am n ires", simp) |
|
6350 apply(rule_tac mopup_init, simp, simp) |
|
6351 apply(simp add: crsp_l.simps) |
|
6352 apply(erule_tac start_of_out_range) |
|
6353 done |
|
6354 qed |
|
6355 next |
|
6356 show " t_ncorrect (mop_bef n @ tshift mp_up (2 * n))" |
|
6357 apply(auto simp: t_ncorrect.simps tshift.simps mp_up_def) |
|
6358 done |
|
6359 qed |
|
6360 |
|
6361 text {* |
|
6362 One of the main theorems about Abacus compilation. |
|
6363 *} |
|
6364 |
|
6365 lemma abacus_turing_eq_halt_case: |
|
6366 assumes layout: |
|
6367 -- {* There is an Abacus program @{text "aprog"} with layout @{text "ly"}: *} |
|
6368 "ly = layout_of aprog" |
|
6369 and complied: |
|
6370 -- {* The TM compiled from @{text "aprog"} is @{text "tprog"}: *} |
|
6371 "tprog = tm_of aprog" |
|
6372 and correspond: |
|
6373 -- {* TM configuration @{text "tc"} and Abacus configuration @{text "ac"} |
|
6374 are in correspondence: *} |
|
6375 "crsp_l ly ac tc ires" |
|
6376 and halt_state: |
|
6377 -- {* @{text "as"} is a program label outside the range of @{text "aprog"}. So |
|
6378 if Abacus is in such a state, it is in halt state: *} |
|
6379 "as \<ge> length aprog" |
|
6380 and abc_exec: |
|
6381 -- {* Supposing after @{text "stp"} step of execution, Abacus program @{text "aprog"} |
|
6382 reaches such a halt state: *} |
|
6383 "abc_steps_l ac aprog stp = (as, am)" |
|
6384 and rs_len: |
|
6385 -- {* @{text "n"} is a memory address in the range of Abacus memory @{text "am"}: *} |
|
6386 "n < length am" |
|
6387 and mopup_start: |
|
6388 -- {* The startling label for mopup mahines, according to the layout and Abacus program |
|
6389 should be @{text "mop_ss"}: *} |
|
6390 "mop_ss = start_of ly (length aprog)" |
|
6391 shows |
|
6392 -- {* |
|
6393 After @{text "stp"} steps of execution of the TM composed of @{text "tprog"} and the mopup |
|
6394 TM @{text "(tMp n (mop_ss - 1))"} will halt and gives rise to a configuration which |
|
6395 only hold the content of memory cell @{text "n"}: |
|
6396 *} |
|
6397 "\<exists> stp. (\<lambda> (s, l, r). \<exists> ln rn. s = 0 \<and> l = Bk\<^bsup>ln\<^esup> @ Bk # Bk # ires |
|
6398 \<and> r = Oc\<^bsup>Suc (abc_lm_v am n)\<^esup> @ Bk\<^bsup>rn\<^esup>) |
|
6399 (t_steps tc (tprog @ (tMp n (mop_ss - 1)), 0) stp)" |
|
6400 proof - |
|
6401 from layout complied correspond halt_state abc_exec rs_len mopup_start |
|
6402 and abacus_turing_eq_halt_case_pre [of ly aprog tprog ac tc ires n am stp as mop_ss] |
|
6403 show "?thesis" |
|
6404 apply(simp add: mopup_inv.simps mopup_stop.simps tape_of_nat_abv) |
|
6405 done |
|
6406 qed |
|
6407 |
|
6408 lemma abc_unhalt_case_zero: |
|
6409 "\<lbrakk>crsp_l (layout_of aprog) ac tc ires; |
|
6410 n < length am; |
|
6411 \<forall>stp. (\<lambda>(as, am). as < length aprog) (abc_steps_l ac aprog stp)\<rbrakk> |
|
6412 \<Longrightarrow> \<exists>astp bstp. 0 \<le> bstp \<and> |
|
6413 crsp_l (layout_of aprog) (abc_steps_l ac aprog astp) |
|
6414 (t_steps tc (tm_of aprog, 0) bstp) ires" |
|
6415 apply(rule_tac x = "Suc 0" in exI) |
|
6416 apply(case_tac " abc_steps_l ac aprog (Suc 0)", simp) |
|
6417 proof - |
|
6418 fix a b |
|
6419 assume "crsp_l (layout_of aprog) ac tc ires" |
|
6420 "abc_steps_l ac aprog (Suc 0) = (a, b)" |
|
6421 thus "\<exists>bstp. crsp_l (layout_of aprog) (a, b) |
|
6422 (t_steps tc (tm_of aprog, 0) bstp) ires" |
|
6423 apply(insert steps_crsp[of "layout_of aprog" aprog |
|
6424 "tm_of aprog" ac tc ires "(a, b)" "Suc 0"], auto) |
|
6425 done |
|
6426 qed |
|
6427 |
|
6428 declare abc_steps_l.simps[simp del] |
|
6429 |
|
6430 lemma abc_steps_ind: |
|
6431 "let (as, am) = abc_steps_l ac aprog stp in |
|
6432 abc_steps_l ac aprog (Suc stp) = |
|
6433 abc_step_l (as, am) (abc_fetch as aprog) " |
|
6434 proof(simp) |
|
6435 show "(\<lambda>(as, am). abc_steps_l ac aprog (Suc stp) = |
|
6436 abc_step_l (as, am) (abc_fetch as aprog)) |
|
6437 (abc_steps_l ac aprog stp)" |
|
6438 proof(induct stp arbitrary: ac) |
|
6439 fix ac |
|
6440 show "(\<lambda>(as, am). abc_steps_l ac aprog (Suc 0) = |
|
6441 abc_step_l (as, am) (abc_fetch as aprog)) |
|
6442 (abc_steps_l ac aprog 0)" |
|
6443 apply(case_tac "ac:: nat \<times> nat list", |
|
6444 simp add: abc_steps_l.simps) |
|
6445 apply(case_tac "(abc_step_l (a, b) (abc_fetch a aprog))", |
|
6446 simp add: abc_steps_l.simps) |
|
6447 done |
|
6448 next |
|
6449 fix stp ac |
|
6450 assume h1: |
|
6451 "(\<And>ac. (\<lambda>(as, am). abc_steps_l ac aprog (Suc stp) = |
|
6452 abc_step_l (as, am) (abc_fetch as aprog)) |
|
6453 (abc_steps_l ac aprog stp))" |
|
6454 thus |
|
6455 "(\<lambda>(as, am). abc_steps_l ac aprog (Suc (Suc stp)) = |
|
6456 abc_step_l (as, am) (abc_fetch as aprog)) |
|
6457 (abc_steps_l ac aprog (Suc stp))" |
|
6458 apply(case_tac "ac::nat \<times> nat list", simp) |
|
6459 apply(subgoal_tac |
|
6460 "abc_steps_l (a, b) aprog (Suc (Suc stp)) = |
|
6461 abc_steps_l (abc_step_l (a, b) (abc_fetch a aprog)) |
|
6462 aprog (Suc stp)", simp) |
|
6463 apply(case_tac "(abc_step_l (a, b) (abc_fetch a aprog))", simp) |
|
6464 proof - |
|
6465 fix a b aa ba |
|
6466 assume h2: "abc_step_l (a, b) (abc_fetch a aprog) = (aa, ba)" |
|
6467 from h1 and h2 show |
|
6468 "(\<lambda>(as, am). abc_steps_l (aa, ba) aprog (Suc stp) = |
|
6469 abc_step_l (as, am) (abc_fetch as aprog)) |
|
6470 (abc_steps_l (a, b) aprog (Suc stp))" |
|
6471 apply(insert h1[of "(aa, ba)"]) |
|
6472 apply(simp add: abc_steps_l.simps) |
|
6473 apply(insert h2, simp) |
|
6474 done |
|
6475 next |
|
6476 fix a b |
|
6477 show |
|
6478 "abc_steps_l (a, b) aprog (Suc (Suc stp)) = |
|
6479 abc_steps_l (abc_step_l (a, b) (abc_fetch a aprog)) |
|
6480 aprog (Suc stp)" |
|
6481 apply(simp only: abc_steps_l.simps) |
|
6482 done |
|
6483 qed |
|
6484 qed |
|
6485 qed |
|
6486 |
|
6487 lemma abc_unhalt_case_induct: |
|
6488 "\<lbrakk>crsp_l (layout_of aprog) ac tc ires; |
|
6489 n < length am; |
|
6490 \<forall>stp. (\<lambda>(as, am). as < length aprog) (abc_steps_l ac aprog stp); |
|
6491 stp \<le> bstp; |
|
6492 crsp_l (layout_of aprog) (abc_steps_l ac aprog astp) |
|
6493 (t_steps tc (tm_of aprog, 0) bstp) ires\<rbrakk> |
|
6494 \<Longrightarrow> \<exists>astp bstp. Suc stp \<le> bstp \<and> crsp_l (layout_of aprog) |
|
6495 (abc_steps_l ac aprog astp) (t_steps tc (tm_of aprog, 0) bstp) ires" |
|
6496 apply(rule_tac x = "Suc astp" in exI) |
|
6497 apply(case_tac "abc_steps_l ac aprog astp") |
|
6498 proof - |
|
6499 fix a b |
|
6500 assume |
|
6501 "\<forall>stp. (\<lambda>(as, am). as < length aprog) |
|
6502 (abc_steps_l ac aprog stp)" |
|
6503 "stp \<le> bstp" |
|
6504 "crsp_l (layout_of aprog) (abc_steps_l ac aprog astp) |
|
6505 (t_steps tc (tm_of aprog, 0) bstp) ires" |
|
6506 "abc_steps_l ac aprog astp = (a, b)" |
|
6507 thus |
|
6508 "\<exists>bstp\<ge>Suc stp. crsp_l (layout_of aprog) |
|
6509 (abc_steps_l ac aprog (Suc astp)) |
|
6510 (t_steps tc (tm_of aprog, 0) bstp) ires" |
|
6511 apply(insert crsp_inside[of "layout_of aprog" aprog |
|
6512 "tm_of aprog" a b "(t_steps tc (tm_of aprog, 0) bstp)" "ires"], auto) |
|
6513 apply(erule_tac x = astp in allE, auto) |
|
6514 apply(rule_tac x = "bstp + stpa" in exI, simp) |
|
6515 apply(insert abc_steps_ind[of ac aprog "astp"], simp) |
|
6516 done |
|
6517 qed |
|
6518 |
|
6519 lemma abc_unhalt_case: |
|
6520 "\<lbrakk>crsp_l (layout_of aprog) ac tc ires; |
|
6521 \<forall>stp. (\<lambda>(as, am). as < length aprog) (abc_steps_l ac aprog stp)\<rbrakk> |
|
6522 \<Longrightarrow> (\<exists> astp bstp. bstp \<ge> stp \<and> |
|
6523 crsp_l (layout_of aprog) (abc_steps_l ac aprog astp) |
|
6524 (t_steps tc (tm_of aprog, 0) bstp) ires)" |
|
6525 apply(induct stp) |
|
6526 apply(rule_tac abc_unhalt_case_zero, auto) |
|
6527 apply(rule_tac abc_unhalt_case_induct, auto) |
|
6528 done |
|
6529 |
|
6530 lemma abacus_turing_eq_unhalt_case_pre: |
|
6531 "\<lbrakk>ly = layout_of aprog; |
|
6532 tprog = tm_of aprog; |
|
6533 crsp_l ly ac tc ires; |
|
6534 \<forall> stp. ((\<lambda> (as, am). as < length aprog) |
|
6535 (abc_steps_l ac aprog stp)); |
|
6536 mop_ss = start_of ly (length aprog)\<rbrakk> |
|
6537 \<Longrightarrow> (\<not> (\<exists> stp. (\<lambda> (s, l, r). s = 0) |
|
6538 (t_steps tc (tprog @ (tMp n (mop_ss - 1)), 0) stp)))" |
|
6539 apply(auto) |
|
6540 proof - |
|
6541 fix stp a b |
|
6542 assume h1: |
|
6543 "crsp_l (layout_of aprog) ac tc ires" |
|
6544 "\<forall>stp. (\<lambda>(as, am). as < length aprog) (abc_steps_l ac aprog stp)" |
|
6545 "t_steps tc (tm_of aprog @ tMp n (start_of (layout_of aprog) |
|
6546 (length aprog) - Suc 0), 0) stp = (0, a, b)" |
|
6547 thus "False" |
|
6548 proof(insert abc_unhalt_case[of aprog ac tc ires stp], auto, |
|
6549 case_tac "(abc_steps_l ac aprog astp)", |
|
6550 case_tac "(t_steps tc (tm_of aprog, 0) bstp)", simp) |
|
6551 fix astp bstp aa ba aaa baa c |
|
6552 assume h2: |
|
6553 "abc_steps_l ac aprog astp = (aa, ba)" "stp \<le> bstp" |
|
6554 "t_steps tc (tm_of aprog, 0) bstp = (aaa, baa, c)" |
|
6555 "crsp_l (layout_of aprog) (aa, ba) (aaa, baa, c) ires" |
|
6556 hence h3: |
|
6557 "t_steps tc (tm_of aprog @ tMp n |
|
6558 (start_of (layout_of aprog) (length aprog) - Suc 0), 0) bstp |
|
6559 = (aaa, baa, c)" |
|
6560 apply(intro tm_append_steps, auto) |
|
6561 apply(simp add: crsp_l.simps, rule startof_not0) |
|
6562 done |
|
6563 from h2 have h4: "\<exists> diff. bstp = stp + diff" |
|
6564 apply(rule_tac x = "bstp - stp" in exI, simp) |
|
6565 done |
|
6566 from h4 and h3 and h2 and h1 show "?thesis" |
|
6567 apply(auto) |
|
6568 apply(simp add: state0_ind crsp_l.simps) |
|
6569 apply(subgoal_tac "start_of (layout_of aprog) aa > 0", simp) |
|
6570 apply(rule startof_not0) |
|
6571 done |
|
6572 qed |
|
6573 qed |
|
6574 |
|
6575 lemma abacus_turing_eq_unhalt_case: |
|
6576 assumes layout: |
|
6577 -- {* There is an Abacus program @{text "aprog"} with layout @{text "ly"}: *} |
|
6578 "ly = layout_of aprog" |
|
6579 and compiled: |
|
6580 -- {* The TM compiled from @{text "aprog"} is @{text "tprog"}: *} |
|
6581 "tprog = tm_of aprog" |
|
6582 and correspond: |
|
6583 -- {* |
|
6584 TM configuration @{text "tc"} and Abacus configuration @{text "ac"} |
|
6585 are in correspondence: |
|
6586 *} |
|
6587 "crsp_l ly ac tc ires" |
|
6588 and abc_unhalt: |
|
6589 -- {* |
|
6590 If, no matter how many steps the Abacus program @{text "aprog"} executes, it |
|
6591 may never reach a halt state. |
|
6592 *} |
|
6593 "\<forall> stp. ((\<lambda> (as, am). as < length aprog) |
|
6594 (abc_steps_l ac aprog stp))" |
|
6595 and mopup_start: "mop_ss = start_of ly (length aprog)" |
|
6596 shows |
|
6597 -- {* |
|
6598 The the TM composed of TM @{text "tprog"} and the moupup TM may never reach a halt state as well. |
|
6599 *} |
|
6600 "\<not> (\<exists> stp. (\<lambda> (s, l, r). s = 0) |
|
6601 (t_steps tc (tprog @ (tMp n (mop_ss - 1)), 0) stp))" |
|
6602 using layout compiled correspond abc_unhalt mopup_start |
|
6603 apply(rule_tac abacus_turing_eq_unhalt_case_pre, auto) |
|
6604 done |
|
6605 |
|
6606 |
|
6607 definition abc_list_crsp:: "nat list \<Rightarrow> nat list \<Rightarrow> bool" |
|
6608 where |
|
6609 "abc_list_crsp xs ys = (\<exists> n. xs = ys @ 0\<^bsup>n\<^esup> \<or> ys = xs @ 0\<^bsup>n\<^esup>)" |
|
6610 lemma [intro]: "abc_list_crsp (lm @ 0\<^bsup>m\<^esup>) lm" |
|
6611 apply(auto simp: abc_list_crsp_def) |
|
6612 done |
|
6613 |
|
6614 lemma abc_list_crsp_lm_v: |
|
6615 "abc_list_crsp lma lmb \<Longrightarrow> abc_lm_v lma n = abc_lm_v lmb n" |
|
6616 apply(auto simp: abc_list_crsp_def abc_lm_v.simps |
|
6617 nth_append exponent_def) |
|
6618 done |
|
6619 |
|
6620 lemma rep_app_cons_iff: |
|
6621 "k < n \<Longrightarrow> replicate n a[k:=b] = |
|
6622 replicate k a @ b # replicate (n - k - 1) a" |
|
6623 apply(induct n arbitrary: k, simp) |
|
6624 apply(simp split:nat.splits) |
|
6625 done |
|
6626 |
|
6627 lemma abc_list_crsp_lm_s: |
|
6628 "abc_list_crsp lma lmb \<Longrightarrow> |
|
6629 abc_list_crsp (abc_lm_s lma m n) (abc_lm_s lmb m n)" |
|
6630 apply(auto simp: abc_list_crsp_def abc_lm_v.simps abc_lm_s.simps) |
|
6631 apply(simp_all add: list_update_append, auto simp: exponent_def) |
|
6632 proof - |
|
6633 fix na |
|
6634 assume h: "m < length lmb + na" " \<not> m < length lmb" |
|
6635 hence "m - length lmb < na" by simp |
|
6636 hence "replicate na 0[(m- length lmb):= n] = |
|
6637 replicate (m - length lmb) 0 @ n # |
|
6638 replicate (na - (m - length lmb) - 1) 0" |
|
6639 apply(erule_tac rep_app_cons_iff) |
|
6640 done |
|
6641 thus "\<exists>nb. replicate na 0[m - length lmb := n] = |
|
6642 replicate (m - length lmb) 0 @ n # replicate nb 0 \<or> |
|
6643 replicate (m - length lmb) 0 @ [n] = |
|
6644 replicate na 0[m - length lmb := n] @ replicate nb 0" |
|
6645 apply(auto) |
|
6646 done |
|
6647 next |
|
6648 fix na |
|
6649 assume h: "\<not> m < length lmb + na" |
|
6650 show |
|
6651 "\<exists>nb. replicate na 0 @ replicate (m - (length lmb + na)) 0 @ [n] = |
|
6652 replicate (m - length lmb) 0 @ n # replicate nb 0 \<or> |
|
6653 replicate (m - length lmb) 0 @ [n] = |
|
6654 replicate na 0 @ |
|
6655 replicate (m - (length lmb + na)) 0 @ n # replicate nb 0" |
|
6656 apply(rule_tac x = 0 in exI, simp, auto) |
|
6657 using h |
|
6658 apply(simp add: replicate_add[THEN sym]) |
|
6659 done |
|
6660 next |
|
6661 fix na |
|
6662 assume h: "\<not> m < length lma" "m < length lma + na" |
|
6663 hence "m - length lma < na" by simp |
|
6664 hence |
|
6665 "replicate na 0[(m- length lma):= n] = replicate (m - length lma) |
|
6666 0 @ n # replicate (na - (m - length lma) - 1) 0" |
|
6667 apply(erule_tac rep_app_cons_iff) |
|
6668 done |
|
6669 thus "\<exists>nb. replicate (m - length lma) 0 @ [n] = |
|
6670 replicate na 0[m - length lma := n] @ replicate nb 0 |
|
6671 \<or> replicate na 0[m - length lma := n] = |
|
6672 replicate (m - length lma) 0 @ n # replicate nb 0" |
|
6673 apply(auto) |
|
6674 done |
|
6675 next |
|
6676 fix na |
|
6677 assume "\<not> m < length lma + na" |
|
6678 thus " \<exists>nb. replicate (m - length lma) 0 @ [n] = |
|
6679 replicate na 0 @ |
|
6680 replicate (m - (length lma + na)) 0 @ n # replicate nb 0 |
|
6681 \<or> replicate na 0 @ |
|
6682 replicate (m - (length lma + na)) 0 @ [n] = |
|
6683 replicate (m - length lma) 0 @ n # replicate nb 0" |
|
6684 apply(rule_tac x = 0 in exI, simp, auto) |
|
6685 apply(simp add: replicate_add[THEN sym]) |
|
6686 done |
|
6687 qed |
|
6688 |
|
6689 lemma abc_list_crsp_step: |
|
6690 "\<lbrakk>abc_list_crsp lma lmb; abc_step_l (aa, lma) i = (a, lma'); |
|
6691 abc_step_l (aa, lmb) i = (a', lmb')\<rbrakk> |
|
6692 \<Longrightarrow> a' = a \<and> abc_list_crsp lma' lmb'" |
|
6693 apply(case_tac i, auto simp: abc_step_l.simps |
|
6694 abc_list_crsp_lm_s abc_list_crsp_lm_v Let_def |
|
6695 split: abc_inst.splits if_splits) |
|
6696 done |
|
6697 |
|
6698 lemma abc_steps_red: |
|
6699 "abc_steps_l ac aprog stp = (as, am) \<Longrightarrow> |
|
6700 abc_steps_l ac aprog (Suc stp) = |
|
6701 abc_step_l (as, am) (abc_fetch as aprog)" |
|
6702 using abc_steps_ind[of ac aprog stp] |
|
6703 apply(simp) |
|
6704 done |
|
6705 |
|
6706 lemma abc_list_crsp_steps: |
|
6707 "\<lbrakk>abc_steps_l (0, lm @ 0\<^bsup>m\<^esup>) aprog stp = (a, lm'); aprog \<noteq> []\<rbrakk> |
|
6708 \<Longrightarrow> \<exists> lma. abc_steps_l (0, lm) aprog stp = (a, lma) \<and> |
|
6709 abc_list_crsp lm' lma" |
|
6710 apply(induct stp arbitrary: a lm', simp add: abc_steps_l.simps, auto) |
|
6711 apply(case_tac "abc_steps_l (0, lm @ 0\<^bsup>m\<^esup>) aprog stp", |
|
6712 simp add: abc_steps_ind) |
|
6713 proof - |
|
6714 fix stp a lm' aa b |
|
6715 assume ind: |
|
6716 "\<And>a lm'. aa = a \<and> b = lm' \<Longrightarrow> |
|
6717 \<exists>lma. abc_steps_l (0, lm) aprog stp = (a, lma) \<and> |
|
6718 abc_list_crsp lm' lma" |
|
6719 and h: "abc_steps_l (0, lm @ 0\<^bsup>m\<^esup>) aprog (Suc stp) = (a, lm')" |
|
6720 "abc_steps_l (0, lm @ 0\<^bsup>m\<^esup>) aprog stp = (aa, b)" |
|
6721 "aprog \<noteq> []" |
|
6722 hence g1: "abc_steps_l (0, lm @ 0\<^bsup>m\<^esup>) aprog (Suc stp) |
|
6723 = abc_step_l (aa, b) (abc_fetch aa aprog)" |
|
6724 apply(rule_tac abc_steps_red, simp) |
|
6725 done |
|
6726 have "\<exists>lma. abc_steps_l (0, lm) aprog stp = (aa, lma) \<and> |
|
6727 abc_list_crsp b lma" |
|
6728 apply(rule_tac ind, simp) |
|
6729 done |
|
6730 from this obtain lma where g2: |
|
6731 "abc_steps_l (0, lm) aprog stp = (aa, lma) \<and> |
|
6732 abc_list_crsp b lma" .. |
|
6733 hence g3: "abc_steps_l (0, lm) aprog (Suc stp) |
|
6734 = abc_step_l (aa, lma) (abc_fetch aa aprog)" |
|
6735 apply(rule_tac abc_steps_red, simp) |
|
6736 done |
|
6737 show "\<exists>lma. abc_steps_l (0, lm) aprog (Suc stp) = (a, lma) \<and> |
|
6738 abc_list_crsp lm' lma" |
|
6739 using g1 g2 g3 h |
|
6740 apply(auto) |
|
6741 apply(case_tac "abc_step_l (aa, b) (abc_fetch aa aprog)", |
|
6742 case_tac "abc_step_l (aa, lma) (abc_fetch aa aprog)", simp) |
|
6743 apply(rule_tac abc_list_crsp_step, auto) |
|
6744 done |
|
6745 qed |
|
6746 |
|
6747 lemma [simp]: "(case ca of [] \<Rightarrow> Bk | Bk # xs \<Rightarrow> Bk | Oc # xs \<Rightarrow> Oc) = |
|
6748 (case ca of [] \<Rightarrow> Bk | x # xs \<Rightarrow> x)" |
|
6749 by(case_tac ca, simp_all, case_tac a, simp, simp) |
|
6750 |
|
6751 lemma steps_eq: "length t mod 2 = 0 \<Longrightarrow> |
|
6752 t_steps c (t, 0) stp = steps c t stp" |
|
6753 apply(induct stp) |
|
6754 apply(simp add: steps.simps t_steps.simps) |
|
6755 apply(simp add:tstep_red t_steps_ind) |
|
6756 apply(case_tac "steps c t stp", simp) |
|
6757 apply(auto simp: t_step.simps tstep.simps) |
|
6758 done |
|
6759 |
|
6760 lemma crsp_l_start: "crsp_l ly (0, lm) (Suc 0, Bk # Bk # ires, <lm> @ Bk\<^bsup>rn\<^esup>) ires" |
|
6761 apply(simp add: crsp_l.simps, auto simp: start_of.simps) |
|
6762 done |
|
6763 |
|
6764 lemma t_ncorrect_app: "\<lbrakk>t_ncorrect t1; t_ncorrect t2\<rbrakk> \<Longrightarrow> |
|
6765 t_ncorrect (t1 @ t2)" |
|
6766 apply(simp add: t_ncorrect.simps, auto) |
|
6767 done |
|
6768 |
|
6769 lemma [simp]: |
|
6770 "(length (tm_of aprog) + |
|
6771 length (tMp n (start_of ly (length aprog) - Suc 0))) mod 2 = 0" |
|
6772 apply(subgoal_tac |
|
6773 "t_ncorrect (tm_of aprog @ tMp n |
|
6774 (start_of ly (length aprog) - Suc 0))") |
|
6775 apply(simp add: t_ncorrect.simps) |
|
6776 apply(rule_tac t_ncorrect_app, |
|
6777 auto simp: tMp.simps t_ncorrect.simps tshift.simps mp_up_def) |
|
6778 apply(subgoal_tac |
|
6779 "t_ncorrect (tm_of aprog)", simp add: t_ncorrect.simps) |
|
6780 apply(auto) |
|
6781 done |
|
6782 |
|
6783 lemma [simp]: "takeWhile (\<lambda>a. a = Oc) |
|
6784 (replicate rs Oc @ replicate rn Bk) = replicate rs Oc" |
|
6785 apply(induct rs, auto) |
|
6786 apply(induct rn, auto) |
|
6787 done |
|
6788 |
|
6789 lemma abacus_turing_eq_halt': |
|
6790 "\<lbrakk>ly = layout_of aprog; |
|
6791 tprog = tm_of aprog; |
|
6792 n < length am; |
|
6793 abc_steps_l (0, lm) aprog stp = (as, am); |
|
6794 mop_ss = start_of ly (length aprog); |
|
6795 as \<ge> length aprog\<rbrakk> |
|
6796 \<Longrightarrow> \<exists> stp m l. steps (Suc 0, Bk # Bk # ires, <lm> @ Bk\<^bsup>rn\<^esup>) |
|
6797 (tprog @ (tMp n (mop_ss - 1))) stp |
|
6798 = (0, Bk\<^bsup>m\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (abc_lm_v am n)\<^esup> @ Bk\<^bsup>l\<^esup>)" |
|
6799 apply(drule_tac tc = "(Suc 0, Bk # Bk # ires, <lm> @ Bk\<^bsup>rn\<^esup>)" in |
|
6800 abacus_turing_eq_halt_case, auto intro: crsp_l_start) |
|
6801 apply(subgoal_tac |
|
6802 "length (tm_of aprog @ tMp n |
|
6803 (start_of ly (length aprog) - Suc 0)) mod 2 = 0") |
|
6804 apply(simp add: steps_eq) |
|
6805 apply(rule_tac x = stpa in exI, |
|
6806 simp add: exponent_def, auto) |
|
6807 done |
|
6808 |
|
6809 |
|
6810 lemma list_length: "xs = ys \<Longrightarrow> length xs = length ys" |
|
6811 by simp |
|
6812 lemma [elim]: "tinres (Bk\<^bsup>m\<^esup>) b \<Longrightarrow> \<exists>m. b = Bk\<^bsup>m\<^esup>" |
|
6813 apply(auto simp: tinres_def) |
|
6814 apply(rule_tac x = "m-n" in exI, |
|
6815 auto simp: exponent_def replicate_add[THEN sym]) |
|
6816 apply(case_tac "m < n", auto) |
|
6817 apply(drule_tac list_length, auto) |
|
6818 apply(subgoal_tac "\<exists> d. m = d + n", auto simp: replicate_add) |
|
6819 apply(rule_tac x = "m - n" in exI, simp) |
|
6820 done |
|
6821 lemma [intro]: "tinres [Bk] (Bk\<^bsup>k\<^esup>) " |
|
6822 apply(auto simp: tinres_def exponent_def) |
|
6823 apply(case_tac k, auto) |
|
6824 apply(rule_tac x = "Suc 0" in exI, simp) |
|
6825 done |
|
6826 |
|
6827 lemma abacus_turing_eq_halt_pre: |
|
6828 "\<lbrakk>ly = layout_of aprog; |
|
6829 tprog = tm_of aprog; |
|
6830 n < length am; |
|
6831 abc_steps_l (0, lm) aprog stp = (as, am); |
|
6832 mop_ss = start_of ly (length aprog); |
|
6833 as \<ge> length aprog\<rbrakk> |
|
6834 \<Longrightarrow> \<exists> stp m l. steps (Suc 0, Bk # Bk # ires, <lm> @ Bk\<^bsup>rn\<^esup>) |
|
6835 (tprog @ (tMp n (mop_ss - 1))) stp |
|
6836 = (0, Bk\<^bsup>m\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (abc_lm_v am n)\<^esup> @ Bk\<^bsup>l\<^esup>)" |
|
6837 using abacus_turing_eq_halt' |
|
6838 apply(simp) |
|
6839 done |
|
6840 |
|
6841 |
|
6842 text {* |
|
6843 Main theorem for the case when the original Abacus program does halt. |
|
6844 *} |
|
6845 |
|
6846 lemma abacus_turing_eq_halt: |
|
6847 assumes layout: |
|
6848 "ly = layout_of aprog" |
|
6849 -- {* There is an Abacus program @{text "aprog"} with layout @{text "ly"}: *} |
|
6850 and compiled: "tprog = tm_of aprog" |
|
6851 -- {* The TM compiled from @{text "aprog"} is @{text "tprog"}: *} |
|
6852 and halt_state: |
|
6853 -- {* @{text "as"} is a program label outside the range of @{text "aprog"}. So |
|
6854 if Abacus is in such a state, it is in halt state: *} |
|
6855 "as \<ge> length aprog" |
|
6856 and abc_exec: |
|
6857 -- {* Supposing after @{text "stp"} step of execution, Abacus program @{text "aprog"} |
|
6858 reaches such a halt state: *} |
|
6859 "abc_steps_l (0, lm) aprog stp = (as, am)" |
|
6860 and rs_locate: |
|
6861 -- {* @{text "n"} is a memory address in the range of Abacus memory @{text "am"}: *} |
|
6862 "n < length am" |
|
6863 and mopup_start: |
|
6864 -- {* The startling label for mopup mahines, according to the layout and Abacus program |
|
6865 should be @{text "mop_ss"}: *} |
|
6866 "mop_ss = start_of ly (length aprog)" |
|
6867 shows |
|
6868 -- {* |
|
6869 After @{text "stp"} steps of execution of the TM composed of @{text "tprog"} and the mopup |
|
6870 TM @{text "(tMp n (mop_ss - 1))"} will halt and gives rise to a configuration which |
|
6871 only hold the content of memory cell @{text "n"}: |
|
6872 *} |
|
6873 "\<exists> stp m l. steps (Suc 0, Bk # Bk # ires, <lm> @ Bk\<^bsup>rn\<^esup>) (tprog @ (tMp n (mop_ss - 1))) stp |
|
6874 = (0, Bk\<^bsup>m\<^esup> @ Bk # Bk # ires, Oc\<^bsup>Suc (abc_lm_v am n)\<^esup> @ Bk\<^bsup>l\<^esup>)" |
|
6875 using layout compiled halt_state abc_exec rs_locate mopup_start |
|
6876 by(rule_tac abacus_turing_eq_halt_pre, auto) |
|
6877 |
|
6878 lemma abacus_turing_eq_uhalt': |
|
6879 "\<lbrakk>ly = layout_of aprog; |
|
6880 tprog = tm_of aprog; |
|
6881 \<forall> stp. ((\<lambda> (as, am). as < length aprog) |
|
6882 (abc_steps_l (0, lm) aprog stp)); |
|
6883 mop_ss = start_of ly (length aprog)\<rbrakk> |
|
6884 \<Longrightarrow> (\<not> (\<exists> stp. isS0 (steps (Suc 0, [Bk, Bk], <lm>) |
|
6885 (tprog @ (tMp n (mop_ss - 1))) stp)))" |
|
6886 apply(drule_tac tc = "(Suc 0, [Bk, Bk], <lm>)" and n = n and ires = "[]" in |
|
6887 abacus_turing_eq_unhalt_case, auto intro: crsp_l_start) |
|
6888 apply(simp add: crsp_l.simps start_of.simps) |
|
6889 apply(erule_tac x = stp in allE, erule_tac x = stp in allE) |
|
6890 apply(subgoal_tac |
|
6891 "length (tm_of aprog @ tMp n |
|
6892 (start_of ly (length aprog) - Suc 0)) mod 2 = 0") |
|
6893 apply(simp add: steps_eq, auto simp: isS0_def) |
|
6894 done |
|
6895 |
|
6896 text {* |
|
6897 Main theorem for the case when the original Abacus program does not halt. |
|
6898 *} |
|
6899 lemma abacus_turing_eq_uhalt: |
|
6900 assumes layout: |
|
6901 -- {* There is an Abacus program @{text "aprog"} with layout @{text "ly"}: *} |
|
6902 "ly = layout_of aprog" |
|
6903 and compiled: |
|
6904 -- {* The TM compiled from @{text "aprog"} is @{text "tprog"}: *} |
|
6905 "tprog = tm_of aprog" |
|
6906 and abc_unhalt: |
|
6907 -- {* |
|
6908 If, no matter how many steps the Abacus program @{text "aprog"} executes, it |
|
6909 may never reach a halt state. |
|
6910 *} |
|
6911 "\<forall> stp. ((\<lambda> (as, am). as < length aprog) |
|
6912 (abc_steps_l (0, lm) aprog stp))" |
|
6913 and mop_start: "mop_ss = start_of ly (length aprog)" |
|
6914 shows |
|
6915 -- {* |
|
6916 The the TM composed of TM @{text "tprog"} and the moupup TM may never reach a halt state as well. |
|
6917 *} |
|
6918 "\<not> (\<exists> stp. isS0 (steps (Suc 0, [Bk, Bk], <lm>) |
|
6919 (tprog @ (tMp n (mop_ss - 1))) stp))" |
|
6920 using abacus_turing_eq_uhalt' |
|
6921 layout compiled abc_unhalt mop_start |
|
6922 by(auto) |
|
6923 |
|
6924 end |
|
6925 |
|