Attic/turing_basic.thy
changeset 127 469c26d19f8e
parent 50 816e84ca16d6
equal deleted inserted replaced
126:0b302c0b449a 127:469c26d19f8e
       
     1 (* Title: Turing machines
       
     2    Author: Xu Jian <xujian817@hotmail.com>
       
     3    Maintainer: Xu Jian
       
     4 *)
       
     5 
       
     6 theory turing_basic
       
     7 imports Main
       
     8 begin
       
     9 
       
    10 section {* Basic definitions of Turing machine *}
       
    11 
       
    12 datatype action = W0 | W1 | L | R | Nop
       
    13 
       
    14 datatype cell = Bk | Oc
       
    15 
       
    16 type_synonym tape = "cell list \<times> cell list"
       
    17 
       
    18 type_synonym state = nat
       
    19 
       
    20 type_synonym instr = "action \<times> state"
       
    21 
       
    22 type_synonym tprog = "instr list \<times> nat"
       
    23 
       
    24 type_synonym config = "state \<times> tape"
       
    25 
       
    26 fun nth_of where
       
    27   "nth_of xs i = (if i \<ge> length xs then None
       
    28                   else Some (xs ! i))"
       
    29 
       
    30 lemma nth_of_map [simp]:
       
    31   shows "nth_of (map f p) n = (case (nth_of p n) of None \<Rightarrow> None | Some x \<Rightarrow> Some (f x))"
       
    32 apply(induct p arbitrary: n)
       
    33 apply(auto)
       
    34 apply(case_tac n)
       
    35 apply(auto)
       
    36 done
       
    37 
       
    38 fun 
       
    39   fetch :: "instr list \<Rightarrow> state \<Rightarrow> cell \<Rightarrow> instr"
       
    40 where
       
    41   "fetch p 0 b = (Nop, 0)"
       
    42 | "fetch p (Suc s) Bk = 
       
    43      (case nth_of p (2 * s) of
       
    44         Some i \<Rightarrow> i
       
    45       | None \<Rightarrow> (Nop, 0))"
       
    46 |"fetch p (Suc s) Oc = 
       
    47      (case nth_of p ((2 * s) + 1) of
       
    48          Some i \<Rightarrow> i
       
    49        | None \<Rightarrow> (Nop, 0))"
       
    50 
       
    51 lemma fetch_Nil [simp]:
       
    52   shows "fetch [] s b = (Nop, 0)"
       
    53 apply(case_tac s)
       
    54 apply(auto)
       
    55 apply(case_tac b)
       
    56 apply(auto)
       
    57 done
       
    58 
       
    59 fun 
       
    60   update :: "action \<Rightarrow> tape \<Rightarrow> tape"
       
    61 where 
       
    62   "update W0 (l, r) = (l, Bk # (tl r))" 
       
    63 | "update W1 (l, r) = (l, Oc # (tl r))"
       
    64 | "update L (l, r) = (if l = [] then ([], Bk # r) else (tl l, (hd l) # r))" 
       
    65 | "update R (l, r) = (if r = [] then (Bk # l, []) else ((hd r) # l, tl r))" 
       
    66 | "update Nop (l, r) = (l, r)"
       
    67 
       
    68 abbreviation 
       
    69   "read r == if (r = []) then Bk else hd r"
       
    70 
       
    71 fun step :: "config \<Rightarrow> tprog \<Rightarrow> config"
       
    72   where 
       
    73   "step (s, l, r) (p, off) = 
       
    74   (let (a, s') = fetch p (s - off) (read r) in (s', update a (l, r)))"
       
    75 
       
    76 fun steps :: "config \<Rightarrow> tprog \<Rightarrow> nat \<Rightarrow> config"
       
    77   where
       
    78   "steps c p 0 = c" |
       
    79   "steps c p (Suc n) = steps (step c p) p n"
       
    80 
       
    81 lemma step_red [simp]: 
       
    82   shows "steps c p (Suc n) = step (steps c p n) p"
       
    83 by (induct n arbitrary: c) (auto)
       
    84 
       
    85 lemma steps_add [simp]: 
       
    86   shows "steps c p (m + n) = steps (steps c p m) p n"
       
    87 by (induct m arbitrary: c) (auto)
       
    88 
       
    89 fun 
       
    90   tm_wf :: "tprog \<Rightarrow> bool"
       
    91 where
       
    92   "tm_wf (p, off) = (length p \<ge> 2 \<and> length p mod 2 = 0 \<and> 
       
    93                     (\<forall>(a, s) \<in> set p. s \<le> length p div 2
       
    94                                              + off \<and> s \<ge> off))"
       
    95 
       
    96 (* FIXME: needed? *)
       
    97 lemma halt_lemma: 
       
    98   "\<lbrakk>wf LE; \<forall>n. (\<not> P (f n) \<longrightarrow> (f (Suc n), (f n)) \<in> LE)\<rbrakk> \<Longrightarrow> \<exists>n. P (f n)"
       
    99 by (metis wf_iff_no_infinite_down_chain)
       
   100 
       
   101 abbreviation exponent :: "'a \<Rightarrow> nat \<Rightarrow> 'a list" ("_ \<up> _" [100, 99] 100)
       
   102   where "x \<up> n == replicate n x"
       
   103 
       
   104 consts tape_of :: "'a \<Rightarrow> cell list" ("<_>" 100)
       
   105 
       
   106 fun tape_of_nat_list :: "nat list \<Rightarrow> cell list" 
       
   107   where 
       
   108   "tape_of_nat_list [] = []" |
       
   109   "tape_of_nat_list [n] = Oc\<up>(Suc n)" |
       
   110   "tape_of_nat_list (n#ns) = Oc\<up>(Suc n) @ Bk # (tape_of_nat_list ns)"
       
   111 
       
   112 defs (overloaded)
       
   113   tape_of_nl_abv: "<am> \<equiv> tape_of_nat_list am"
       
   114   tape_of_nat_abv : "<(n::nat)> \<equiv> Oc\<up>(Suc n)"
       
   115 
       
   116 definition tinres :: "cell list \<Rightarrow> cell list \<Rightarrow> bool"
       
   117   where
       
   118   "tinres xs ys = (\<exists>n. xs = ys @ Bk \<up> n \<or> ys = xs @ Bk \<up> n)"
       
   119 
       
   120 fun 
       
   121   shift :: "instr list \<Rightarrow> nat \<Rightarrow> instr list"
       
   122 where
       
   123   "shift p n = (map (\<lambda> (a, s). (a, (if s = 0 then 0 else s + n))) p)"
       
   124 
       
   125 
       
   126 lemma length_shift [simp]: 
       
   127   "length (shift p n) = length p"
       
   128 by (simp)
       
   129 
       
   130 fun 
       
   131   adjust :: "instr list \<Rightarrow> instr list"
       
   132 where
       
   133   "adjust p = map (\<lambda> (a, s). (a, if s = 0 then (Suc (length p div 2)) else s)) p"
       
   134 
       
   135 lemma length_adjust[simp]: 
       
   136   shows "length (adjust p) = length p"
       
   137 by (induct p) (auto)
       
   138 
       
   139 fun
       
   140   tm_comp :: "instr list \<Rightarrow> instr list \<Rightarrow> instr list" ("_ |+| _" [0, 0] 100)
       
   141 where
       
   142   "tm_comp p1 p2 = ((adjust p1) @ (shift p2 ((length p1) div 2)))"
       
   143 
       
   144 fun
       
   145   is_final :: "config \<Rightarrow> bool"
       
   146 where
       
   147   "is_final (s, l, r) = (s = 0)"
       
   148 
       
   149 lemma is_final_steps:
       
   150   assumes "is_final (s, l, r)"
       
   151   shows "is_final (steps (s, l, r) (p, off) n)"
       
   152 using assms by (induct n) (auto)
       
   153 
       
   154 fun 
       
   155   holds_for :: "(tape \<Rightarrow> bool) \<Rightarrow> config \<Rightarrow> bool" ("_ holds'_for _" [100, 99] 100)
       
   156 where
       
   157   "P holds_for (s, l, r) = P (l, r)"  
       
   158 
       
   159 (*
       
   160 lemma step_0 [simp]: 
       
   161   shows "step (0, (l, r)) p = (0, (l, r))"
       
   162 by simp
       
   163 
       
   164 lemma steps_0 [simp]: 
       
   165   shows "steps (0, (l, r)) p n = (0, (l, r))"
       
   166 by (induct n) (simp_all)
       
   167 *)
       
   168 
       
   169 lemma is_final_holds[simp]:
       
   170   assumes "is_final c"
       
   171   shows "Q holds_for (steps c (p, off) n) = Q holds_for c"
       
   172 using assms 
       
   173 apply(induct n)
       
   174 apply(case_tac [!] c)
       
   175 apply(auto)
       
   176 done
       
   177 
       
   178 type_synonym assert = "tape \<Rightarrow> bool"
       
   179 
       
   180 definition assert_imp :: "assert \<Rightarrow> assert \<Rightarrow> bool" ("_ \<mapsto> _" [0, 0] 100)
       
   181   where
       
   182   "assert_imp P Q = (\<forall>l r. P (l, r) \<longrightarrow> Q (l, r))"
       
   183 
       
   184 lemma holds_for_imp:
       
   185   assumes "P holds_for c"
       
   186   and "P \<mapsto> Q"
       
   187   shows "Q holds_for c"
       
   188 using assms unfolding assert_imp_def by (case_tac c, auto)
       
   189 
       
   190 lemma test:
       
   191   assumes "is_final (steps (1, (l, r)) p n1)"
       
   192   and     "is_final (steps (1, (l, r)) p n2)"
       
   193   shows "Q holds_for (steps (1, (l, r)) p n1) \<longleftrightarrow> Q holds_for (steps (1, (l, r)) p n2)"
       
   194 proof -
       
   195   obtain n3 where "n1 = n2 + n3 \<or> n2 = n1 + n3"
       
   196     by (metis le_iff_add nat_le_linear)
       
   197   with assms show "Q holds_for (steps (1, (l, r)) p n1) \<longleftrightarrow> Q holds_for (steps (1, (l, r)) p n2)"  
       
   198     by(case_tac p) (auto)
       
   199 qed
       
   200 
       
   201 definition
       
   202   Hoare :: "assert \<Rightarrow> tprog \<Rightarrow> assert \<Rightarrow> bool" ("({(1_)}/ (_)/ {(1_)})" 50)
       
   203 where
       
   204   "{P} p {Q} \<equiv> 
       
   205      (\<forall>l r. P (l, r) \<longrightarrow> (\<exists>n. is_final (steps (1, (l, r)) p n) \<and> Q holds_for (steps (1, (l, r)) p n)))"
       
   206 
       
   207 lemma HoareI:
       
   208   assumes "\<And>l r. P (l, r) \<Longrightarrow> \<exists>n. is_final (steps (1, (l, r)) p n) \<and> Q holds_for (steps (1, (l, r)) p n)"
       
   209   shows "{P} p {Q}"
       
   210 unfolding Hoare_def using assms by auto
       
   211 
       
   212 text {*
       
   213 {P1} A {Q1}   {P2} B {Q2}  Q1 \<mapsto> P2
       
   214 -----------------------------------
       
   215     {P1} A |+| B {Q2}
       
   216 *}
       
   217 
       
   218 lemma step_0 [simp]: 
       
   219   shows "step (0, (l, r)) p = (0, (l, r))"
       
   220 by (case_tac p, simp)
       
   221 
       
   222 lemma steps_0 [simp]: 
       
   223   shows "steps (0, (l, r)) p n = (0, (l, r))"
       
   224 by (induct n) (simp_all)
       
   225 
       
   226 declare steps.simps[simp del]
       
   227 
       
   228 lemma before_final: 
       
   229   assumes "steps (1, tp) A n = (0, tp')"
       
   230   obtains n' where "\<not> is_final (steps (1, tp) A n')" 
       
   231         and "steps (1, tp) A (Suc n') = (0, tp')"
       
   232 proof -
       
   233   from assms have "\<exists> n'. \<not> is_final (steps (1, tp) A n') \<and> 
       
   234                steps (1, tp) A (Suc n') = (0, tp')"
       
   235   proof(induct n arbitrary: tp', simp add: steps.simps)
       
   236     fix n tp'
       
   237     assume ind: 
       
   238       "\<And>tp'. steps (1, tp) A n = (0, tp') \<Longrightarrow>
       
   239       \<exists>n'. \<not> is_final (steps (1, tp) A n') \<and> steps (1, tp) A (Suc n') = (0, tp')"
       
   240     and h: " steps (1, tp) A (Suc n) = (0, tp')"
       
   241     from h show  "\<exists>n'. \<not> is_final (steps (1, tp) A n') \<and> steps (1, tp) A (Suc n') = (0, tp')"
       
   242     proof(simp add: step_red del: steps.simps, 
       
   243                      case_tac "(steps (Suc 0, tp) A n)", case_tac "a = 0", simp)
       
   244       fix a b c
       
   245       assume " steps (Suc 0, tp) A n = (0, tp')"
       
   246       hence "\<exists>n'. \<not> is_final (steps (1, tp) A n') \<and> steps (1, tp) A (Suc n') = (0, tp')"
       
   247         apply(rule_tac ind, simp)
       
   248         done
       
   249       thus "\<exists>n'. \<not> is_final (steps (Suc 0, tp) A n') \<and> step (steps (Suc 0, tp) A n') A = (0, tp')"
       
   250         apply(simp)
       
   251         done
       
   252     next
       
   253       fix a b c
       
   254       assume "steps (Suc 0, tp) A n = (a, b, c)"
       
   255              "step (steps (Suc 0, tp) A n) A = (0, tp')"
       
   256         "a \<noteq> 0"
       
   257       thus "\<exists>n'. \<not> is_final (steps (Suc 0, tp) A n') \<and> 
       
   258         step (steps (Suc 0, tp) A n') A = (0, tp')"
       
   259         apply(rule_tac x = n in exI, simp)
       
   260         done
       
   261     qed
       
   262   qed
       
   263   thus "(\<And>n'. \<lbrakk>\<not> is_final (steps (1, tp) A n'); 
       
   264     steps (1, tp) A (Suc n') = (0, tp')\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis"
       
   265     by auto
       
   266 qed
       
   267 
       
   268 declare tm_comp.simps [simp del] adjust.simps[simp del] shift.simps[simp del]
       
   269 
       
   270 lemma length_comp:
       
   271 "length (A |+| B) = length A + length B"
       
   272 apply(auto simp: tm_comp.simps)
       
   273 done
       
   274 
       
   275 lemma tmcomp_fetch_in_first:
       
   276   assumes "case (fetch A a x) of (ac, ns) \<Rightarrow> ns \<noteq> 0"
       
   277   shows "fetch (A |+| B) a x = fetch A a x"
       
   278 using assms
       
   279 apply(case_tac a, case_tac [!] x, 
       
   280 auto simp: length_comp tm_comp.simps length_adjust nth_append)
       
   281 apply(simp_all add: adjust.simps)
       
   282 done
       
   283 
       
   284 
       
   285 lemma is_final_eq: "is_final (ba, tp) = (ba = 0)"
       
   286 apply(case_tac tp, simp add: is_final.simps)
       
   287 done
       
   288 
       
   289 lemma t_merge_pre_eq_step: 
       
   290   assumes step: "step (a, b, c) (A, 0) = cf"
       
   291   and     tm_wf: "tm_wf (A, 0)" 
       
   292   and     unfinal: "\<not> is_final cf"
       
   293   shows "step (a, b, c) (A |+| B, 0) = cf"
       
   294 proof -
       
   295   have "fetch (A |+| B) a (read c) = fetch A a (read c)"
       
   296   proof(rule_tac tmcomp_fetch_in_first)
       
   297     from step and unfinal show "case fetch A a (read c) of (ac, ns) \<Rightarrow> ns \<noteq> 0"
       
   298       apply(auto simp: is_final.simps)
       
   299       apply(case_tac "fetch A a (read c)", simp_all add: is_final_eq)
       
   300       done
       
   301   qed      
       
   302   thus "?thesis"
       
   303     using step
       
   304     apply(auto simp: step.simps is_final.simps)
       
   305     done
       
   306 qed
       
   307 
       
   308 declare tm_wf.simps[simp del] step.simps[simp del]
       
   309 
       
   310 lemma t_merge_pre_eq:  
       
   311   "\<lbrakk>steps (Suc 0, tp) (A, 0) stp = cf; \<not> is_final cf; tm_wf (A, 0)\<rbrakk>
       
   312   \<Longrightarrow> steps (Suc 0, tp) (A |+| B, 0) stp = cf"
       
   313 proof(induct stp arbitrary: cf, simp add: steps.simps)
       
   314   fix stp cf
       
   315   assume ind: "\<And>cf. \<lbrakk>steps (Suc 0, tp) (A, 0) stp = cf; \<not> is_final cf; tm_wf (A, 0)\<rbrakk> 
       
   316     \<Longrightarrow> steps (Suc 0, tp) (A |+| B, 0) stp = cf"
       
   317   and h: "steps (Suc 0, tp) (A, 0) (Suc stp) = cf"
       
   318       "\<not> is_final cf" "tm_wf (A, 0)"
       
   319   from h show "steps (Suc 0, tp) (A |+| B, 0) (Suc stp) = cf"
       
   320   proof(simp add: step_red, case_tac "(steps (Suc 0, tp) (A, 0) stp)", simp)
       
   321     fix a b c
       
   322     assume g: "steps (Suc 0, tp) (A, 0) stp = (a, b, c)"
       
   323       "step (a, b, c) (A, 0) = cf"
       
   324     have "(steps (Suc 0, tp) (A |+| B, 0) stp) = (a, b, c)"
       
   325     proof(rule ind, simp_all add: h g)
       
   326       show "0 < a"
       
   327         using g h
       
   328         apply(simp add: step_red)
       
   329         apply(case_tac a, auto simp: step_0)
       
   330         apply(case_tac "steps (Suc 0, tp) (A, 0) stp", simp)
       
   331         done
       
   332     qed
       
   333     thus "step (steps (Suc 0, tp) (A |+| B, 0) stp) (A |+| B, 0) = cf"
       
   334       apply(simp)
       
   335       apply(rule_tac t_merge_pre_eq_step, simp_all add: g h)
       
   336       done
       
   337   qed
       
   338 qed
       
   339 
       
   340 lemma tmcomp_fetch_in_first2:
       
   341   assumes "fetch A a x = (ac, 0)"
       
   342           "tm_wf (A, 0)"
       
   343           "a \<le> length A div 2" "a > 0"
       
   344   shows "fetch (A |+| B) a x = (ac, Suc (length A div 2))"
       
   345 using assms
       
   346 apply(case_tac a, case_tac [!] x, 
       
   347 auto simp: length_comp tm_comp.simps length_adjust nth_append)
       
   348 apply(simp_all add: adjust.simps)
       
   349 done
       
   350 
       
   351 lemma tmcomp_exec_after_first:
       
   352   "\<lbrakk>0 < a; step (a, b, c) (A, 0) = (0, tp'); tm_wf (A, 0); 
       
   353        a \<le> length A div 2\<rbrakk>
       
   354        \<Longrightarrow> step (a, b, c) (A |+| B, 0) = (Suc (length A div 2), tp')"
       
   355 apply(simp add: step.simps, auto)
       
   356 apply(case_tac "fetch A a Bk", simp add: tmcomp_fetch_in_first2)
       
   357 apply(case_tac "fetch A a (hd c)", simp add: tmcomp_fetch_in_first2)
       
   358 done
       
   359 
       
   360 lemma step_nothalt_pre: "\<lbrakk>step (aa, ba, ca) (A, 0) = (a, b, c);  0 < a\<rbrakk> \<Longrightarrow> 0 < aa"
       
   361 apply(case_tac "aa = 0", simp add: step_0, simp)
       
   362 done
       
   363 
       
   364 lemma nth_in_set: 
       
   365   "\<lbrakk> A ! i = x; i <  length A\<rbrakk> \<Longrightarrow> x \<in> set A"
       
   366 by auto
       
   367 
       
   368 lemma step_nothalt: 
       
   369   "\<lbrakk>step (aa, ba, ca) (A, 0) = (a, b, c); 0 < a; tm_wf (A, 0)\<rbrakk> \<Longrightarrow> 
       
   370   a \<le> length A div 2"
       
   371 apply(simp add: step.simps)
       
   372 apply(case_tac aa, case_tac [!] aa, auto split: if_splits simp: tm_wf.simps)
       
   373 apply(case_tac "A ! (2 * nat)", simp)
       
   374 apply(erule_tac x = "(aa, a)" in ballE, simp_all add: nth_in_set)
       
   375 apply(case_tac "hd ca", auto split: if_splits simp: tm_wf.simps)
       
   376 apply(case_tac "A ! (2 * nat)", simp)
       
   377 apply(erule_tac x = "(aa, a)" in ballE, simp_all add: nth_in_set)
       
   378 apply(case_tac "A ! (Suc (2 * nat))")
       
   379 apply(erule_tac x = "(aa,bb)" in ballE, simp_all add: nth_in_set)
       
   380 done
       
   381 
       
   382 lemma steps_in_range: 
       
   383   " \<lbrakk>0 < a; steps (Suc 0, tp) (A, 0) stp = (a, b, c); tm_wf (A, 0)\<rbrakk>
       
   384   \<Longrightarrow> a \<le> length A div 2"
       
   385 proof(induct stp arbitrary: a b c)
       
   386   fix a b c
       
   387   assume h: "0 < a" "steps (Suc 0, tp) (A, 0) 0 = (a, b, c)" 
       
   388             "tm_wf (A, 0)"
       
   389   thus "a \<le> length A div 2"
       
   390     apply(simp add: steps.simps tm_wf.simps, auto)
       
   391     done
       
   392 next
       
   393   fix stp a b c
       
   394   assume ind: "\<And>a b c. \<lbrakk>0 < a; steps (Suc 0, tp) (A, 0) stp = (a, b, c); 
       
   395     tm_wf (A, 0)\<rbrakk> \<Longrightarrow> a \<le> length A div 2"
       
   396   and h: "0 < a" "steps (Suc 0, tp) (A, 0) (Suc stp) = (a, b, c)" "tm_wf (A, 0)"
       
   397   from h show "a \<le> length A div 2"
       
   398   proof(simp add: step_red, case_tac "(steps (Suc 0, tp) (A, 0) stp)", simp)
       
   399     fix aa ba ca
       
   400     assume g: "step (aa, ba, ca) (A, 0) = (a, b, c)" 
       
   401            "steps (Suc 0, tp) (A, 0) stp = (aa, ba, ca)"
       
   402     hence "aa \<le> length A div 2"
       
   403       apply(rule_tac ind, auto simp: h step_nothalt_pre)
       
   404       done
       
   405     thus "?thesis"
       
   406       using g h
       
   407       apply(rule_tac step_nothalt, auto)
       
   408       done
       
   409   qed
       
   410 qed
       
   411 
       
   412 lemma t_merge_pre_halt_same: 
       
   413   assumes a_ht: "steps (1, tp) (A, 0) n = (0, tp')"
       
   414   and a_wf: "tm_wf (A, 0)"
       
   415   obtains n' where "steps (1, tp) (A |+| B, 0) n' = (Suc (length A div 2), tp')"
       
   416 proof -
       
   417   assume a: "\<And>n. steps (1, tp) (A |+| B, 0) n = (Suc (length A div 2), tp') \<Longrightarrow> thesis"
       
   418   obtain stp' where "\<not> is_final (steps (1, tp) (A, 0) stp')" and 
       
   419                           "steps (1, tp) (A, 0) (Suc stp') = (0, tp')"
       
   420   using a_ht before_final by blast
       
   421   then have "steps (1, tp) (A |+| B, 0) (Suc stp') = (Suc (length A div 2), tp')"
       
   422   proof(simp add: step_red)
       
   423     assume "\<not> is_final (steps (Suc 0, tp) (A, 0) stp')"
       
   424            " step (steps (Suc 0, tp) (A, 0) stp') (A, 0) = (0, tp')"
       
   425     moreover hence "(steps (Suc 0, tp) (A |+| B, 0) stp') = (steps (Suc 0, tp) (A, 0) stp')"
       
   426       apply(rule_tac t_merge_pre_eq)
       
   427       apply(simp_all add: a_wf a_ht)
       
   428       done
       
   429     ultimately show "step (steps (Suc 0, tp) (A |+| B, 0) stp') (A |+| B, 0) = (Suc (length A div 2), tp')"
       
   430       apply(case_tac " steps (Suc 0, tp) (A, 0) stp'", simp)
       
   431       apply(rule tmcomp_exec_after_first, simp_all add: a_wf)
       
   432       apply(erule_tac steps_in_range, auto simp: a_wf)
       
   433       done
       
   434   qed
       
   435   with a show thesis by blast
       
   436 qed
       
   437 
       
   438 lemma tm_comp_fetch_second_zero:
       
   439   "\<lbrakk>fetch B sa' x = (a, 0); tm_wf (A, 0); tm_wf (B, 0); sa' > 0\<rbrakk>
       
   440      \<Longrightarrow> fetch (A |+| B) (sa' + (length A div 2)) x = (a, 0)"
       
   441 apply(case_tac x)
       
   442 apply(case_tac [!] sa',
       
   443   auto simp: fetch.simps length_comp length_adjust nth_append tm_comp.simps
       
   444              tm_wf.simps shift.simps split: if_splits)
       
   445 done 
       
   446 
       
   447 lemma tm_comp_fetch_second_inst:
       
   448   "\<lbrakk>sa > 0; s > 0;  tm_wf (A, 0); tm_wf (B, 0); fetch B sa x = (a, s)\<rbrakk>
       
   449      \<Longrightarrow> fetch (A |+| B) (sa + length A div 2) x = (a, s + length A div 2)"
       
   450 apply(case_tac x)
       
   451 apply(case_tac [!] sa,
       
   452   auto simp: fetch.simps length_comp length_adjust nth_append tm_comp.simps
       
   453              tm_wf.simps shift.simps split: if_splits)
       
   454 done 
       
   455 
       
   456 lemma t_merge_second_same:
       
   457   assumes a_wf: "tm_wf (A, 0)"
       
   458   and b_wf: "tm_wf (B, 0)"
       
   459   and steps: "steps (Suc 0, l, r) (B, 0) stp = (s, l', r')"
       
   460   shows "steps (Suc (length A div 2), l, r)  (A |+| B, 0) stp
       
   461        = (if s = 0 then 0
       
   462           else s + length A div 2, l', r')"
       
   463 using a_wf b_wf steps
       
   464 proof(induct stp arbitrary: s l' r', simp add: steps.simps, simp)
       
   465   fix stpa sa l'a r'a
       
   466   assume ind: "\<And>s l' r'. steps (Suc 0, l, r) (B, 0) stpa = (s, l', r') \<Longrightarrow>
       
   467     steps (Suc (length A div 2), l, r) (A |+| B, 0) stpa = 
       
   468                 (if s = 0 then 0 else s + length A div 2, l', r')"
       
   469   and h: "step (steps (Suc 0, l, r) (B, 0) stpa) (B, 0) = (sa, l'a, r'a)"
       
   470   obtain sa' l'' r'' where a: "(steps (Suc 0, l, r) (B, 0) stpa) = (sa', l'', r'')"
       
   471     apply(case_tac "steps (Suc 0, l, r) (B, 0) stpa", auto)
       
   472     done
       
   473   from this have b: "steps (Suc (length A div 2), l, r) (A |+| B, 0) stpa = 
       
   474                 (if sa' = 0 then 0 else sa' + length A div 2, l'', r'')"
       
   475     apply(erule_tac ind)
       
   476     done
       
   477   from a b h show 
       
   478     "(sa = 0 \<longrightarrow> step (steps (Suc (length A div 2), l, r) (A |+| B, 0) stpa) (A |+| B, 0) = (0, l'a, r'a)) \<and>
       
   479     (0 < sa \<longrightarrow> step (steps (Suc (length A div 2), l, r) (A |+| B, 0) stpa) (A |+| B, 0) = (sa + length A div 2, l'a, r'a))"
       
   480   proof(case_tac "sa' = 0", auto)
       
   481     assume "step (sa', l'', r'') (B, 0) = (0, l'a, r'a)" "0 < sa'"
       
   482     thus "step (sa' + length A div 2, l'', r'') (A |+| B, 0) = (0, l'a, r'a)"
       
   483       using a_wf b_wf
       
   484       apply(simp add:  step.simps)
       
   485       apply(case_tac "fetch B sa' (read r'')", auto)
       
   486       apply(simp_all add: step.simps tm_comp_fetch_second_zero)
       
   487       done
       
   488   next
       
   489     assume "step (sa', l'', r'') (B, 0) = (sa, l'a, r'a)" "0 < sa'" "0 < sa"
       
   490     thus "step (sa' + length A div 2, l'', r'') (A |+| B, 0) = (sa + length A div 2, l'a, r'a)"
       
   491       using a_wf b_wf
       
   492       apply(simp add: step.simps)
       
   493       apply(case_tac "fetch B sa' (read r'')", auto)
       
   494       apply(simp_all add: step.simps tm_comp_fetch_second_inst)
       
   495       done
       
   496   qed
       
   497 qed
       
   498 
       
   499 lemma t_merge_second_halt_same:
       
   500   "\<lbrakk>tm_wf (A, 0); tm_wf (B, 0); 
       
   501    steps (1, l, r) (B, 0) stp = (0, l', r')\<rbrakk>
       
   502      \<Longrightarrow> steps (Suc (length A div 2), l, r)  (A |+| B, 0) stp
       
   503        = (0, l', r')"
       
   504 using t_merge_second_same[where s = "0"]
       
   505 apply(auto)
       
   506 done
       
   507 
       
   508 lemma Hoare_plus_halt: 
       
   509   assumes aimpb: "Q1 \<mapsto> P2"
       
   510   and A_wf : "tm_wf (A, 0)"
       
   511   and B_wf : "tm_wf (B, 0)"
       
   512   and A_halt : "{P1} (A, 0) {Q1}"
       
   513   and B_halt : "{P2} (B, 0) {Q2}"
       
   514   shows "{P1} (A |+| B, 0) {Q2}"
       
   515 proof(rule HoareI)
       
   516   fix l r
       
   517   assume h: "P1 (l, r)"
       
   518   then obtain n1 where a: "is_final (steps (1, l, r) (A, 0) n1)" and b: "Q1 holds_for (steps (1, l, r) (A, 0) n1)"
       
   519     using A_halt unfolding Hoare_def by auto
       
   520   then obtain l' r' where "steps (1, l, r) (A, 0) n1 = (0, l', r')" and c: "Q1 holds_for (0, l', r')"
       
   521     by(case_tac "steps (1, l, r) (A, 0) n1", auto)
       
   522   then obtain stpa where d: "steps (1, l, r) (A |+| B, 0) stpa = (Suc (length A div 2), l', r')"
       
   523     using A_wf
       
   524     by(rule_tac t_merge_pre_halt_same, auto)
       
   525   from c aimpb have "P2 holds_for (0, l', r')"
       
   526     by(rule holds_for_imp)
       
   527   from this have "P2 (l', r')" by auto
       
   528   from this obtain n2 where e: "is_final (steps (1, l', r') (B, 0) n2)" and f: "Q2 holds_for (steps (1, l', r') (B, 0) n2)"
       
   529     using B_halt unfolding Hoare_def
       
   530     by auto
       
   531   then obtain l'' r'' where "steps (1, l', r') (B, 0) n2 = (0, l'', r'')" and g: "Q2 holds_for (0, l'', r'')"
       
   532     by(case_tac "steps (1, l', r') (B, 0) n2", auto)
       
   533   from this have "steps (Suc (length A div 2), l', r')  (A |+| B, 0) n2
       
   534     = (0, l'', r'')"
       
   535     apply(rule_tac t_merge_second_halt_same, auto simp: A_wf B_wf)
       
   536     done
       
   537   thus "\<exists>n. is_final (steps (1, l, r) (A |+| B, 0) n) \<and> Q2 holds_for (steps (1, l, r) (A |+| B, 0) n)"
       
   538     using d g
       
   539     apply(rule_tac x = "stpa + n2" in exI)
       
   540     apply(simp add: steps_add)
       
   541     done
       
   542 qed
       
   543 
       
   544 definition
       
   545   Hoare_unhalt :: "assert \<Rightarrow> tprog \<Rightarrow> bool" ("({(1_)}/ (_))" 50)
       
   546 where
       
   547   "{P} p \<equiv> 
       
   548      (\<forall>l r. P (l, r) \<longrightarrow> (\<forall> n . \<not> (is_final (steps (1, (l, r)) p n))))"
       
   549 
       
   550 lemma Hoare_unhalt_I:
       
   551   assumes "\<And>l r. P (l, r) \<Longrightarrow> \<forall> n. \<not> is_final (steps (1, (l, r)) p n)"
       
   552   shows "{P} p"
       
   553 unfolding Hoare_unhalt_def using assms by auto
       
   554 
       
   555 lemma Hoare_plus_unhalt: 
       
   556   assumes aimpb: "Q1 \<mapsto> P2"
       
   557   and A_wf : "tm_wf (A, 0)"
       
   558   and B_wf : "tm_wf (B, 0)"
       
   559   and A_halt : "{P1} (A, 0) {Q1}"
       
   560   and B_uhalt : "{P2} (B, 0)"
       
   561   shows "{P1} (A |+| B, 0)"
       
   562 proof(rule_tac Hoare_unhalt_I)
       
   563   fix l r
       
   564   assume h: "P1 (l, r)"
       
   565   then obtain n1 where a: "is_final (steps (1, l, r) (A, 0) n1)" and b: "Q1 holds_for (steps (1, l, r) (A, 0) n1)"
       
   566     using A_halt unfolding Hoare_def by auto
       
   567   then obtain l' r' where "steps (1, l, r) (A, 0) n1 = (0, l', r')" and c: "Q1 holds_for (0, l', r')"
       
   568     by(case_tac "steps (1, l, r) (A, 0) n1", auto)
       
   569   then obtain stpa where d: "steps (1, l, r) (A |+| B, 0) stpa = (Suc (length A div 2), l', r')"
       
   570     using A_wf
       
   571     by(rule_tac t_merge_pre_halt_same, auto)
       
   572   from c aimpb have "P2 holds_for (0, l', r')"
       
   573     by(rule holds_for_imp)
       
   574   from this have "P2 (l', r')" by auto
       
   575   from this have e: "\<forall> n. \<not> is_final (steps (Suc 0, l', r') (B, 0) n)  "
       
   576     using B_uhalt unfolding Hoare_unhalt_def
       
   577     by auto
       
   578   from e show "\<forall>n. \<not> is_final (steps (1, l, r) (A |+| B, 0) n)"
       
   579   proof(rule_tac allI, case_tac "n > stpa")
       
   580     fix n
       
   581     assume h2: "stpa < n"
       
   582     hence "\<not> is_final (steps (Suc 0, l', r') (B, 0) (n - stpa))"
       
   583       using e
       
   584       apply(erule_tac x = "n - stpa" in allE) by simp
       
   585     then obtain s'' l'' r'' where f: "steps (Suc 0, l', r') (B, 0) (n - stpa) = (s'', l'', r'')" and g: "s'' \<noteq> 0"
       
   586       apply(case_tac "steps (Suc 0, l', r') (B, 0) (n - stpa)", auto)
       
   587       done
       
   588     have k: "steps (Suc (length A div 2), l', r') (A |+| B, 0) (n - stpa) = (s''+ length A div 2, l'', r'') "
       
   589       using A_wf B_wf f g
       
   590       apply(drule_tac t_merge_second_same, auto)
       
   591       done
       
   592     show "\<not> is_final (steps (1, l, r) (A |+| B, 0) n)"
       
   593     proof -
       
   594       have "\<not> is_final (steps (1, l, r) (A |+| B, 0) (stpa + (n  - stpa)))"
       
   595         using d k A_wf
       
   596         apply(simp only: steps_add d, simp add: tm_wf.simps)
       
   597         done
       
   598       thus "\<not> is_final (steps (1, l, r) (A |+| B, 0) n)"
       
   599         using h2 by simp
       
   600     qed
       
   601   next
       
   602     fix n
       
   603     assume h2: "\<not> stpa < n"
       
   604     with d show "\<not> is_final (steps (1, l, r) (A |+| B, 0) n)"
       
   605       apply(auto)
       
   606       apply(subgoal_tac "\<exists> d. stpa = n + d", auto)
       
   607       apply(case_tac "(steps (Suc 0, l, r) (A |+| B, 0) n)", simp)
       
   608       apply(rule_tac x = "stpa - n" in exI, simp)
       
   609       done
       
   610   qed
       
   611 qed
       
   612         
       
   613 end
       
   614