1 theory UF_Rec |
|
2 imports Recs Turing2 |
|
3 begin |
|
4 |
|
5 section {* Coding of Turing Machines and tapes*} |
|
6 |
|
7 text {* |
|
8 The purpose of this section is to construct the coding function of Turing |
|
9 Machine, which is going to be named @{text "code"}. *} |
|
10 |
|
11 text {* Encoding of actions as numbers *} |
|
12 |
|
13 fun action_num :: "action \<Rightarrow> nat" |
|
14 where |
|
15 "action_num W0 = 0" |
|
16 | "action_num W1 = 1" |
|
17 | "action_num L = 2" |
|
18 | "action_num R = 3" |
|
19 | "action_num Nop = 4" |
|
20 |
|
21 fun cell_num :: "cell \<Rightarrow> nat" where |
|
22 "cell_num Bk = 0" |
|
23 | "cell_num Oc = 1" |
|
24 |
|
25 fun code_tp :: "cell list \<Rightarrow> nat list" |
|
26 where |
|
27 "code_tp [] = []" |
|
28 | "code_tp (c # tp) = (cell_num c) # code_tp tp" |
|
29 |
|
30 fun Code_tp where |
|
31 "Code_tp tp = lenc (code_tp tp)" |
|
32 |
|
33 fun Code_conf where |
|
34 "Code_conf (s, l, r) = (s, Code_tp l, Code_tp r)" |
|
35 |
|
36 fun code_instr :: "instr \<Rightarrow> nat" where |
|
37 "code_instr i = penc (action_num (fst i)) (snd i)" |
|
38 |
|
39 fun Code_instr :: "instr \<times> instr \<Rightarrow> nat" where |
|
40 "Code_instr i = penc (code_instr (fst i)) (code_instr (snd i))" |
|
41 |
|
42 fun code_tprog :: "tprog \<Rightarrow> nat list" |
|
43 where |
|
44 "code_tprog [] = []" |
|
45 | "code_tprog (i # tm) = Code_instr i # code_tprog tm" |
|
46 |
|
47 lemma code_tprog_length [simp]: |
|
48 "length (code_tprog tp) = length tp" |
|
49 by (induct tp) (simp_all) |
|
50 |
|
51 lemma code_tprog_nth [simp]: |
|
52 "n < length tp \<Longrightarrow> (code_tprog tp) ! n = Code_instr (tp ! n)" |
|
53 by (induct tp arbitrary: n) (simp_all add: nth_Cons') |
|
54 |
|
55 fun Code_tprog :: "tprog \<Rightarrow> nat" |
|
56 where |
|
57 "Code_tprog tm = lenc (code_tprog tm)" |
|
58 |
|
59 section {* Universal Function in HOL *} |
|
60 |
|
61 |
|
62 text {* Scanning and writing the right tape *} |
|
63 |
|
64 fun Scan where |
|
65 "Scan r = ldec r 0" |
|
66 |
|
67 fun Write where |
|
68 "Write n r = penc n (pdec2 r)" |
|
69 |
|
70 text {* |
|
71 The @{text Newleft} and @{text Newright} functions on page 91 of B book. |
|
72 They calculate the new left and right tape (@{text p} and @{text r}) according |
|
73 to an action @{text a}. |
|
74 *} |
|
75 |
|
76 fun Newleft :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat" |
|
77 where |
|
78 "Newleft p r a = (if a = 0 \<or> a = 1 then p else |
|
79 if a = 2 then pdec2 p else |
|
80 if a = 3 then penc (pdec1 r) p |
|
81 else p)" |
|
82 |
|
83 fun Newright :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat" |
|
84 where |
|
85 "Newright p r a = (if a = 0 then Write 0 r |
|
86 else if a = 1 then Write 1 r |
|
87 else if a = 2 then penc (pdec1 p) r |
|
88 else if a = 3 then pdec2 r |
|
89 else r)" |
|
90 |
|
91 text {* |
|
92 The @{text "Actn"} function given on page 92 of B book, which is used to |
|
93 fetch Turing Machine intructions. In @{text "Actn m q r"}, @{text "m"} is |
|
94 the code of the Turing Machine, @{text "q"} is the current state of |
|
95 Turing Machine, and @{text "r"} is the scanned cell of is the right tape. |
|
96 *} |
|
97 |
|
98 fun actn :: "nat \<Rightarrow> nat \<Rightarrow> nat" where |
|
99 "actn n 0 = pdec1 (pdec1 n)" |
|
100 | "actn n _ = pdec1 (pdec2 n)" |
|
101 |
|
102 fun Actn :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat" |
|
103 where |
|
104 "Actn m q r = (if q \<noteq> 0 \<and> within m q then (actn (ldec m (q - 1)) r) else 4)" |
|
105 |
|
106 fun newstat :: "nat \<Rightarrow> nat \<Rightarrow> nat" where |
|
107 "newstat n 0 = pdec2 (pdec1 n)" |
|
108 | "newstat n _ = pdec2 (pdec2 n)" |
|
109 |
|
110 fun Newstat :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat" |
|
111 where |
|
112 "Newstat m q r = (if q \<noteq> 0 then (newstat (ldec m (q - 1)) r) else 0)" |
|
113 |
|
114 fun Conf :: "nat \<times> (nat \<times> nat) \<Rightarrow> nat" |
|
115 where |
|
116 "Conf (q, (l, r)) = lenc [q, l, r]" |
|
117 |
|
118 fun Stat where |
|
119 (*"Stat c = (if c = 0 then 0 else ldec c 0)"*) |
|
120 "Stat c = ldec c 0" |
|
121 |
|
122 fun Left where |
|
123 "Left c = ldec c 1" |
|
124 |
|
125 fun Right where |
|
126 "Right c = ldec c 2" |
|
127 |
|
128 fun Newconf :: "nat \<Rightarrow> nat \<Rightarrow> nat" |
|
129 where |
|
130 "Newconf c m = Conf (Newstat m (Stat c) (Scan (Right c)), |
|
131 (Newleft (Left c) (Right c) (Actn m (Stat c) (Scan (Right c))), |
|
132 Newright (Left c) (Right c) (Actn m (Stat c) (Scan (Right c)))))" |
|
133 |
|
134 text {* |
|
135 @{text "Step k m r"} computes the TM configuration after @{text "k"} steps of execution |
|
136 of TM coded as @{text "m"} starting from the initial configuration where the left |
|
137 number equals @{text "0"}, right number equals @{text "r"}. *} |
|
138 |
|
139 fun Steps :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat" |
|
140 where |
|
141 "Steps cf p 0 = cf" |
|
142 | "Steps cf p (Suc n) = Steps (Newconf cf p) p n" |
|
143 |
|
144 text {* |
|
145 @{text "Nstd c"} returns true if the configuration coded |
|
146 by @{text "c"} is not a stardard final configuration. *} |
|
147 |
|
148 fun Nstd :: "nat \<Rightarrow> bool" |
|
149 where |
|
150 "Nstd c = (Stat c \<noteq> 0)" |
|
151 |
|
152 -- "tape conditions are missing" |
|
153 |
|
154 text{* |
|
155 @{text "Nostop t m r"} means that afer @{text "t"} steps of |
|
156 execution the TM coded by @{text "m"} is not at a stardard |
|
157 final configuration. *} |
|
158 |
|
159 fun Nostop :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> bool" |
|
160 where |
|
161 "Nostop m l r = Nstd (Conf (m, (l, r)))" |
|
162 |
|
163 text{* |
|
164 @{text "rec_halt"} is the recursive function calculating the steps a TM needs to |
|
165 execute before to reach a stardard final configuration. This recursive function is |
|
166 the only one using @{text "Mn"} combinator. So it is the only non-primitive recursive |
|
167 function needs to be used in the construction of the universal function @{text "rec_uf"}. |
|
168 *} |
|
169 |
|
170 fun Halt :: "nat \<Rightarrow> nat \<Rightarrow> nat" |
|
171 where |
|
172 "Halt m r = (LEAST t. \<not> Nostop t m r)" |
|
173 |
|
174 (* |
|
175 fun UF :: "nat \<Rightarrow> nat \<Rightarrow> nat" |
|
176 where |
|
177 "UF c m = (Right (Conf (Halt c m) c m))" |
|
178 *) |
|
179 |
|
180 text {* reading the value is missing *} |
|
181 |
|
182 section {* The UF can simulate Turing machines *} |
|
183 |
|
184 lemma Update_left_simulate: |
|
185 shows "Newleft (Code_tp l) (Code_tp r) (action_num a) = Code_tp (fst (update a (l, r)))" |
|
186 apply(induct a) |
|
187 apply(simp_all) |
|
188 apply(case_tac l) |
|
189 apply(simp_all) |
|
190 apply(case_tac r) |
|
191 apply(simp_all) |
|
192 done |
|
193 |
|
194 lemma Update_right_simulate: |
|
195 shows "Newright (Code_tp l) (Code_tp r) (action_num a) = Code_tp (snd (update a (l, r)))" |
|
196 apply(induct a) |
|
197 apply(simp_all) |
|
198 apply(case_tac r) |
|
199 apply(simp_all) |
|
200 apply(case_tac r) |
|
201 apply(simp_all) |
|
202 apply(case_tac l) |
|
203 apply(simp_all) |
|
204 apply(case_tac r) |
|
205 apply(simp_all) |
|
206 done |
|
207 |
|
208 lemma Fetch_state_simulate: |
|
209 "\<lbrakk>tm_wf tp\<rbrakk> \<Longrightarrow> Newstat (Code_tprog tp) st (cell_num c) = snd (fetch tp st c)" |
|
210 apply(induct tp st c rule: fetch.induct) |
|
211 apply(simp_all add: list_encode_inverse split: cell.split) |
|
212 done |
|
213 |
|
214 lemma Fetch_action_simulate: |
|
215 "\<lbrakk>tm_wf tp; st \<le> length tp\<rbrakk> \<Longrightarrow> Actn (Code_tprog tp) st (cell_num c) = action_num (fst (fetch tp st c))" |
|
216 apply(induct tp st c rule: fetch.induct) |
|
217 apply(simp_all add: list_encode_inverse split: cell.split) |
|
218 done |
|
219 |
|
220 lemma Scan_simulate: |
|
221 "Scan (Code_tp tp) = cell_num (read tp)" |
|
222 apply(case_tac tp) |
|
223 apply(simp_all) |
|
224 done |
|
225 |
|
226 lemma misc: |
|
227 "2 < (3::nat)" |
|
228 "1 < (3::nat)" |
|
229 "0 < (3::nat)" |
|
230 "length [x] = 1" |
|
231 "length [x, y] = 2" |
|
232 "length [x, y , z] = 3" |
|
233 "[x, y, z] ! 0 = x" |
|
234 "[x, y, z] ! 1 = y" |
|
235 "[x, y, z] ! 2 = z" |
|
236 apply(simp_all) |
|
237 done |
|
238 |
|
239 lemma New_conf_simulate: |
|
240 assumes "tm_wf tp" "st \<le> length tp" |
|
241 shows "Newconf (Conf (Code_conf (st, l, r))) (Code_tprog tp) = Conf (Code_conf (step (st, l, r) tp))" |
|
242 apply(subst step.simps) |
|
243 apply(simp only: Let_def) |
|
244 apply(subst Newconf.simps) |
|
245 apply(simp only: Conf.simps Code_conf.simps Right.simps Left.simps) |
|
246 apply(simp only: list_encode_inverse) |
|
247 apply(simp only: misc if_True Code_tp.simps) |
|
248 apply(simp only: prod_case_beta) |
|
249 apply(subst Fetch_state_simulate[OF assms, symmetric]) |
|
250 apply(simp only: Stat.simps) |
|
251 apply(simp only: list_encode_inverse) |
|
252 apply(simp only: misc if_True) |
|
253 apply(simp only: Scan_simulate[simplified Code_tp.simps]) |
|
254 apply(simp only: Fetch_action_simulate[OF assms]) |
|
255 apply(simp only: Update_left_simulate[simplified Code_tp.simps]) |
|
256 apply(simp only: Update_right_simulate[simplified Code_tp.simps]) |
|
257 apply(case_tac "update (fst (fetch tp st (read r))) (l, r)") |
|
258 apply(simp only: Code_conf.simps) |
|
259 apply(simp only: Conf.simps) |
|
260 apply(simp) |
|
261 done |
|
262 |
|
263 lemma Step_simulate: |
|
264 assumes "tm_wf tp" "fst cf \<le> length tp" |
|
265 shows "Steps (Conf (Code_conf cf)) (Code_tprog tp) n = Conf (Code_conf (steps cf tp n))" |
|
266 apply(induct n arbitrary: cf) |
|
267 apply(simp) |
|
268 apply(simp only: Steps.simps steps.simps) |
|
269 apply(case_tac cf) |
|
270 apply(simp only: ) |
|
271 apply(subst New_conf_simulate) |
|
272 apply(rule assms) |
|
273 defer |
|
274 apply(drule_tac x="step (a, b, c) tp" in meta_spec) |
|
275 apply(simp) |
|
276 |
|
277 |
|
278 section {* Coding of Turing Machines *} |
|
279 |
|
280 text {* |
|
281 The purpose of this section is to construct the coding function of Turing |
|
282 Machine, which is going to be named @{text "code"}. *} |
|
283 |
|
284 fun bl2nat :: "cell list \<Rightarrow> nat \<Rightarrow> nat" |
|
285 where |
|
286 "bl2nat [] n = 0" |
|
287 | "bl2nat (Bk # bl) n = bl2nat bl (Suc n)" |
|
288 | "bl2nat (Oc # bl) n = 2 ^ n + bl2nat bl (Suc n)" |
|
289 |
|
290 fun bl2wc :: "cell list \<Rightarrow> nat" |
|
291 where |
|
292 "bl2wc xs = bl2nat xs 0" |
|
293 |
|
294 lemma bl2nat_double [simp]: |
|
295 "bl2nat xs (Suc n) = 2 * bl2nat xs n" |
|
296 apply(induct xs arbitrary: n) |
|
297 apply(auto) |
|
298 apply(case_tac a) |
|
299 apply(auto) |
|
300 done |
|
301 |
|
302 lemma bl2nat_simps1 [simp]: |
|
303 shows "bl2nat (Bk \<up> y) n = 0" |
|
304 by (induct y) (auto) |
|
305 |
|
306 lemma bl2nat_simps2 [simp]: |
|
307 shows "bl2nat (Oc \<up> y) 0 = 2 ^ y - 1" |
|
308 apply(induct y) |
|
309 apply(auto) |
|
310 apply(case_tac "(2::nat)^ y") |
|
311 apply(auto) |
|
312 done |
|
313 |
|
314 fun Trpl_code :: "config \<Rightarrow> nat" |
|
315 where |
|
316 "Trpl_code (st, l, r) = Trpl (bl2wc l) st (bl2wc r)" |
|
317 |
|
318 |
|
319 |
|
320 fun block_map :: "cell \<Rightarrow> nat" |
|
321 where |
|
322 "block_map Bk = 0" |
|
323 | "block_map Oc = 1" |
|
324 |
|
325 fun Goedel_code' :: "nat list \<Rightarrow> nat \<Rightarrow> nat" |
|
326 where |
|
327 "Goedel_code' [] n = 1" |
|
328 | "Goedel_code' (x # xs) n = (Pi n) ^ x * Goedel_code' xs (Suc n) " |
|
329 |
|
330 fun Goedel_code :: "nat list \<Rightarrow> nat" |
|
331 where |
|
332 "Goedel_code xs = 2 ^ (length xs) * (Goedel_code' xs 1)" |
|
333 |
|
334 |
|
335 |
|
336 section {* Universal Function as Recursive Functions *} |
|
337 |
|
338 definition |
|
339 "rec_entry = CN rec_lo [Id 2 0, CN rec_pi [CN S [Id 2 1]]]" |
|
340 |
|
341 fun rec_listsum2 :: "nat \<Rightarrow> nat \<Rightarrow> recf" |
|
342 where |
|
343 "rec_listsum2 vl 0 = CN Z [Id vl 0]" |
|
344 | "rec_listsum2 vl (Suc n) = CN rec_add [rec_listsum2 vl n, Id vl n]" |
|
345 |
|
346 fun rec_strt' :: "nat \<Rightarrow> nat \<Rightarrow> recf" |
|
347 where |
|
348 "rec_strt' xs 0 = Z" |
|
349 | "rec_strt' xs (Suc n) = |
|
350 (let dbound = CN rec_add [rec_listsum2 xs n, constn n] in |
|
351 let t1 = CN rec_power [constn 2, dbound] in |
|
352 let t2 = CN rec_power [constn 2, CN rec_add [Id xs n, dbound]] in |
|
353 CN rec_add [rec_strt' xs n, CN rec_minus [t2, t1]])" |
|
354 |
|
355 fun rec_map :: "recf \<Rightarrow> nat \<Rightarrow> recf list" |
|
356 where |
|
357 "rec_map rf vl = map (\<lambda>i. CN rf [Id vl i]) [0..<vl]" |
|
358 |
|
359 fun rec_strt :: "nat \<Rightarrow> recf" |
|
360 where |
|
361 "rec_strt xs = CN (rec_strt' xs xs) (rec_map S xs)" |
|
362 |
|
363 definition |
|
364 "rec_scan = CN rec_mod [Id 1 0, constn 2]" |
|
365 |
|
366 definition |
|
367 "rec_newleft = |
|
368 (let cond1 = CN rec_disj [CN rec_eq [Id 3 2, Z], CN rec_eq [Id 3 2, constn 1]] in |
|
369 let cond2 = CN rec_eq [Id 3 2, constn 2] in |
|
370 let cond3 = CN rec_eq [Id 3 2, constn 3] in |
|
371 let case3 = CN rec_add [CN rec_mult [constn 2, Id 3 0], |
|
372 CN rec_mod [Id 3 1, constn 2]] in |
|
373 CN rec_if [cond1, Id 3 0, |
|
374 CN rec_if [cond2, CN rec_quo [Id 3 0, constn 2], |
|
375 CN rec_if [cond3, case3, Id 3 0]]])" |
|
376 |
|
377 definition |
|
378 "rec_newright = |
|
379 (let condn = \<lambda>n. CN rec_eq [Id 3 2, constn n] in |
|
380 let case0 = CN rec_minus [Id 3 1, CN rec_scan [Id 3 1]] in |
|
381 let case1 = CN rec_minus [CN rec_add [Id 3 1, constn 1], CN rec_scan [Id 3 1]] in |
|
382 let case2 = CN rec_add [CN rec_mult [constn 2, Id 3 1], |
|
383 CN rec_mod [Id 3 0, constn 2]] in |
|
384 let case3 = CN rec_quo [Id 2 1, constn 2] in |
|
385 CN rec_if [condn 0, case0, |
|
386 CN rec_if [condn 1, case1, |
|
387 CN rec_if [condn 2, case2, |
|
388 CN rec_if [condn 3, case3, Id 3 1]]]])" |
|
389 |
|
390 definition |
|
391 "rec_actn = (let add1 = CN rec_mult [constn 4, CN rec_pred [Id 3 1]] in |
|
392 let add2 = CN rec_mult [constn 2, CN rec_scan [Id 3 2]] in |
|
393 let entry = CN rec_entry [Id 3 0, CN rec_add [add1, add2]] |
|
394 in CN rec_if [Id 3 1, entry, constn 4])" |
|
395 |
|
396 definition rec_newstat :: "recf" |
|
397 where |
|
398 "rec_newstat = (let add1 = CN rec_mult [constn 4, CN rec_pred [Id 3 1]] in |
|
399 let add2 = CN S [CN rec_mult [constn 2, CN rec_scan [Id 3 2]]] in |
|
400 let entry = CN rec_entry [Id 3 0, CN rec_add [add1, add2]] |
|
401 in CN rec_if [Id 3 1, entry, Z])" |
|
402 |
|
403 definition |
|
404 "rec_trpl = CN rec_penc [CN rec_penc [Id 3 0, Id 3 1], Id 3 2]" |
|
405 |
|
406 definition |
|
407 "rec_left = rec_pdec1" |
|
408 |
|
409 definition |
|
410 "rec_right = CN rec_pdec2 [rec_pdec1]" |
|
411 |
|
412 definition |
|
413 "rec_stat = CN rec_pdec2 [rec_pdec2]" |
|
414 |
|
415 definition |
|
416 "rec_newconf = (let act = CN rec_actn [Id 2 0, CN rec_stat [Id 2 1], CN rec_right [Id 2 1]] in |
|
417 let left = CN rec_left [Id 2 1] in |
|
418 let right = CN rec_right [Id 2 1] in |
|
419 let stat = CN rec_stat [Id 2 1] in |
|
420 let one = CN rec_newleft [left, right, act] in |
|
421 let two = CN rec_newstat [Id 2 0, stat, right] in |
|
422 let three = CN rec_newright [left, right, act] |
|
423 in CN rec_trpl [one, two, three])" |
|
424 |
|
425 definition |
|
426 "rec_conf = PR (CN rec_trpl [constn 0, constn 1, Id 2 1]) |
|
427 (CN rec_newconf [Id 4 2 , Id 4 1])" |
|
428 |
|
429 definition |
|
430 "rec_nstd = (let disj1 = CN rec_noteq [rec_stat, constn 0] in |
|
431 let disj2 = CN rec_noteq [rec_left, constn 0] in |
|
432 let rhs = CN rec_pred [CN rec_power [constn 2, CN rec_lg [CN S [rec_right], constn 2]]] in |
|
433 let disj3 = CN rec_noteq [rec_right, rhs] in |
|
434 let disj4 = CN rec_eq [rec_right, constn 0] in |
|
435 CN rec_disj [CN rec_disj [CN rec_disj [disj1, disj2], disj3], disj4])" |
|
436 |
|
437 definition |
|
438 "rec_nostop = CN rec_nstd [rec_conf]" |
|
439 |
|
440 definition |
|
441 "rec_value = CN rec_pred [CN rec_lg [S, constn 2]]" |
|
442 |
|
443 definition |
|
444 "rec_halt = MN rec_nostop" |
|
445 |
|
446 definition |
|
447 "rec_uf = CN rec_value [CN rec_right [CN rec_conf [rec_halt, Id 2 0, Id 2 1]]]" |
|
448 |
|
449 |
|
450 |
|
451 section {* Correctness Proofs for Recursive Functions *} |
|
452 |
|
453 lemma entry_lemma [simp]: |
|
454 "rec_eval rec_entry [sr, i] = Entry sr i" |
|
455 by(simp add: rec_entry_def) |
|
456 |
|
457 lemma listsum2_lemma [simp]: |
|
458 "length xs = vl \<Longrightarrow> rec_eval (rec_listsum2 vl n) xs = Listsum2 xs n" |
|
459 by (induct n) (simp_all) |
|
460 |
|
461 lemma strt'_lemma [simp]: |
|
462 "length xs = vl \<Longrightarrow> rec_eval (rec_strt' vl n) xs = Strt' xs n" |
|
463 by (induct n) (simp_all add: Let_def) |
|
464 |
|
465 lemma map_suc: |
|
466 "map (\<lambda>x. Suc (xs ! x)) [0..<length xs] = map Suc xs" |
|
467 proof - |
|
468 have "Suc \<circ> (\<lambda>x. xs ! x) = (\<lambda>x. Suc (xs ! x))" by (simp add: comp_def) |
|
469 then have "map (\<lambda>x. Suc (xs ! x)) [0..<length xs] = map (Suc \<circ> (\<lambda>x. xs ! x)) [0..<length xs]" by simp |
|
470 also have "... = map Suc (map (\<lambda>x. xs ! x) [0..<length xs])" by simp |
|
471 also have "... = map Suc xs" by (simp add: map_nth) |
|
472 finally show "map (\<lambda>x. Suc (xs ! x)) [0..<length xs] = map Suc xs" . |
|
473 qed |
|
474 |
|
475 lemma strt_lemma [simp]: |
|
476 "length xs = vl \<Longrightarrow> rec_eval (rec_strt vl) xs = Strt xs" |
|
477 by (simp add: comp_def map_suc[symmetric]) |
|
478 |
|
479 lemma scan_lemma [simp]: |
|
480 "rec_eval rec_scan [r] = r mod 2" |
|
481 by(simp add: rec_scan_def) |
|
482 |
|
483 lemma newleft_lemma [simp]: |
|
484 "rec_eval rec_newleft [p, r, a] = Newleft p r a" |
|
485 by (simp add: rec_newleft_def Let_def) |
|
486 |
|
487 lemma newright_lemma [simp]: |
|
488 "rec_eval rec_newright [p, r, a] = Newright p r a" |
|
489 by (simp add: rec_newright_def Let_def) |
|
490 |
|
491 lemma actn_lemma [simp]: |
|
492 "rec_eval rec_actn [m, q, r] = Actn m q r" |
|
493 by (simp add: rec_actn_def) |
|
494 |
|
495 lemma newstat_lemma [simp]: |
|
496 "rec_eval rec_newstat [m, q, r] = Newstat m q r" |
|
497 by (simp add: rec_newstat_def) |
|
498 |
|
499 lemma trpl_lemma [simp]: |
|
500 "rec_eval rec_trpl [p, q, r] = Trpl p q r" |
|
501 apply(simp) |
|
502 apply (simp add: rec_trpl_def) |
|
503 |
|
504 lemma left_lemma [simp]: |
|
505 "rec_eval rec_left [c] = Left c" |
|
506 by(simp add: rec_left_def) |
|
507 |
|
508 lemma right_lemma [simp]: |
|
509 "rec_eval rec_right [c] = Right c" |
|
510 by(simp add: rec_right_def) |
|
511 |
|
512 lemma stat_lemma [simp]: |
|
513 "rec_eval rec_stat [c] = Stat c" |
|
514 by(simp add: rec_stat_def) |
|
515 |
|
516 lemma newconf_lemma [simp]: |
|
517 "rec_eval rec_newconf [m, c] = Newconf m c" |
|
518 by (simp add: rec_newconf_def Let_def) |
|
519 |
|
520 lemma conf_lemma [simp]: |
|
521 "rec_eval rec_conf [k, m, r] = Conf k m r" |
|
522 by(induct k) (simp_all add: rec_conf_def) |
|
523 |
|
524 lemma nstd_lemma [simp]: |
|
525 "rec_eval rec_nstd [c] = (if Nstd c then 1 else 0)" |
|
526 by(simp add: rec_nstd_def) |
|
527 |
|
528 lemma nostop_lemma [simp]: |
|
529 "rec_eval rec_nostop [t, m, r] = (if Nostop t m r then 1 else 0)" |
|
530 by (simp add: rec_nostop_def) |
|
531 |
|
532 lemma value_lemma [simp]: |
|
533 "rec_eval rec_value [x] = Value x" |
|
534 by (simp add: rec_value_def) |
|
535 |
|
536 lemma halt_lemma [simp]: |
|
537 "rec_eval rec_halt [m, r] = Halt m r" |
|
538 by (simp add: rec_halt_def) |
|
539 |
|
540 lemma uf_lemma [simp]: |
|
541 "rec_eval rec_uf [m, r] = UF m r" |
|
542 by (simp add: rec_uf_def) |
|
543 |
|
544 |
|
545 subsection {* Relating interperter functions to the execution of TMs *} |
|
546 |
|
547 lemma rec_step: |
|
548 assumes "(\<lambda> (s, l, r). s \<le> length tp div 2) c" |
|
549 shows "Trpl_code (step0 c tp) = Newconf (Code tp) (Trpl_code c)" |
|
550 apply(cases c) |
|
551 apply(simp only: Trpl_code.simps) |
|
552 apply(simp only: Let_def step.simps) |
|
553 apply(case_tac "fetch tp (a - 0) (read ca)") |
|
554 apply(simp only: prod.cases) |
|
555 apply(case_tac "update aa (b, ca)") |
|
556 apply(simp only: prod.cases) |
|
557 apply(simp only: Trpl_code.simps) |
|
558 apply(simp only: Newconf.simps) |
|
559 apply(simp only: Left.simps) |
|
560 oops |
|
561 |
|
562 lemma rec_steps: |
|
563 assumes "tm_wf0 tp" |
|
564 shows "Trpl_code (steps0 (1, Bk \<up> l, <lm>) tp stp) = Conf stp (Code tp) (bl2wc (<lm>))" |
|
565 apply(induct stp) |
|
566 apply(simp) |
|
567 apply(simp) |
|
568 oops |
|
569 |
|
570 |
|
571 lemma F_correct: |
|
572 assumes tm: "steps0 (1, Bk \<up> l, <lm>) tp stp = (0, Bk \<up> m, Oc \<up> rs @ Bk \<up> n)" |
|
573 and wf: "tm_wf0 tp" "0 < rs" |
|
574 shows "rec_eval rec_uf [Code tp, bl2wc (<lm>)] = (rs - Suc 0)" |
|
575 proof - |
|
576 from least_steps[OF tm] |
|
577 obtain stp_least where |
|
578 before: "\<forall>stp' < stp_least. \<not> is_final (steps0 (1, Bk \<up> l, <lm>) tp stp')" and |
|
579 after: "\<forall>stp' \<ge> stp_least. is_final (steps0 (1, Bk \<up> l, <lm>) tp stp')" by blast |
|
580 have "Halt (Code tp) (bl2wc (<lm>)) = stp_least" sorry |
|
581 show ?thesis |
|
582 apply(simp only: uf_lemma) |
|
583 apply(simp only: UF.simps) |
|
584 apply(simp only: Halt.simps) |
|
585 oops |
|
586 |
|
587 |
|
588 end |
|
589 |
|