thys/uncomputable.thy
changeset 103 294576baaeed
parent 102 cdef5b1072fe
child 105 2cae8a39803e
equal deleted inserted replaced
102:cdef5b1072fe 103:294576baaeed
   102 apply(auto simp del: steps.simps)
   102 apply(auto simp del: steps.simps)
   103 apply(rule_tac inv_begin_step)
   103 apply(rule_tac inv_begin_step)
   104 apply(simp_all add: assms)
   104 apply(simp_all add: assms)
   105 done
   105 done
   106 
   106 
       
   107 (*
   107 lemma begin_partial_correctness:
   108 lemma begin_partial_correctness:
   108   assumes "\<exists>stp. steps0 cf tcopy_begin stp = (0, l, r)"
   109   assumes "\<exists>stp. is_final (steps0 (1, [], Oc \<up> n) tcopy_begin stp)"
       
   110   shows "0 < n \<Longrightarrow> {inv_begin1 n} tcopy_begin {inv_begin0 n}"
       
   111 using assms 
       
   112 apply(auto simp add: Hoare_halt_def)
       
   113 apply(rule_tac x="stp" in exI)
       
   114 apply(simp)
       
   115 apply(case_tac "steps0 (Suc 0, [], Oc \<up> n) tcopy_begin stp")
       
   116 apply(simp)
       
   117 apply(case_tac n)
       
   118 apply(simp)
       
   119 apply(simp)
       
   120 apply(case_tac nat)
       
   121 apply(simp)
       
   122 apply(simp)
       
   123 *)
   109 
   124 
   110 fun measure_begin_state :: "config \<Rightarrow> nat"
   125 fun measure_begin_state :: "config \<Rightarrow> nat"
   111   where
   126   where
   112   "measure_begin_state (s, l, r) = (if s = 0 then 0 else 5 - s)"
   127   "measure_begin_state (s, l, r) = (if s = 0 then 0 else 5 - s)"
   113 
   128