thys/recursive.thy
author Christian Urban <christian dot urban at kcl dot ac dot uk>
Wed, 06 Feb 2013 14:06:18 +0000
changeset 138 7fa1b8e88d76
parent 131 e995ae949731
permissions -rw-r--r--
updated
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
70
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     1
theory recursive
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     2
imports Main rec_def abacus
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     3
begin
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     4
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     5
section {* 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     6
  Compiling from recursive functions to Abacus machines
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     7
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     8
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
     9
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    10
  Some auxilliary Abacus machines used to construct the result Abacus machines.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    11
*}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    12
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    13
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    14
  @{text "get_paras_num recf"} returns the arity of recursive function @{text "recf"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    15
*}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    16
fun get_paras_num :: "recf \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    17
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    18
  "get_paras_num z = 1" |
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    19
  "get_paras_num s = 1" |
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    20
  "get_paras_num (id m n) = m" |
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    21
  "get_paras_num (Cn n f gs) = n" |
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    22
  "get_paras_num (Pr n f g) = Suc n"  |
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    23
  "get_paras_num (Mn n f) = n"  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    24
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    25
fun addition :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> abc_prog"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    26
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    27
  "addition m n p = [Dec m 4, Inc n, Inc p, Goto 0, Dec p 7, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    28
                       Inc m, Goto 4]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    29
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    30
fun mv_box :: "nat \<Rightarrow> nat \<Rightarrow> abc_prog"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    31
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    32
  "mv_box m n = [Dec m 3, Inc n, Goto 0]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    33
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    34
fun abc_inst_shift :: "abc_inst \<Rightarrow> nat \<Rightarrow> abc_inst"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    35
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    36
  "abc_inst_shift (Inc m) n = Inc m" |
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    37
  "abc_inst_shift (Dec m e) n = Dec m (e + n)" |
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    38
  "abc_inst_shift (Goto m) n = Goto (m + n)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    39
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    40
fun abc_shift :: "abc_inst list \<Rightarrow> nat \<Rightarrow> abc_inst list" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    41
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    42
  "abc_shift xs n = map (\<lambda> x. abc_inst_shift x n) xs" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    43
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    44
fun abc_append :: "abc_inst list \<Rightarrow> abc_inst list \<Rightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    45
                           abc_inst list" (infixl "[+]" 60)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    46
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    47
  "abc_append al bl = (let al_len = length al in 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    48
                           al @ abc_shift bl al_len)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    49
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    50
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    51
  The compilation of @{text "z"}-operator.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    52
*}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    53
definition rec_ci_z :: "abc_inst list"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    54
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    55
  "rec_ci_z \<equiv> [Goto 1]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    56
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    57
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    58
  The compilation of @{text "s"}-operator.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    59
*}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    60
definition rec_ci_s :: "abc_inst list"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    61
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    62
  "rec_ci_s \<equiv> (addition 0 1 2 [+] [Inc 1])"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    63
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    64
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    65
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    66
  The compilation of @{text "id i j"}-operator
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    67
*}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    68
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    69
fun rec_ci_id :: "nat \<Rightarrow> nat \<Rightarrow> abc_inst list"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    70
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    71
  "rec_ci_id i j = addition j i (i + 1)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    72
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    73
fun mv_boxes :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> abc_inst list"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    74
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    75
  "mv_boxes ab bb 0 = []" |
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    76
  "mv_boxes ab bb (Suc n) = mv_boxes ab bb n [+] mv_box (ab + n)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    77
  (bb + n)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    78
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    79
fun empty_boxes :: "nat \<Rightarrow> abc_inst list"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    80
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    81
  "empty_boxes 0 = []" |
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    82
  "empty_boxes (Suc n) = empty_boxes n [+] [Dec n 2, Goto 0]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    83
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    84
fun cn_merge_gs ::
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    85
  "(abc_inst list \<times> nat \<times> nat) list \<Rightarrow> nat \<Rightarrow> abc_inst list"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    86
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    87
  "cn_merge_gs [] p = []" |
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    88
  "cn_merge_gs (g # gs) p = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    89
      (let (gprog, gpara, gn) = g in 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    90
         gprog [+] mv_box gpara p [+] cn_merge_gs gs (Suc p))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    91
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    92
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    93
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    94
  The compiler of recursive functions, where @{text "rec_ci recf"} return 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    95
  @{text "(ap, arity, fp)"}, where @{text "ap"} is the Abacus program, @{text "arity"} is the 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    96
  arity of the recursive function @{text "recf"}, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    97
@{text "fp"} is the amount of memory which is going to be
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    98
  used by @{text "ap"} for its execution. 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
    99
*}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   100
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   101
function rec_ci :: "recf \<Rightarrow> abc_inst list \<times> nat \<times> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   102
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   103
  "rec_ci z = (rec_ci_z, 1, 2)" |
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   104
  "rec_ci s = (rec_ci_s, 1, 3)" |
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   105
  "rec_ci (id m n) = (rec_ci_id m n, m, m + 2)" |
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   106
  "rec_ci (Cn n f gs) = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   107
      (let cied_gs = map (\<lambda> g. rec_ci g) (f # gs) in
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   108
       let (fprog, fpara, fn) = hd cied_gs in 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   109
       let pstr = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   110
        Max (set (Suc n # fn # (map (\<lambda> (aprog, p, n). n) cied_gs))) in
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   111
       let qstr = pstr + Suc (length gs) in 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   112
       (cn_merge_gs (tl cied_gs) pstr [+] mv_boxes 0 qstr n [+] 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   113
          mv_boxes pstr 0 (length gs) [+] fprog [+] 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   114
            mv_box fpara pstr [+] empty_boxes (length gs) [+] 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   115
             mv_box pstr n [+] mv_boxes qstr 0 n, n,  qstr + n))" |
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   116
  "rec_ci (Pr n f g) = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   117
         (let (fprog, fpara, fn) = rec_ci f in 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   118
          let (gprog, gpara, gn) = rec_ci g in 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   119
          let p = Max (set ([n + 3, fn, gn])) in 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   120
          let e = length gprog + 7 in 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   121
           (mv_box n p [+] fprog [+] mv_box n (Suc n) [+] 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   122
               (([Dec p e] [+] gprog [+] 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   123
                 [Inc n, Dec (Suc n) 3, Goto 1]) @
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   124
                     [Dec (Suc (Suc n)) 0, Inc (Suc n), Goto (length gprog + 4)]),
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   125
             Suc n, p + 1))" |
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   126
  "rec_ci (Mn n f) =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   127
         (let (fprog, fpara, fn) = rec_ci f in 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   128
          let len = length (fprog) in 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   129
            (fprog @ [Dec (Suc n) (len + 5), Dec (Suc n) (len + 3),
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   130
             Goto (len + 1), Inc n, Goto 0], n, max (Suc n) fn) )"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   131
  by pat_completeness auto
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   132
termination 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   133
proof
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   134
term size
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   135
  show "wf (measure size)" by auto
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   136
next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   137
  fix n f gs x
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   138
  assume "(x::recf) \<in> set (f # gs)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   139
  thus "(x, Cn n f gs) \<in> measure size"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   140
    by(induct gs, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   141
next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   142
  fix n f g
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   143
  show "(f, Pr n f g) \<in> measure size" by auto
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   144
next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   145
  fix n f g x xa y xb ya
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   146
  show "(g, Pr n f g) \<in> measure size" by auto
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   147
next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   148
  fix n f
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   149
  show "(f, Mn n f) \<in> measure size" by auto
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   150
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   151
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   152
declare rec_ci.simps [simp del] rec_ci_s_def[simp del] 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   153
        rec_ci_z_def[simp del] rec_ci_id.simps[simp del]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   154
        mv_boxes.simps[simp del] abc_append.simps[simp del]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   155
        mv_box.simps[simp del] addition.simps[simp del]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   156
  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   157
thm rec_calc_rel.induct
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   158
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   159
declare abc_steps_l.simps[simp del] abc_fetch.simps[simp del] 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   160
        abc_step_l.simps[simp del] 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   161
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   162
lemma abc_steps_add: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   163
  "abc_steps_l (as, lm) ap (m + n) = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   164
         abc_steps_l (abc_steps_l (as, lm) ap m) ap n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   165
apply(induct m arbitrary: n as lm, simp add: abc_steps_l.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   166
proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   167
  fix m n as lm
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   168
  assume ind: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   169
    "\<And>n as lm. abc_steps_l (as, lm) ap (m + n) = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   170
                   abc_steps_l (abc_steps_l (as, lm) ap m) ap n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   171
  show "abc_steps_l (as, lm) ap (Suc m + n) = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   172
             abc_steps_l (abc_steps_l (as, lm) ap (Suc m)) ap n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   173
    apply(insert ind[of as lm "Suc n"], simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   174
    apply(insert ind[of as lm "Suc 0"], simp add: abc_steps_l.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   175
    apply(case_tac "(abc_steps_l (as, lm) ap m)", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   176
    apply(simp add: abc_steps_l.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   177
    apply(case_tac "abc_step_l (a, b) (abc_fetch a ap)", 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   178
          simp add: abc_steps_l.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   179
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   180
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   181
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   182
(*lemmas: rec_ci and rec_calc_rel*)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   183
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   184
lemma rec_calc_inj_case_z: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   185
  "\<lbrakk>rec_calc_rel z l x; rec_calc_rel z l y\<rbrakk> \<Longrightarrow> x = y"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   186
apply(auto elim: calc_z_reverse)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   187
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   188
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   189
lemma  rec_calc_inj_case_s: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   190
  "\<lbrakk>rec_calc_rel s l x; rec_calc_rel s l y\<rbrakk> \<Longrightarrow> x = y"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   191
apply(auto elim: calc_s_reverse)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   192
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   193
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   194
lemma rec_calc_inj_case_id:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   195
  "\<lbrakk>rec_calc_rel (recf.id nat1 nat2) l x;
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   196
    rec_calc_rel (recf.id nat1 nat2) l y\<rbrakk> \<Longrightarrow> x = y"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   197
apply(auto elim: calc_id_reverse)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   198
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   199
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   200
lemma rec_calc_inj_case_mn:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   201
  assumes ind: "\<And> l x y. \<lbrakk>rec_calc_rel f l x; rec_calc_rel f l y\<rbrakk> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   202
           \<Longrightarrow> x = y" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   203
  and h: "rec_calc_rel (Mn n f) l x" "rec_calc_rel (Mn n f) l y"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   204
  shows "x = y"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   205
  apply(insert h)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   206
  apply(elim  calc_mn_reverse)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   207
  apply(case_tac "x > y", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   208
  apply(erule_tac x = "y" in allE, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   209
proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   210
  fix v va
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   211
  assume "rec_calc_rel f (l @ [y]) 0" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   212
    "rec_calc_rel f (l @ [y]) v"  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   213
    "0 < v"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   214
  thus "False"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   215
    apply(insert ind[of "l @ [y]" 0 v], simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   216
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   217
next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   218
  fix v va
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   219
  assume 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   220
    "rec_calc_rel f (l @ [x]) 0" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   221
    "\<forall>x<y. \<exists>v. rec_calc_rel f (l @ [x]) v \<and> 0 < v" "\<not> y < x"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   222
  thus "x = y"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   223
    apply(erule_tac x = "x" in allE)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   224
    apply(case_tac "x = y", auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   225
    apply(drule_tac y = v in ind, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   226
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   227
qed 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   228
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   229
lemma rec_calc_inj_case_pr: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   230
  assumes f_ind: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   231
  "\<And>l x y. \<lbrakk>rec_calc_rel f l x; rec_calc_rel f l y\<rbrakk> \<Longrightarrow> x = y"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   232
  and g_ind:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   233
  "\<And>x xa y xb ya l xc yb. 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   234
  \<lbrakk>x = rec_ci f; (xa, y) = x; (xb, ya) = y; 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   235
  rec_calc_rel g l xc; rec_calc_rel g l yb\<rbrakk> \<Longrightarrow> xc = yb"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   236
  and h: "rec_calc_rel (Pr n f g) l x" "rec_calc_rel (Pr n f g) l y"  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   237
  shows "x = y"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   238
  apply(case_tac "rec_ci f")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   239
proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   240
  fix a b c
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   241
  assume "rec_ci f = (a, b, c)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   242
  hence ng_ind: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   243
    "\<And> l xc yb. \<lbrakk>rec_calc_rel g l xc; rec_calc_rel g l yb\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   244
    \<Longrightarrow> xc = yb"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   245
    apply(insert g_ind[of "(a, b, c)" "a" "(b, c)" b c], simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   246
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   247
  from h show "x = y"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   248
    apply(erule_tac calc_pr_reverse, erule_tac calc_pr_reverse)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   249
    apply(erule f_ind, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   250
    apply(erule_tac calc_pr_reverse, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   251
  proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   252
    fix la ya ry laa yaa rya
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   253
    assume k1:  "rec_calc_rel g (la @ [ya, ry]) x" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   254
      "rec_calc_rel g (la @ [ya, rya]) y"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   255
      and k2: "rec_calc_rel (Pr (length la) f g) (la @ [ya]) ry"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   256
              "rec_calc_rel (Pr (length la) f g) (la @ [ya]) rya"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   257
    from k2 have "ry = rya"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   258
      apply(induct ya arbitrary: ry rya)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   259
      apply(erule_tac calc_pr_reverse, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   260
        erule_tac calc_pr_reverse, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   261
      apply(erule f_ind, simp, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   262
      apply(erule_tac calc_pr_reverse, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   263
      apply(erule_tac rSucy = rya in calc_pr_reverse, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   264
    proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   265
      fix ya ry rya l y ryb laa yb ryc
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   266
      assume ind:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   267
        "\<And>ry rya. \<lbrakk>rec_calc_rel (Pr (length l) f g) (l @ [y]) ry; 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   268
                   rec_calc_rel (Pr (length l) f g) (l @ [y]) rya\<rbrakk> \<Longrightarrow> ry = rya"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   269
        and j: "rec_calc_rel (Pr (length l) f g) (l @ [y]) ryb"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   270
        "rec_calc_rel g (l @ [y, ryb]) ry" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   271
        "rec_calc_rel (Pr (length l) f g) (l @ [y]) ryc" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   272
        "rec_calc_rel g (l @ [y, ryc]) rya"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   273
      from j show "ry = rya"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   274
	apply(insert ind[of ryb ryc], simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   275
	apply(insert ng_ind[of "l @ [y, ryc]" ry rya], simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   276
	done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   277
    qed 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   278
    from k1 and this show "x = y"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   279
      apply(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   280
      apply(insert ng_ind[of "la @ [ya, rya]" x y], simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   281
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   282
  qed  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   283
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   284
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   285
lemma Suc_nth_part_eq:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   286
  "\<forall>k<Suc (length list). (a # xs) ! k = (aa # list) ! k
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   287
       \<Longrightarrow> \<forall>k<(length list). (xs) ! k = (list) ! k"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   288
apply(rule allI, rule impI)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   289
apply(erule_tac x = "Suc k" in allE, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   290
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   291
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   292
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   293
lemma list_eq_intro:  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   294
  "\<lbrakk>length xs = length ys; \<forall> k < length xs. xs ! k = ys ! k\<rbrakk> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   295
  \<Longrightarrow> xs = ys"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   296
apply(induct xs arbitrary: ys, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   297
apply(case_tac ys, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   298
proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   299
  fix a xs ys aa list
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   300
  assume ind: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   301
    "\<And>ys. \<lbrakk>length list = length ys; \<forall>k<length ys. xs ! k = ys ! k\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   302
    \<Longrightarrow> xs = ys"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   303
    and h: "length xs = length list" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   304
    "\<forall>k<Suc (length list). (a # xs) ! k = (aa # list) ! k"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   305
  from h show "a = aa \<and> xs = list"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   306
    apply(insert ind[of list], simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   307
    apply(frule Suc_nth_part_eq, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   308
    apply(erule_tac x = "0" in allE, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   309
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   310
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   311
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   312
lemma rec_calc_inj_case_cn: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   313
  assumes ind: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   314
  "\<And>x l xa y.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   315
  \<lbrakk>x = f \<or> x \<in> set gs; rec_calc_rel x l xa; rec_calc_rel x l y\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   316
  \<Longrightarrow> xa = y"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   317
  and h: "rec_calc_rel (Cn n f gs) l x" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   318
         "rec_calc_rel (Cn n f gs) l y"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   319
  shows "x = y"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   320
  apply(insert h, elim  calc_cn_reverse)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   321
  apply(subgoal_tac "rs = rsa")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   322
  apply(rule_tac x = f and l = rsa and xa = x and y = y in ind, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   323
        simp, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   324
  apply(intro list_eq_intro, simp, rule allI, rule impI)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   325
  apply(erule_tac x = k in allE, rule_tac x = k in allE, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   326
  apply(rule_tac x = "gs ! k" in ind, simp, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   327
  done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   328
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   329
lemma rec_calc_inj:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   330
  "\<lbrakk>rec_calc_rel f l x; 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   331
    rec_calc_rel f l y\<rbrakk> \<Longrightarrow> x = y"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   332
apply(induct f arbitrary: l x y rule: rec_ci.induct)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   333
apply(simp add: rec_calc_inj_case_z)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   334
apply(simp add: rec_calc_inj_case_s)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   335
apply(simp add: rec_calc_inj_case_id, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   336
apply(erule rec_calc_inj_case_cn,simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   337
apply(erule rec_calc_inj_case_pr, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   338
apply(erule rec_calc_inj_case_mn, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   339
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   340
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   341
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   342
lemma calc_rel_reverse_ind_step_ex: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   343
  "\<lbrakk>rec_calc_rel (Pr n f g) (lm @ [Suc x]) rs\<rbrakk> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   344
  \<Longrightarrow> \<exists> rs. rec_calc_rel (Pr n f g) (lm @ [x]) rs"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   345
apply(erule calc_pr_reverse, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   346
apply(rule_tac x = rk in exI, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   347
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   348
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   349
lemma [simp]: "Suc x \<le> y \<Longrightarrow> Suc (y - Suc x) = y - x"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   350
by arith
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   351
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   352
lemma calc_pr_para_not_null: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   353
  "rec_calc_rel (Pr n f g) lm rs \<Longrightarrow> lm \<noteq> []"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   354
apply(erule calc_pr_reverse, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   355
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   356
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   357
lemma calc_pr_less_ex: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   358
 "\<lbrakk>rec_calc_rel (Pr n f g) lm rs; x \<le> last lm\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   359
 \<exists>rs. rec_calc_rel (Pr n f g) (butlast lm @ [last lm - x]) rs"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   360
apply(subgoal_tac "lm \<noteq> []")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   361
apply(induct x, rule_tac x = rs in exI, simp, simp, erule exE)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   362
apply(rule_tac rs = xa in calc_rel_reverse_ind_step_ex, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   363
apply(simp add: calc_pr_para_not_null)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   364
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   365
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   366
lemma calc_pr_zero_ex:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   367
  "rec_calc_rel (Pr n f g) lm rs \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   368
             \<exists>rs. rec_calc_rel f (butlast lm) rs"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   369
apply(drule_tac x = "last lm" in calc_pr_less_ex, simp,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   370
      erule_tac exE, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   371
apply(erule_tac calc_pr_reverse, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   372
apply(rule_tac x = rs in exI, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   373
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   374
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   375
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   376
lemma abc_steps_ind: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   377
  "abc_steps_l (as, am) ap (Suc stp) =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   378
          abc_steps_l (abc_steps_l (as, am) ap stp) ap (Suc 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   379
apply(insert abc_steps_add[of as am ap stp "Suc 0"], simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   380
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   381
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   382
lemma abc_steps_zero: "abc_steps_l asm ap 0 = asm"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   383
apply(case_tac asm, simp add: abc_steps_l.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   384
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   385
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   386
lemma abc_append_nth: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   387
  "n < length ap + length bp \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   388
       (ap [+] bp) ! n =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   389
         (if n < length ap then ap ! n 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   390
          else abc_inst_shift (bp ! (n - length ap)) (length ap))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   391
apply(simp add: abc_append.simps nth_append map_nth split: if_splits)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   392
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   393
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   394
lemma abc_state_keep:  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   395
  "as \<ge> length bp \<Longrightarrow> abc_steps_l (as, lm) bp stp = (as, lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   396
apply(induct stp, simp add: abc_steps_zero)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   397
apply(simp add: abc_steps_ind)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   398
apply(simp add: abc_steps_zero)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   399
apply(simp add: abc_steps_l.simps abc_fetch.simps abc_step_l.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   400
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   401
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   402
lemma abc_halt_equal: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   403
  "\<lbrakk>abc_steps_l (0, lm) bp stpa = (length bp, lm1); 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   404
    abc_steps_l (0, lm) bp stpb = (length bp, lm2)\<rbrakk> \<Longrightarrow> lm1 = lm2"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   405
apply(case_tac "stpa - stpb > 0")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   406
apply(insert abc_steps_add[of 0 lm bp stpb "stpa - stpb"], simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   407
apply(insert abc_state_keep[of bp "length bp" lm2 "stpa - stpb"], 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   408
      simp, simp add: abc_steps_zero)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   409
apply(insert abc_steps_add[of 0 lm bp stpa "stpb - stpa"], simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   410
apply(insert abc_state_keep[of bp "length bp" lm1 "stpb - stpa"], 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   411
      simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   412
done  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   413
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   414
lemma abc_halt_point_ex: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   415
  "\<lbrakk>\<exists>stp. abc_steps_l (0, lm) bp stp = (bs, lm');
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   416
    bs = length bp; bp \<noteq> []\<rbrakk> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   417
  \<Longrightarrow> \<exists> stp. (\<lambda> (s, l). s < bs \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   418
              (abc_steps_l (s, l) bp (Suc 0)) = (bs, lm')) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   419
      (abc_steps_l (0, lm) bp stp) "
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   420
apply(erule_tac exE)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   421
proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   422
  fix stp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   423
  assume "bs = length bp" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   424
         "abc_steps_l (0, lm) bp stp = (bs, lm')" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   425
         "bp \<noteq> []"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   426
  thus 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   427
    "\<exists>stp. (\<lambda>(s, l). s < bs \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   428
      abc_steps_l (s, l) bp (Suc 0) = (bs, lm')) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   429
                       (abc_steps_l (0, lm) bp stp)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   430
    apply(induct stp, simp add: abc_steps_zero, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   431
  proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   432
    fix stpa
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   433
    assume ind: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   434
     "abc_steps_l (0, lm) bp stpa = (length bp, lm')
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   435
       \<Longrightarrow> \<exists>stp. (\<lambda>(s, l). s < length bp  \<and> abc_steps_l (s, l) bp 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   436
             (Suc 0) = (length bp, lm')) (abc_steps_l (0, lm) bp stp)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   437
    and h: "abc_steps_l (0, lm) bp (Suc stpa) = (length bp, lm')" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   438
           "abc_steps_l (0, lm) bp stp = (length bp, lm')" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   439
           "bp \<noteq> []"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   440
    from h show 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   441
      "\<exists>stp. (\<lambda>(s, l). s < length bp \<and> abc_steps_l (s, l) bp (Suc 0)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   442
                    = (length bp, lm')) (abc_steps_l (0, lm) bp stp)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   443
      apply(case_tac "abc_steps_l (0, lm) bp stpa", 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   444
            case_tac "a = length bp")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   445
      apply(insert ind, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   446
      apply(subgoal_tac "b = lm'", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   447
      apply(rule_tac abc_halt_equal, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   448
      apply(rule_tac x = stpa in exI, simp add: abc_steps_ind)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   449
      apply(simp add: abc_steps_zero)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   450
      apply(rule classical, simp add: abc_steps_l.simps 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   451
                             abc_fetch.simps abc_step_l.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   452
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   453
  qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   454
qed  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   455
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   456
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   457
lemma abc_append_empty_r[simp]: "[] [+] ab = ab"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   458
apply(simp add: abc_append.simps abc_inst_shift.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   459
apply(induct ab, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   460
apply(case_tac a, simp_all add: abc_inst_shift.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   461
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   462
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   463
lemma abc_append_empty_l[simp]:  "ab [+] [] = ab"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   464
apply(simp add: abc_append.simps abc_inst_shift.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   465
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   466
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   467
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   468
lemma abc_append_length[simp]:  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   469
  "length (ap [+] bp) = length ap + length bp"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   470
apply(simp add: abc_append.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   471
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   472
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   473
declare Let_def[simp]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   474
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   475
lemma abc_append_commute: "as [+] bs [+] cs = as [+] (bs [+] cs)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   476
apply(simp add: abc_append.simps abc_shift.simps abc_inst_shift.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   477
apply(induct cs, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   478
apply(case_tac a, auto simp: abc_inst_shift.simps Let_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   479
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   480
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   481
lemma abc_halt_point_step[simp]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   482
  "\<lbrakk>a < length bp; abc_steps_l (a, b) bp (Suc 0) = (length bp, lm')\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   483
  \<Longrightarrow> abc_steps_l (length ap + a, b) (ap [+] bp [+] cp) (Suc 0) = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   484
                                        (length ap + length bp, lm')"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   485
apply(simp add: abc_steps_l.simps abc_fetch.simps abc_append_nth)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   486
apply(case_tac "bp ! a", 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   487
                      auto simp: abc_steps_l.simps abc_step_l.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   488
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   489
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   490
lemma abc_step_state_in:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   491
  "\<lbrakk>bs < length bp;  abc_steps_l (a, b) bp (Suc 0) = (bs, l)\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   492
  \<Longrightarrow> a < length bp"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   493
apply(simp add: abc_steps_l.simps abc_fetch.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   494
apply(rule_tac classical, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   495
      simp add: abc_step_l.simps abc_steps_l.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   496
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   497
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   498
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   499
lemma abc_append_state_in_exc: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   500
  "\<lbrakk>bs < length bp; abc_steps_l (0, lm) bp stpa = (bs, l)\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   501
 \<Longrightarrow> abc_steps_l (length ap, lm) (ap [+] bp [+] cp) stpa = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   502
                                             (length ap + bs, l)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   503
apply(induct stpa arbitrary: bs l, simp add: abc_steps_zero)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   504
proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   505
  fix stpa bs l
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   506
  assume ind: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   507
    "\<And>bs l. \<lbrakk>bs < length bp; abc_steps_l (0, lm) bp stpa = (bs, l)\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   508
    \<Longrightarrow> abc_steps_l (length ap, lm) (ap [+] bp [+] cp) stpa = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   509
                                                (length ap + bs, l)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   510
    and h: "bs < length bp" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   511
           "abc_steps_l (0, lm) bp (Suc stpa) = (bs, l)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   512
  from h show 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   513
    "abc_steps_l (length ap, lm) (ap [+] bp [+] cp) (Suc stpa) = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   514
                                                (length ap + bs, l)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   515
    apply(simp add: abc_steps_ind)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   516
    apply(case_tac "(abc_steps_l (0, lm) bp stpa)", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   517
  proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   518
    fix a b
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   519
    assume g: "abc_steps_l (0, lm) bp stpa = (a, b)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   520
              "abc_steps_l (a, b) bp (Suc 0) = (bs, l)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   521
    from h and g have k1: "a < length bp"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   522
      apply(simp add: abc_step_state_in)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   523
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   524
    from h and g and k1 show 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   525
   "abc_steps_l (abc_steps_l (length ap, lm) (ap [+] bp [+] cp) stpa) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   526
              (ap [+] bp [+] cp) (Suc 0) = (length ap + bs, l)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   527
      apply(insert ind[of a b], simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   528
      apply(simp add: abc_steps_l.simps abc_fetch.simps 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   529
                      abc_append_nth)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   530
      apply(case_tac "bp ! a", auto simp: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   531
                                 abc_steps_l.simps abc_step_l.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   532
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   533
  qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   534
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   535
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   536
lemma [simp]: "abc_steps_l (0, am) [] stp = (0, am)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   537
apply(induct stp, simp add: abc_steps_zero)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   538
apply(simp add: abc_steps_ind)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   539
apply(simp add: abc_steps_zero abc_steps_l.simps 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   540
                abc_fetch.simps abc_step_l.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   541
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   542
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   543
lemma abc_append_exc1:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   544
  "\<lbrakk>\<exists> stp. abc_steps_l (0, lm) bp stp = (bs, lm');
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   545
    bs = length bp; 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   546
    as = length ap\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   547
    \<Longrightarrow> \<exists> stp. abc_steps_l (as, lm) (ap [+] bp [+] cp) stp 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   548
                                                 = (as + bs, lm')"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   549
apply(case_tac "bp = []", erule_tac exE, simp,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   550
      rule_tac x = 0 in exI, simp add: abc_steps_zero)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   551
apply(frule_tac abc_halt_point_ex, simp, simp,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   552
      erule_tac exE, erule_tac exE) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   553
apply(rule_tac x = "stpa + Suc 0" in exI)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   554
apply(case_tac "(abc_steps_l (0, lm) bp stpa)", 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   555
      simp add: abc_steps_ind)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   556
apply(subgoal_tac 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   557
  "abc_steps_l (length ap, lm) (ap [+] bp [+] cp) stpa 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   558
                                   = (length ap + a, b)", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   559
apply(simp add: abc_steps_zero)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   560
apply(rule_tac abc_append_state_in_exc, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   561
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   562
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   563
lemma abc_append_exc3: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   564
  "\<lbrakk>\<exists> stp. abc_steps_l (0, am) bp stp = (bs, bm); ss = length ap\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   565
   \<Longrightarrow>  \<exists> stp. abc_steps_l (ss, am) (ap [+] bp) stp = (bs + ss, bm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   566
apply(erule_tac exE)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   567
proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   568
  fix stp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   569
  assume h: "abc_steps_l (0, am) bp stp = (bs, bm)" "ss = length ap"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   570
  thus " \<exists>stp. abc_steps_l (ss, am) (ap [+] bp) stp = (bs + ss, bm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   571
  proof(induct stp arbitrary: bs bm)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   572
    fix bs bm
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   573
    assume "abc_steps_l (0, am) bp 0 = (bs, bm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   574
    thus "\<exists>stp. abc_steps_l (ss, am) (ap [+] bp) stp = (bs + ss, bm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   575
      apply(rule_tac x = 0 in exI, simp add: abc_steps_l.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   576
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   577
  next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   578
    fix stp bs bm
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   579
    assume ind: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   580
      "\<And>bs bm. \<lbrakk>abc_steps_l (0, am) bp stp = (bs, bm);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   581
                 ss = length ap\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   582
          \<exists>stp. abc_steps_l (ss, am) (ap [+] bp) stp = (bs + ss, bm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   583
    and g: "abc_steps_l (0, am) bp (Suc stp) = (bs, bm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   584
    from g show 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   585
      "\<exists>stp. abc_steps_l (ss, am) (ap [+] bp) stp = (bs + ss, bm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   586
      apply(insert abc_steps_add[of 0 am bp stp "Suc 0"], simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   587
      apply(case_tac "(abc_steps_l (0, am) bp stp)", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   588
    proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   589
      fix a b
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   590
      assume "(bs, bm) = abc_steps_l (a, b) bp (Suc 0)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   591
             "abc_steps_l (0, am) bp (Suc stp) = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   592
                       abc_steps_l (a, b) bp (Suc 0)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   593
              "abc_steps_l (0, am) bp stp = (a, b)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   594
      thus "?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   595
	apply(insert ind[of a b], simp add: h, erule_tac exE)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   596
	apply(rule_tac x = "Suc stp" in exI)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   597
	apply(simp only: abc_steps_ind, simp add: abc_steps_zero)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   598
      proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   599
	fix stp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   600
	assume "(bs, bm) = abc_steps_l (a, b) bp (Suc 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   601
	thus "abc_steps_l (a + length ap, b) (ap [+] bp) (Suc 0)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   602
                                              = (bs + length ap, bm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   603
	  apply(simp add: abc_steps_l.simps abc_steps_zero
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   604
                          abc_fetch.simps split: if_splits)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   605
	  apply(case_tac "bp ! a", 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   606
                simp_all add: abc_inst_shift.simps abc_append_nth
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   607
                   abc_steps_l.simps abc_steps_zero abc_step_l.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   608
	  apply(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   609
	  done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   610
      qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   611
    qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   612
  qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   613
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   614
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   615
lemma abc_add_equal:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   616
  "\<lbrakk>ap \<noteq> []; 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   617
    abc_steps_l (0, am) ap astp = (a, b);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   618
    a < length ap\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   619
     \<Longrightarrow> (abc_steps_l (0, am) (ap @ bp) astp) = (a, b)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   620
apply(induct astp arbitrary: a b, simp add: abc_steps_l.simps, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   621
apply(simp add: abc_steps_ind)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   622
apply(case_tac "(abc_steps_l (0, am) ap astp)")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   623
proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   624
  fix astp a b aa ba
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   625
  assume ind: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   626
    "\<And>a b. \<lbrakk>abc_steps_l (0, am) ap astp = (a, b); 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   627
             a < length ap\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   628
                  abc_steps_l (0, am) (ap @ bp) astp = (a, b)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   629
  and h: "abc_steps_l (abc_steps_l (0, am) ap astp) ap (Suc 0)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   630
                                                            = (a, b)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   631
        "a < length ap" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   632
        "abc_steps_l (0, am) ap astp = (aa, ba)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   633
  from h show "abc_steps_l (abc_steps_l (0, am) (ap @ bp) astp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   634
                                        (ap @ bp) (Suc 0) = (a, b)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   635
    apply(insert ind[of aa ba], simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   636
    apply(subgoal_tac "aa < length ap", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   637
    apply(simp add: abc_steps_l.simps abc_fetch.simps
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   638
                     nth_append abc_steps_zero)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   639
    apply(rule abc_step_state_in, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   640
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   641
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   642
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   643
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   644
lemma abc_add_exc1: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   645
  "\<lbrakk>\<exists> astp. abc_steps_l (0, am) ap astp = (as, bm); as = length ap\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   646
  \<Longrightarrow> \<exists> stp. abc_steps_l (0, am) (ap @ bp) stp = (as, bm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   647
apply(case_tac "ap = []", simp, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   648
      rule_tac x = 0 in exI, simp add: abc_steps_zero)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   649
apply(drule_tac abc_halt_point_ex, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   650
apply(erule_tac exE, case_tac "(abc_steps_l (0, am) ap astp)", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   651
apply(rule_tac x = "Suc astp" in exI, simp add: abc_steps_ind, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   652
apply(frule_tac bp = bp in abc_add_equal, simp, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   653
apply(simp add: abc_steps_l.simps abc_steps_zero 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   654
                abc_fetch.simps nth_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   655
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   656
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   657
declare abc_shift.simps[simp del] 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   658
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   659
lemma abc_append_exc2: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   660
  "\<lbrakk>\<exists> astp. abc_steps_l (0, am) ap astp = (as, bm); as = length ap; 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   661
    \<exists> bstp. abc_steps_l (0, bm) bp bstp = (bs, bm'); bs = length bp;
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   662
    cs = as + bs; bp \<noteq> []\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   663
  \<Longrightarrow> \<exists> stp. abc_steps_l (0, am) (ap [+] bp) stp = (cs, bm')"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   664
apply(insert abc_append_exc1[of bm bp bs bm' as ap "[]"], simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   665
apply(drule_tac bp = "abc_shift bp (length ap)" in abc_add_exc1, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   666
apply(subgoal_tac "ap @ abc_shift bp (length ap) = ap [+] bp", 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   667
      simp, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   668
apply(rule_tac x = "stpa + stp" in exI, simp add: abc_steps_add)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   669
apply(simp add: abc_append.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   670
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   671
lemma exponent_add_iff: "a\<up>b @ a\<up>c@ xs = a\<up>(b+c) @ xs"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   672
apply(auto simp: replicate_add)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   673
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   674
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   675
lemma exponent_cons_iff: "a # a\<up>c @ xs = a\<up>(Suc c) @ xs"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   676
apply(auto simp: replicate_add)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   677
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   678
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   679
lemma  [simp]: "length lm = n \<Longrightarrow>  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   680
  abc_steps_l (Suc 0, lm @ Suc x # 0 # suf_lm) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   681
       [Inc n, Dec (Suc n) 3, Goto (Suc 0)] (Suc (Suc 0))
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   682
                                  = (3, lm @ Suc x # 0 # suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   683
apply(simp add: abc_steps_l.simps abc_fetch.simps 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   684
                abc_step_l.simps abc_lm_v.simps abc_lm_s.simps 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   685
                nth_append list_update_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   686
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   687
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   688
lemma [simp]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   689
  "length lm = n \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   690
  abc_steps_l (Suc 0, lm @ Suc x # Suc y # suf_lm) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   691
     [Inc n, Dec (Suc n) 3, Goto (Suc 0)] (Suc (Suc 0))
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   692
  = (Suc 0, lm @ Suc x # y # suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   693
apply(simp add: abc_steps_l.simps abc_fetch.simps 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   694
                abc_step_l.simps abc_lm_v.simps abc_lm_s.simps 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   695
                nth_append list_update_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   696
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   697
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   698
lemma pr_cycle_part_middle_inv: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   699
  "\<lbrakk>length lm = n\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   700
  \<exists> stp. abc_steps_l (0, lm @ x # y # suf_lm) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   701
                         [Inc n, Dec (Suc n) 3, Goto (Suc 0)] stp 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   702
  = (3, lm @ Suc x # 0 # suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   703
proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   704
  assume h: "length lm = n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   705
  hence k1: "\<exists> stp. abc_steps_l (0, lm @ x # y # suf_lm) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   706
                           [Inc n, Dec (Suc n) 3, Goto (Suc 0)] stp 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   707
    = (Suc 0, lm @ Suc x # y # suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   708
    apply(rule_tac x = "Suc 0" in exI)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   709
    apply(simp add: abc_steps_l.simps abc_step_l.simps 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   710
                    abc_lm_v.simps abc_lm_s.simps nth_append 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   711
                    list_update_append abc_fetch.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   712
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   713
  from h have k2: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   714
    "\<exists> stp. abc_steps_l (Suc 0, lm @ Suc x # y # suf_lm)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   715
                      [Inc n, Dec (Suc n) 3, Goto (Suc 0)] stp 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   716
    = (3, lm @ Suc x # 0 # suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   717
    apply(induct y)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   718
    apply(rule_tac x = "Suc (Suc 0)" in exI, simp, simp, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   719
          erule_tac exE)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   720
    apply(rule_tac x = "Suc (Suc 0) + stp" in exI, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   721
          simp only: abc_steps_add, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   722
    done      
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   723
  from k1 and k2 show 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   724
    "\<exists> stp. abc_steps_l (0, lm @ x # y # suf_lm) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   725
                       [Inc n, Dec (Suc n) 3, Goto (Suc 0)] stp 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   726
    = (3, lm @ Suc x # 0 # suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   727
    apply(erule_tac exE, erule_tac exE)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   728
    apply(rule_tac x = "stp + stpa" in exI, simp add: abc_steps_add)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   729
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   730
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   731
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   732
lemma [simp]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   733
  "length lm = Suc n \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   734
  (abc_steps_l (length ap, lm @ x # Suc y # suf_lm) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   735
           (ap @ [Dec (Suc (Suc n)) 0, Inc (Suc n), Goto (length ap)]) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   736
                    (Suc (Suc (Suc 0))))
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   737
  = (length ap, lm @ Suc x # y # suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   738
apply(simp add: abc_steps_l.simps abc_fetch.simps abc_step_l.simps 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   739
         abc_lm_v.simps list_update_append nth_append abc_lm_s.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   740
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   741
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   742
lemma switch_para_inv:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   743
  assumes bp_def:"bp =  ap @ [Dec (Suc (Suc n)) 0, Inc (Suc n), Goto ss]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   744
  and h: "rec_ci (Pr n f g) = (aprog, rs_pos, a_md)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   745
         "ss = length ap" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   746
         "length lm = Suc n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   747
  shows " \<exists>stp. abc_steps_l (ss, lm @ x # y # suf_lm) bp stp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   748
                               (0, lm @ (x + y) # 0 # suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   749
apply(induct y arbitrary: x)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   750
apply(rule_tac x = "Suc 0" in exI,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   751
  simp add: bp_def mv_box.simps abc_steps_l.simps 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   752
            abc_fetch.simps h abc_step_l.simps 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   753
            abc_lm_v.simps list_update_append nth_append
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   754
            abc_lm_s.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   755
proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   756
  fix y x
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   757
  assume ind: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   758
    "\<And>x. \<exists>stp. abc_steps_l (ss, lm @ x # y # suf_lm) bp stp = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   759
                                     (0, lm @ (x + y) # 0 # suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   760
  show "\<exists>stp. abc_steps_l (ss, lm @ x # Suc y # suf_lm) bp stp = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   761
                                  (0, lm @ (x + Suc y) # 0 # suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   762
    apply(insert ind[of "Suc x"], erule_tac exE)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   763
    apply(rule_tac x = "Suc (Suc (Suc 0)) + stp" in exI, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   764
          simp only: abc_steps_add bp_def h)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   765
    apply(simp add: h)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   766
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   767
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   768
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   769
lemma [simp]:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   770
  "length lm = rs_pos \<and> Suc (Suc rs_pos) < a_md \<and> 0 < rs_pos \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   771
      a_md - Suc 0 < Suc (Suc (Suc (a_md + length suf_lm - 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   772
                                         Suc (Suc (Suc 0)))))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   773
apply(arith)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   774
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   775
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   776
lemma [simp]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   777
  "Suc (Suc rs_pos) < a_md \<and> 0 < rs_pos \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   778
                           \<not> a_md - Suc 0 < rs_pos - Suc 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   779
apply(arith)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   780
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   781
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   782
lemma [simp]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   783
  "Suc (Suc rs_pos) < a_md \<and> 0 < rs_pos \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   784
           \<not> a_md - rs_pos < Suc (Suc (a_md - Suc (Suc rs_pos)))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   785
apply(arith)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   786
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   787
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   788
lemma butlast_append_last: "lm \<noteq> [] \<Longrightarrow> lm = butlast lm @ [last lm]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   789
apply(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   790
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   791
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   792
lemma [simp]: "rec_ci (Pr n f g) = (aprog, rs_pos, a_md)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   793
           \<Longrightarrow> (Suc (Suc rs_pos)) < a_md"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   794
apply(simp add: rec_ci.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   795
apply(case_tac "rec_ci f", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   796
apply(case_tac "rec_ci g", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   797
apply(arith)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   798
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   799
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   800
(*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   801
lemma pr_para_ge_suc0: "rec_calc_rel (Pr n f g) lm xs \<Longrightarrow> 0 < n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   802
apply(erule calc_pr_reverse, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   803
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   804
*)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   805
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   806
lemma ci_pr_para_eq: "rec_ci (Pr n f g) = (aprog, rs_pos, a_md)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   807
                  \<Longrightarrow> rs_pos = Suc n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   808
apply(simp add: rec_ci.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   809
apply(case_tac "rec_ci g",  case_tac "rec_ci f", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   810
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   811
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   812
lemma [intro]:  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   813
  "\<lbrakk>rec_ci z = (aprog, rs_pos, a_md); rec_calc_rel z lm xs\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   814
  \<Longrightarrow> length lm = rs_pos"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   815
apply(simp add: rec_ci.simps rec_ci_z_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   816
apply(erule_tac calc_z_reverse, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   817
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   818
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   819
lemma [intro]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   820
  "\<lbrakk>rec_ci s = (aprog, rs_pos, a_md); rec_calc_rel s lm xs\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   821
  \<Longrightarrow> length lm = rs_pos"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   822
apply(simp add: rec_ci.simps rec_ci_s_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   823
apply(erule_tac calc_s_reverse, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   824
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   825
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   826
lemma [intro]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   827
  "\<lbrakk>rec_ci (recf.id nat1 nat2) = (aprog, rs_pos, a_md); 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   828
    rec_calc_rel (recf.id nat1 nat2) lm xs\<rbrakk> \<Longrightarrow> length lm = rs_pos"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   829
apply(simp add: rec_ci.simps rec_ci_id.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   830
apply(erule_tac calc_id_reverse, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   831
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   832
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   833
lemma [intro]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   834
  "\<lbrakk>rec_ci (Cn n f gs) = (aprog, rs_pos, a_md); 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   835
    rec_calc_rel (Cn n f gs) lm xs\<rbrakk> \<Longrightarrow> length lm = rs_pos"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   836
apply(erule_tac calc_cn_reverse, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   837
apply(simp add: rec_ci.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   838
apply(case_tac "rec_ci f",  simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   839
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   840
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   841
lemma [intro]:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   842
  "\<lbrakk>rec_ci (Pr n f g) = (aprog, rs_pos, a_md); 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   843
    rec_calc_rel (Pr n f g) lm xs\<rbrakk> \<Longrightarrow> length lm = rs_pos"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   844
apply(erule_tac  calc_pr_reverse, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   845
apply(drule_tac ci_pr_para_eq, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   846
apply(drule_tac ci_pr_para_eq, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   847
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   848
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   849
lemma [intro]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   850
  "\<lbrakk>rec_ci (Mn n f) = (aprog, rs_pos, a_md);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   851
    rec_calc_rel (Mn n f) lm xs\<rbrakk> \<Longrightarrow> length lm = rs_pos"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   852
apply(erule_tac calc_mn_reverse)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   853
apply(simp add: rec_ci.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   854
apply(case_tac "rec_ci f",  simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   855
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   856
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   857
lemma para_pattern: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   858
  "\<lbrakk>rec_ci f = (aprog, rs_pos, a_md); rec_calc_rel f lm xs\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   859
  \<Longrightarrow> length lm = rs_pos"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   860
apply(case_tac f, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   861
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   862
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   863
lemma ci_pr_g_paras:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   864
  "\<lbrakk>rec_ci (Pr n f g) = (aprog, rs_pos, a_md);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   865
    rec_ci g = (a, aa, ba);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   866
    rec_calc_rel (Pr n f g) (lm @ [x]) rs; x > 0\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   867
    aa = Suc rs_pos "
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   868
apply(erule calc_pr_reverse, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   869
apply(subgoal_tac "length (args @ [k, rk]) = aa", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   870
apply(subgoal_tac "rs_pos = Suc n", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   871
apply(simp add: ci_pr_para_eq)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   872
apply(erule para_pattern, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   873
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   874
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   875
lemma ci_pr_g_md_less: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   876
  "\<lbrakk>rec_ci (Pr n f g) = (aprog, rs_pos, a_md); 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   877
    rec_ci g = (a, aa, ba)\<rbrakk> \<Longrightarrow> ba < a_md"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   878
apply(simp add: rec_ci.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   879
apply(case_tac "rec_ci f",  auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   880
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   881
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   882
lemma [intro]: "rec_ci z = (ap, rp, ad) \<Longrightarrow> rp < ad"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   883
  by(simp add: rec_ci.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   884
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   885
lemma [intro]: "rec_ci s = (ap, rp, ad) \<Longrightarrow> rp < ad"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   886
  by(simp add: rec_ci.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   887
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   888
lemma [intro]: "rec_ci (recf.id nat1 nat2) = (ap, rp, ad) \<Longrightarrow> rp < ad"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   889
  by(simp add: rec_ci.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   890
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   891
lemma [intro]: "rec_ci (Cn n f gs) = (ap, rp, ad) \<Longrightarrow> rp < ad"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   892
apply(simp add: rec_ci.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   893
apply(case_tac "rec_ci f",  simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   894
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   895
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   896
lemma [intro]: "rec_ci (Pr n f g) = (ap, rp, ad) \<Longrightarrow> rp < ad"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   897
apply(simp add: rec_ci.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   898
by(case_tac "rec_ci f", case_tac "rec_ci g",  auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   899
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   900
lemma [intro]: "rec_ci (Mn n f) = (ap, rp, ad) \<Longrightarrow> rp < ad"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   901
apply(simp add: rec_ci.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   902
apply(case_tac "rec_ci f", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   903
apply(arith)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   904
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   905
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   906
lemma ci_ad_ge_paras: "rec_ci f = (ap, rp, ad) \<Longrightarrow> ad > rp"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   907
apply(case_tac f, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   908
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   909
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   910
lemma [elim]: "\<lbrakk>a [+] b = []; a \<noteq> [] \<or> b \<noteq> []\<rbrakk> \<Longrightarrow> RR"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   911
apply(auto simp: abc_append.simps abc_shift.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   912
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   913
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   914
lemma [intro]: "rec_ci z = ([], aa, ba) \<Longrightarrow> False"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   915
by(simp add: rec_ci.simps rec_ci_z_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   916
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   917
lemma [intro]: "rec_ci s = ([], aa, ba) \<Longrightarrow> False"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   918
by(auto simp: rec_ci.simps rec_ci_s_def addition.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   919
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   920
lemma [intro]: "rec_ci (id m n) = ([], aa, ba) \<Longrightarrow> False"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   921
by(auto simp: rec_ci.simps rec_ci_id.simps addition.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   922
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   923
lemma [intro]: "rec_ci (Cn n f gs) = ([], aa, ba) \<Longrightarrow> False"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   924
apply(case_tac "rec_ci f", auto simp: rec_ci.simps abc_append.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   925
apply(simp add: abc_shift.simps mv_box.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   926
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   927
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   928
lemma [intro]: "rec_ci (Pr n f g) = ([], aa, ba) \<Longrightarrow> False"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   929
apply(simp add: rec_ci.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   930
apply(case_tac "rec_ci f", case_tac "rec_ci g")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   931
by(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   932
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   933
lemma [intro]: "rec_ci (Mn n f) = ([], aa, ba) \<Longrightarrow> False"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   934
apply(case_tac "rec_ci f", auto simp: rec_ci.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   935
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   936
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   937
lemma rec_ci_not_null:  "rec_ci g = (a, aa, ba) \<Longrightarrow> a \<noteq> []"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   938
by(case_tac g, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   939
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   940
lemma calc_pr_g_def:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   941
 "\<lbrakk>rec_calc_rel (Pr rs_pos f g) (lm @ [Suc x]) rsa;
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   942
   rec_calc_rel (Pr rs_pos f g) (lm @ [x]) rsxa\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   943
 \<Longrightarrow> rec_calc_rel g (lm @ [x, rsxa]) rsa"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   944
apply(erule_tac calc_pr_reverse, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   945
apply(subgoal_tac "rsxa = rk", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   946
apply(erule_tac rec_calc_inj, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   947
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   948
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   949
lemma ci_pr_md_def: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   950
  "\<lbrakk>rec_ci (Pr n f g) = (aprog, rs_pos, a_md);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   951
    rec_ci g = (a, aa, ba); rec_ci f = (ab, ac, bc)\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   952
  \<Longrightarrow> a_md = Suc (max (n + 3) (max bc ba))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   953
by(simp add: rec_ci.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   954
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   955
lemma  ci_pr_f_paras: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   956
  "\<lbrakk>rec_ci (Pr n f g) = (aprog, rs_pos, a_md);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   957
    rec_calc_rel (Pr n f g) lm rs;
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   958
    rec_ci f = (ab, ac, bc)\<rbrakk>  \<Longrightarrow> ac = rs_pos - Suc 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   959
apply(subgoal_tac "\<exists>rs. rec_calc_rel f (butlast lm) rs", 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   960
      erule_tac exE)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   961
apply(drule_tac f = f and lm = "butlast lm" in para_pattern, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   962
      simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   963
apply(drule_tac para_pattern, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   964
apply(subgoal_tac "lm \<noteq> []", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   965
apply(erule_tac calc_pr_reverse, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   966
apply(erule calc_pr_zero_ex)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   967
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   968
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   969
lemma ci_pr_md_ge_f:  "\<lbrakk>rec_ci (Pr n f g) = (aprog, rs_pos, a_md);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   970
        rec_ci f = (ab, ac, bc)\<rbrakk> \<Longrightarrow> Suc bc \<le> a_md"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   971
apply(case_tac "rec_ci g")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   972
apply(simp add: rec_ci.simps, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   973
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   974
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   975
lemma ci_pr_md_ge_g:  "\<lbrakk>rec_ci (Pr n f g) = (aprog, rs_pos, a_md);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   976
        rec_ci g = (ab, ac, bc)\<rbrakk> \<Longrightarrow> bc < a_md"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   977
apply(case_tac "rec_ci f")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   978
apply(simp add: rec_ci.simps, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   979
done 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   980
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   981
lemma rec_calc_rel_def0: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   982
  "\<lbrakk>rec_calc_rel (Pr n f g) lm rs; rec_calc_rel f (butlast lm) rsa\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   983
  \<Longrightarrow> rec_calc_rel (Pr n f g) (butlast lm @ [0]) rsa"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   984
  apply(rule_tac calc_pr_zero, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   985
apply(erule_tac calc_pr_reverse, simp, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   986
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   987
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   988
lemma [simp]:  "length (mv_box m n) = 3"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   989
by (auto simp: mv_box.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   990
(*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   991
lemma
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   992
  "\<lbrakk>rec_ci (Pr n f g) = (aprog, rs_pos, a_md);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   993
  rec_calc_rel (Pr n f g) lm rs;
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   994
  rec_ci g = (a, aa, ba);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   995
  rec_ci f = (ab, ac, bc)\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   996
\<Longrightarrow> \<exists>ap bp cp. aprog = ap [+] bp [+] cp \<and> length ap = 3 + length ab \<and> bp = recursive.mv_box (n - Suc 0) n 3"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   997
apply(simp add: rec_ci.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   998
apply(rule_tac x = "recursive.mv_box (n - Suc 0) (max (Suc (Suc n)) (max bc ba)) 3 [+] ab" in exI, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
   999
apply(rule_tac x = "([Dec (max (Suc (Suc n)) (max bc ba)) (length a + 7)] [+] a [+] 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1000
  [Inc (n - Suc 0), Dec n 3, Goto (Suc 0)]) @ [Dec (Suc n) 0, Inc n, Goto (length a + 4)]" in exI, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1001
apply(auto simp: abc_append_commute)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1002
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1003
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1004
lemma  "\<lbrakk>rec_ci (Pr n f g) = (aprog, rs_pos, a_md);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1005
        rec_ci g = (a, aa, ba); rec_ci f = (ab, ac, bc)\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1006
    \<Longrightarrow> \<exists>ap bp cp. aprog = ap [+] bp [+] cp \<and> length ap = 3 \<and> bp = ab"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1007
apply(simp add: rec_ci.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1008
apply(rule_tac x = "recursive.mv_box (n - Suc 0) (max (Suc (Suc n)) (max bc ba)) 3" in exI, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1009
apply(rule_tac x = "recursive.mv_box (n - Suc 0) n 3 [+]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1010
     ([Dec (max (Suc (Suc n)) (max bc ba)) (length a + 7)] [+] a 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1011
  [+] [Inc (n - Suc 0), Dec n 3, Goto (Suc 0)]) @ [Dec (Suc n) 0, Inc n, Goto (length a + 4)]" in exI, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1012
apply(simp add: abc_append_commute)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1013
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1014
*)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1015
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1016
lemma [simp]: "\<lbrakk>rec_ci (Pr n f g) = (aprog, rs_pos, a_md); rec_calc_rel (Pr n f g) lm rs\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1017
    \<Longrightarrow> rs_pos = Suc n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1018
apply(simp add: ci_pr_para_eq)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1019
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1020
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1021
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1022
lemma [simp]: "\<lbrakk>rec_ci (Pr n f g) = (aprog, rs_pos, a_md); rec_calc_rel (Pr n f g) lm rs\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1023
    \<Longrightarrow> length lm = Suc n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1024
apply(subgoal_tac "rs_pos = Suc n", rule_tac para_pattern, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1025
apply(case_tac "rec_ci f", case_tac "rec_ci g", simp add: rec_ci.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1026
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1027
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1028
lemma [simp]: "rec_ci (Pr n f g) = (a, rs_pos, a_md) \<Longrightarrow> Suc (Suc n) < a_md"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1029
apply(case_tac "rec_ci f", case_tac "rec_ci g", simp add: rec_ci.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1030
apply arith
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1031
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1032
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1033
lemma [simp]: "rec_ci (Pr n f g) = (aprog, rs_pos, a_md) \<Longrightarrow> 0 < rs_pos"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1034
apply(case_tac "rec_ci f", case_tac "rec_ci g")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1035
apply(simp add: rec_ci.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1036
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1037
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1038
lemma [simp]: "Suc (Suc rs_pos) < a_md \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1039
       butlast lm @ (last lm - xa) # (rsa::nat) # 0 # 0\<up>(a_md - Suc (Suc (Suc rs_pos))) @ xa # suf_lm =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1040
       butlast lm @ (last lm - xa) # rsa # 0\<up>(a_md - Suc (Suc rs_pos)) @ xa # suf_lm"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1041
apply(simp add: replicate_Suc[THEN sym])
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1042
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1043
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1044
lemma pr_cycle_part_ind: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1045
  assumes g_ind: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1046
  "\<And>lm rs suf_lm. rec_calc_rel g lm rs \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1047
  \<exists>stp. abc_steps_l (0, lm @ 0\<up>(ba - aa) @ suf_lm) a stp = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1048
                    (length a, lm @ rs # 0\<up>(ba - Suc aa) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1049
  and ap_def: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1050
  "ap = ([Dec (a_md - Suc 0) (length a + 7)] [+]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1051
        (a [+] [Inc (rs_pos - Suc 0), Dec rs_pos 3, Goto (Suc 0)])) @
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1052
         [Dec (Suc (Suc n)) 0, Inc (Suc n), Goto (length a + 4)]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1053
  and h: "rec_ci (Pr n f g) = (aprog, rs_pos, a_md)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1054
         "rec_calc_rel (Pr n f g) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1055
                   (butlast lm @ [last lm - Suc xa]) rsxa" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1056
         "Suc xa \<le> last lm" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1057
         "rec_ci g = (a, aa, ba)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1058
         "rec_calc_rel (Pr n f g) (butlast lm @ [last lm - xa]) rsa"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1059
         "lm \<noteq> []"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1060
  shows 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1061
  "\<exists>stp. abc_steps_l 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1062
     (0, butlast lm @ (last lm - Suc xa) # rsxa # 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1063
               0\<up>(a_md - Suc (Suc rs_pos)) @ Suc xa # suf_lm) ap stp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1064
     (0, butlast lm @ (last lm - xa) # rsa
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1065
                 # 0\<up>(a_md - Suc (Suc rs_pos)) @ xa # suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1066
proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1067
  have k1: "\<exists>stp. abc_steps_l (0, butlast lm @ (last lm - Suc xa) #
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1068
    rsxa # 0\<up>(a_md - Suc (Suc rs_pos)) @ Suc xa # suf_lm) ap stp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1069
         (length a + 4, butlast lm @ (last lm - xa) # 0 # rsa #
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1070
                           0\<up>(a_md - Suc (Suc (Suc rs_pos))) @ xa # suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1071
    apply(simp add: ap_def, rule_tac abc_add_exc1)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1072
    apply(rule_tac as = "Suc 0" and 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1073
      bm = "butlast lm @ (last lm - Suc xa) # 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1074
      rsxa # 0\<up>(a_md - Suc (Suc rs_pos)) @ xa # suf_lm" in abc_append_exc2,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1075
      auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1076
  proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1077
    show 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1078
      "\<exists>astp. abc_steps_l (0, butlast lm @ (last lm - Suc xa) # rsxa 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1079
                   # 0\<up>(a_md - Suc (Suc rs_pos)) @ Suc xa # suf_lm) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1080
              [Dec (a_md - Suc 0)(length a + 7)] astp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1081
      (Suc 0, butlast lm @ (last lm - Suc xa) # 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1082
             rsxa # 0\<up>(a_md - Suc (Suc rs_pos)) @ xa # suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1083
      apply(rule_tac x = "Suc 0" in exI, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1084
          simp add: abc_steps_l.simps abc_step_l.simps
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1085
                     abc_fetch.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1086
      apply(subgoal_tac "length lm = Suc n \<and> rs_pos = Suc n \<and>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1087
                              a_md > Suc (Suc rs_pos)")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1088
      apply(simp add: abc_lm_v.simps nth_append abc_lm_s.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1089
      apply(insert nth_append[of 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1090
                 "(last lm - Suc xa) # rsxa # 0\<up>(a_md - Suc (Suc rs_pos))" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1091
                 "Suc xa # suf_lm" "(a_md - rs_pos)"], simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1092
      apply(simp add: list_update_append del: list_update.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1093
      apply(insert list_update_append[of "(last lm - Suc xa) # rsxa # 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1094
                                          0\<up>(a_md - Suc (Suc rs_pos))" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1095
                    "Suc xa # suf_lm" "a_md - rs_pos" "xa"], simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1096
      apply(case_tac a_md, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1097
      apply(insert h, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1098
      apply(insert para_pattern[of "Pr n f g" aprog rs_pos a_md 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1099
                    "(butlast lm @ [last lm - Suc xa])" rsxa], simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1100
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1101
  next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1102
    show "\<exists>bstp. abc_steps_l (0, butlast lm @ (last lm - Suc xa) # 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1103
           rsxa # 0\<up>(a_md - Suc (Suc rs_pos)) @ xa # suf_lm) (a [+] 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1104
            [Inc (rs_pos - Suc 0), Dec rs_pos 3, Goto (Suc 0)]) bstp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1105
         (3 + length a, butlast lm @ (last lm - xa) # 0 # rsa #
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1106
                          0\<up>(a_md - Suc (Suc (Suc rs_pos))) @ xa # suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1107
      apply(rule_tac as = "length a" and
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1108
               bm = "butlast lm @ (last lm - Suc xa) # rsxa # rsa #
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1109
                     0\<up>(a_md - Suc (Suc (Suc rs_pos))) @ xa # suf_lm" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1110
        in abc_append_exc2, simp_all)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1111
    proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1112
      from h have j1: "aa = Suc rs_pos \<and> a_md > ba \<and> ba > Suc rs_pos"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1113
	apply(insert h)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1114
	apply(insert ci_pr_g_paras[of n f g aprog rs_pos
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1115
                 a_md a aa ba "butlast lm" "last lm - xa" rsa], simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1116
	apply(drule_tac ci_pr_md_ge_g, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1117
	apply(erule_tac ci_ad_ge_paras)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1118
	done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1119
      from h have j2: "rec_calc_rel g (butlast lm @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1120
                                  [last lm - Suc xa, rsxa]) rsa"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1121
	apply(rule_tac  calc_pr_g_def, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1122
	done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1123
      from j1 and j2 show 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1124
        "\<exists>astp. abc_steps_l (0, butlast lm @ (last lm - Suc xa) #
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1125
                rsxa # 0\<up>(a_md - Suc (Suc rs_pos)) @ xa # suf_lm) a astp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1126
        (length a, butlast lm @ (last lm - Suc xa) # rsxa # rsa 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1127
                         # 0\<up>(a_md - Suc (Suc (Suc rs_pos))) @ xa # suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1128
	apply(insert g_ind[of
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1129
          "butlast lm @ (last lm - Suc xa) # [rsxa]" rsa 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1130
          "0\<up>(a_md - ba - Suc 0) @ xa # suf_lm"], simp, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1131
	apply(simp add: exponent_add_iff)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1132
	apply(rule_tac x = stp in exI, simp add: numeral_3_eq_3)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1133
	done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1134
    next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1135
      from h have j3: "length lm = rs_pos \<and> rs_pos > 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1136
	apply(rule_tac conjI)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1137
	apply(drule_tac lm = "(butlast lm @ [last lm - Suc xa])"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1138
                          and xs = rsxa in para_pattern, simp, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1139
        done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1140
      from h have j4: "Suc (last lm - Suc xa) = last lm - xa"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1141
	apply(case_tac "last lm", simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1142
	done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1143
      from j3 and j4 show
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1144
      "\<exists>bstp. abc_steps_l (0, butlast lm @ (last lm - Suc xa) # rsxa #
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1145
                     rsa # 0\<up>(a_md - Suc (Suc (Suc rs_pos))) @ xa # suf_lm)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1146
            [Inc (rs_pos - Suc 0), Dec rs_pos 3, Goto (Suc 0)] bstp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1147
        (3, butlast lm @ (last lm - xa) # 0 # rsa #
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1148
                       0\<up>(a_md - Suc (Suc (Suc rs_pos))) @ xa # suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1149
	apply(insert pr_cycle_part_middle_inv[of "butlast lm" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1150
          "rs_pos - Suc 0" "(last lm - Suc xa)" rsxa 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1151
          "rsa # 0\<up>(a_md - Suc (Suc (Suc rs_pos))) @ xa # suf_lm"], simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1152
	done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1153
    qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1154
  qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1155
  from h have k2: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1156
    "\<exists>stp. abc_steps_l (length a + 4, butlast lm @ (last lm - xa) # 0 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1157
           # rsa # 0\<up>(a_md - Suc (Suc (Suc rs_pos))) @ xa # suf_lm) ap stp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1158
    (0, butlast lm @ (last lm - xa) # rsa # 0\<up>(a_md - Suc (Suc rs_pos)) @ xa # suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1159
    apply(insert switch_para_inv[of ap 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1160
      "([Dec (a_md - Suc 0) (length a + 7)] [+] 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1161
      (a [+] [Inc (rs_pos - Suc 0), Dec rs_pos 3, Goto (Suc 0)]))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1162
      n "length a + 4" f g aprog rs_pos a_md 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1163
      "butlast lm @ [last lm - xa]" 0 rsa 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1164
      "0\<up>(a_md - Suc (Suc (Suc rs_pos))) @ xa # suf_lm"])
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1165
    apply(simp add: h ap_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1166
    apply(subgoal_tac "length lm = Suc n \<and> Suc (Suc rs_pos) < a_md", 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1167
          simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1168
    apply(insert h, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1169
    apply(frule_tac lm = "(butlast lm @ [last lm - Suc xa])" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1170
      and xs = rsxa in para_pattern, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1171
    done   
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1172
  from k1 and k2 show "?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1173
    apply(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1174
    apply(rule_tac x = "stp + stpa" in exI, simp add: abc_steps_add)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1175
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1176
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1177
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1178
lemma ci_pr_ex1: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1179
  "\<lbrakk>rec_ci (Pr n f g) = (aprog, rs_pos, a_md);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1180
    rec_ci g = (a, aa, ba);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1181
    rec_ci f = (ab, ac, bc)\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1182
\<Longrightarrow> \<exists>ap bp. length ap = 6 + length ab \<and>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1183
    aprog = ap [+] bp \<and>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1184
    bp = ([Dec (a_md - Suc 0) (length a + 7)] [+] (a [+]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1185
         [Inc (rs_pos - Suc 0), Dec rs_pos 3, Goto (Suc 0)])) @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1186
         [Dec (Suc (Suc n)) 0, Inc (Suc n), Goto (length a + 4)]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1187
apply(simp add: rec_ci.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1188
apply(rule_tac x = "recursive.mv_box n (max (Suc (Suc (Suc n)))
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1189
    (max bc ba)) [+] ab [+] recursive.mv_box n (Suc n)" in exI,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1190
     simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1191
apply(auto simp add: abc_append_commute numeral_3_eq_3)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1192
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1193
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1194
lemma pr_cycle_part:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1195
  "\<lbrakk>\<And>lm rs suf_lm. rec_calc_rel g lm rs \<Longrightarrow>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1196
     \<exists>stp. abc_steps_l (0, lm @ 0\<up>(ba - aa) @ suf_lm) a stp = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1197
                        (length a, lm @ rs # 0\<up>(ba - Suc aa) @ suf_lm);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1198
  rec_ci (Pr n f g) = (aprog, rs_pos, a_md); 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1199
  rec_calc_rel (Pr n f g) lm rs;
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1200
  rec_ci g = (a, aa, ba);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1201
  rec_calc_rel (Pr n f g) (butlast lm @ [last lm - x]) rsx;
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1202
  rec_ci f = (ab, ac, bc);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1203
  lm \<noteq> [];
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1204
  x \<le> last lm\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1205
  \<exists>stp. abc_steps_l (6 + length ab, butlast lm @ (last lm - x) #
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1206
              rsx # 0\<up>(a_md - Suc (Suc rs_pos)) @ x # suf_lm) aprog stp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1207
  (6 + length ab, butlast lm @ last lm # rs #
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1208
                                0\<up>(a_md - Suc (Suc rs_pos)) @ 0 # suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1209
proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1210
  assume g_ind:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1211
    "\<And>lm rs suf_lm. rec_calc_rel g lm rs \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1212
    \<exists>stp. abc_steps_l (0, lm @ 0\<up>(ba - aa) @ suf_lm) a stp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1213
                      (length a, lm @ rs # 0\<up>(ba - Suc aa) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1214
    and h: "rec_ci (Pr n f g) = (aprog, rs_pos, a_md)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1215
           "rec_calc_rel (Pr n f g) lm rs" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1216
           "rec_ci g = (a, aa, ba)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1217
           "rec_calc_rel (Pr n f g) (butlast lm @ [last lm - x]) rsx" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1218
           "lm \<noteq> []"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1219
           "x \<le> last lm" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1220
           "rec_ci f = (ab, ac, bc)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1221
  from h show 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1222
    "\<exists>stp. abc_steps_l (6 + length ab, butlast lm @ (last lm - x) # 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1223
            rsx # 0\<up>(a_md - Suc (Suc rs_pos)) @ x # suf_lm) aprog stp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1224
    (6 + length ab, butlast lm @ last lm # rs #
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1225
                               0\<up>(a_md - Suc (Suc rs_pos)) @ 0 # suf_lm)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1226
  proof(induct x arbitrary: rsx, simp_all)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1227
    fix rsxa
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1228
    assume "rec_calc_rel (Pr n f g) lm rsxa" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1229
           "rec_calc_rel (Pr n f g) lm rs"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1230
    from h and this have "rs = rsxa"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1231
      apply(subgoal_tac "lm \<noteq> [] \<and> rs_pos = Suc n", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1232
      apply(rule_tac rec_calc_inj, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1233
      apply(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1234
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1235
    thus "\<exists>stp. abc_steps_l (6 + length ab, butlast lm @  last lm # 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1236
             rsxa # 0\<up>(a_md - Suc (Suc rs_pos)) @ 0 # suf_lm) aprog stp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1237
      (6 + length ab, butlast lm @ last lm # rs #
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1238
                               0\<up>(a_md - Suc (Suc rs_pos)) @ 0 # suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1239
      by(rule_tac x = 0 in exI, simp add: abc_steps_l.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1240
  next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1241
    fix xa rsxa
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1242
    assume ind:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1243
   "\<And>rsx. rec_calc_rel (Pr n f g) (butlast lm @ [last lm - xa]) rsx 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1244
  \<Longrightarrow> \<exists>stp. abc_steps_l (6 + length ab, butlast lm @ (last lm - xa) #
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1245
             rsx # 0\<up>(a_md - Suc (Suc rs_pos)) @ xa # suf_lm) aprog stp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1246
      (6 + length ab, butlast lm @ last lm # rs # 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1247
                               0\<up>(a_md - Suc (Suc rs_pos)) @ 0 # suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1248
      and g: "rec_calc_rel (Pr n f g) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1249
                      (butlast lm @ [last lm - Suc xa]) rsxa"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1250
      "Suc xa \<le> last lm"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1251
      "rec_ci (Pr n f g) = (aprog, rs_pos, a_md)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1252
      "rec_calc_rel (Pr n f g) lm rs"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1253
      "rec_ci g = (a, aa, ba)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1254
      "rec_ci f = (ab, ac, bc)" "lm \<noteq> []"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1255
    from g have k1: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1256
      "\<exists> rs. rec_calc_rel (Pr n f g) (butlast lm @ [last lm - xa]) rs"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1257
      apply(rule_tac rs = rs in  calc_pr_less_ex, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1258
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1259
    from g and this show 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1260
      "\<exists>stp. abc_steps_l (6 + length ab, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1261
           butlast lm @ (last lm - Suc xa) # rsxa # 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1262
              0\<up>(a_md - Suc (Suc rs_pos)) @ Suc xa # suf_lm) aprog stp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1263
              (6 + length ab, butlast lm @ last lm # rs # 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1264
                                0\<up>(a_md - Suc (Suc rs_pos)) @ 0 # suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1265
    proof(erule_tac exE)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1266
      fix rsa
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1267
      assume k2: "rec_calc_rel (Pr n f g) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1268
                           (butlast lm @ [last lm - xa]) rsa"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1269
      from g and k2 have
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1270
      "\<exists>stp. abc_steps_l (6 + length ab, butlast lm @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1271
       (last lm - Suc xa) # rsxa # 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1272
               0\<up>(a_md - Suc (Suc rs_pos)) @ Suc xa # suf_lm) aprog stp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1273
        = (6 + length ab, butlast lm @ (last lm - xa) # rsa # 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1274
                               0\<up>(a_md - Suc (Suc rs_pos)) @ xa # suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1275
	proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1276
	  from g have k2_1: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1277
            "\<exists> ap bp. length ap = 6 + length ab \<and>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1278
                   aprog = ap [+] bp \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1279
                   bp = ([Dec (a_md - Suc 0) (length a + 7)] [+]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1280
                  (a [+] [Inc (rs_pos - Suc 0), Dec rs_pos 3, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1281
                  Goto (Suc 0)])) @
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1282
                  [Dec (Suc (Suc n)) 0, Inc (Suc n), Goto (length a + 4)]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1283
            apply(rule_tac ci_pr_ex1, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1284
	    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1285
	  from k2_1 and k2 and g show "?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1286
	    proof(erule_tac exE, erule_tac exE)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1287
	      fix ap bp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1288
	      assume 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1289
                "length ap = 6 + length ab \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1290
                 aprog = ap [+] bp \<and> bp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1291
                ([Dec (a_md - Suc 0) (length a + 7)] [+] 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1292
                (a [+] [Inc (rs_pos - Suc 0), Dec rs_pos 3,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1293
                Goto (Suc 0)])) @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1294
                [Dec (Suc (Suc n)) 0, Inc (Suc n), Goto (length a + 4)]" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1295
	      from g and this and k2 and g_ind show "?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1296
		apply(insert abc_append_exc3[of 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1297
                  "butlast lm @ (last lm - Suc xa) # rsxa #
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1298
                  0\<up>(a_md - Suc (Suc rs_pos)) @ Suc xa # suf_lm" bp 0
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1299
                  "butlast lm @ (last lm - xa) # rsa #
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1300
                0\<up>(a_md - Suc (Suc rs_pos)) @ xa # suf_lm" "length ap" ap],
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1301
                 simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1302
		apply(subgoal_tac 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1303
                "\<exists>stp. abc_steps_l (0, butlast lm @ (last lm - Suc xa)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1304
                           # rsxa # 0\<up>(a_md - Suc (Suc rs_pos)) @ Suc xa # 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1305
                              suf_lm) bp stp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1306
	          (0, butlast lm @ (last lm - xa) # rsa #
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1307
                           0\<up>(a_md - Suc (Suc rs_pos)) @ xa # suf_lm)",
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1308
                      simp, erule_tac conjE, erule conjE)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1309
		apply(erule pr_cycle_part_ind, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1310
		done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1311
	    qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1312
	  qed  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1313
      from g and k2 and this show "?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1314
	apply(erule_tac exE)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1315
	apply(insert ind[of rsa], simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1316
	apply(erule_tac exE)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1317
	apply(rule_tac x = "stp + stpa" in exI, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1318
              simp add: abc_steps_add)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1319
	done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1320
    qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1321
  qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1322
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1323
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1324
lemma ci_pr_length: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1325
  "\<lbrakk>rec_ci (Pr n f g) = (aprog, rs_pos, a_md); 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1326
    rec_ci g = (a, aa, ba);  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1327
    rec_ci f = (ab, ac, bc)\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1328
    \<Longrightarrow>  length aprog = 13 + length ab + length a"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1329
apply(auto simp: rec_ci.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1330
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1331
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1332
fun mv_box_inv :: "nat \<times> nat list \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat list \<Rightarrow> bool"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1333
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1334
  "mv_box_inv (as, lm) m n initlm = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1335
         (let plus = initlm ! m + initlm ! n in
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1336
           length initlm > max m n \<and> m \<noteq> n \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1337
              (if as = 0 then \<exists> k l. lm = initlm[m := k, n := l] \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1338
                    k + l = plus \<and> k \<le> initlm ! m 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1339
              else if as = 1 then \<exists> k l. lm = initlm[m := k, n := l]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1340
                             \<and> k + l + 1 = plus \<and> k < initlm ! m 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1341
              else if as = 2 then \<exists> k l. lm = initlm[m := k, n := l] 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1342
                              \<and> k + l = plus \<and> k \<le> initlm ! m
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1343
              else if as = 3 then lm = initlm[m := 0, n := plus]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1344
              else False))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1345
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1346
fun mv_box_stage1 :: "nat \<times> nat list \<Rightarrow> nat \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1347
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1348
  "mv_box_stage1 (as, lm) m  = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1349
            (if as = 3 then 0 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1350
             else 1)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1351
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1352
fun mv_box_stage2 :: "nat \<times> nat list \<Rightarrow> nat \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1353
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1354
  "mv_box_stage2 (as, lm) m = (lm ! m)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1355
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1356
fun mv_box_stage3 :: "nat \<times> nat list \<Rightarrow> nat \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1357
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1358
  "mv_box_stage3 (as, lm) m = (if as = 1 then 3 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1359
                                else if as = 2 then 2
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1360
                                else if as = 0 then 1 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1361
                                else 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1362
 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1363
fun mv_box_measure :: "((nat \<times> nat list) \<times> nat) \<Rightarrow> (nat \<times> nat \<times> nat)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1364
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1365
  "mv_box_measure ((as, lm), m) = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1366
     (mv_box_stage1 (as, lm) m, mv_box_stage2 (as, lm) m,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1367
      mv_box_stage3 (as, lm) m)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1368
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1369
definition lex_pair :: "((nat \<times> nat) \<times> nat \<times> nat) set"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1370
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1371
  "lex_pair = less_than <*lex*> less_than"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1372
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1373
definition lex_triple :: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1374
 "((nat \<times> (nat \<times> nat)) \<times> (nat \<times> (nat \<times> nat))) set"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1375
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1376
  "lex_triple \<equiv> less_than <*lex*> lex_pair"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1377
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1378
definition mv_box_LE :: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1379
 "(((nat \<times> nat list) \<times> nat) \<times> ((nat \<times> nat list) \<times> nat)) set"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1380
  where 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1381
  "mv_box_LE \<equiv> (inv_image lex_triple mv_box_measure)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1382
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1383
lemma wf_lex_triple: "wf lex_triple"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1384
  by (auto intro:wf_lex_prod simp:lex_triple_def lex_pair_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1385
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1386
lemma wf_mv_box_le[intro]: "wf mv_box_LE"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1387
by(auto intro:wf_inv_image wf_lex_triple simp: mv_box_LE_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1388
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1389
declare mv_box_inv.simps[simp del]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1390
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1391
lemma mv_box_inv_init:  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1392
"\<lbrakk>m < length initlm; n < length initlm; m \<noteq> n\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1393
  mv_box_inv (0, initlm) m n initlm"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1394
apply(simp add: abc_steps_l.simps mv_box_inv.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1395
apply(rule_tac x = "initlm ! m" in exI, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1396
      rule_tac x = "initlm ! n" in exI, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1397
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1398
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1399
lemma [simp]: "abc_fetch 0 (recursive.mv_box m n) = Some (Dec m 3)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1400
apply(simp add: mv_box.simps abc_fetch.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1401
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1402
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1403
lemma [simp]: "abc_fetch (Suc 0) (recursive.mv_box m n) =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1404
               Some (Inc n)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1405
apply(simp add: mv_box.simps abc_fetch.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1406
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1407
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1408
lemma [simp]: "abc_fetch 2 (recursive.mv_box m n) = Some (Goto 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1409
apply(simp add: mv_box.simps abc_fetch.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1410
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1411
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1412
lemma [simp]: "abc_fetch 3 (recursive.mv_box m n) = None"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1413
apply(simp add: mv_box.simps abc_fetch.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1414
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1415
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1416
lemma [simp]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1417
  "\<lbrakk>m \<noteq> n; m < length initlm; n < length initlm;
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1418
    k + l = initlm ! m + initlm ! n; k \<le> initlm ! m; 0 < k\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1419
 \<Longrightarrow> \<exists>ka la. initlm[m := k, n := l, m := k - Suc 0] = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1420
     initlm[m := ka, n := la] \<and>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1421
     Suc (ka + la) = initlm ! m + initlm ! n \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1422
     ka < initlm ! m"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1423
apply(rule_tac x = "k - Suc 0" in exI, rule_tac x = l in exI, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1424
      simp, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1425
apply(subgoal_tac 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1426
      "initlm[m := k, n := l, m := k - Suc 0] = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1427
       initlm[n := l, m := k, m := k - Suc 0]")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1428
apply(simp add: list_update_overwrite )
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1429
apply(simp add: list_update_swap)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1430
apply(simp add: list_update_swap)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1431
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1432
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1433
lemma [simp]:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1434
  "\<lbrakk>m \<noteq> n; m < length initlm; n < length initlm; 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1435
    Suc (k + l) = initlm ! m + initlm ! n;
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1436
    k < initlm ! m\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1437
    \<Longrightarrow> \<exists>ka la. initlm[m := k, n := l, n := Suc l] = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1438
                initlm[m := ka, n := la] \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1439
                ka + la = initlm ! m + initlm ! n \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1440
                ka \<le> initlm ! m"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1441
apply(rule_tac x = k in exI, rule_tac x = "Suc l" in exI, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1442
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1443
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1444
lemma [simp]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1445
  "\<lbrakk>length initlm > max m n; m \<noteq> n\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1446
   \<forall>na. \<not> (\<lambda>(as, lm) m. as = 3) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1447
    (abc_steps_l (0, initlm) (recursive.mv_box m n) na) m \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1448
  mv_box_inv (abc_steps_l (0, initlm) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1449
           (recursive.mv_box m n) na) m n initlm \<longrightarrow>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1450
  mv_box_inv (abc_steps_l (0, initlm) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1451
           (recursive.mv_box m n) (Suc na)) m n initlm \<and>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1452
  ((abc_steps_l (0, initlm) (recursive.mv_box m n) (Suc na), m),
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1453
   abc_steps_l (0, initlm) (recursive.mv_box m n) na, m) \<in> mv_box_LE"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1454
apply(rule allI, rule impI, simp add: abc_steps_ind)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1455
apply(case_tac "(abc_steps_l (0, initlm) (recursive.mv_box m n) na)",
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1456
      simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1457
apply(auto split:if_splits simp add:abc_steps_l.simps mv_box_inv.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1458
apply(auto simp add: mv_box_LE_def lex_triple_def lex_pair_def 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1459
                     abc_step_l.simps abc_steps_l.simps
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1460
                     mv_box_inv.simps abc_lm_v.simps abc_lm_s.simps
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1461
                split: if_splits )
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1462
apply(rule_tac x = k in exI, rule_tac x = "Suc l" in exI, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1463
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1464
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1465
lemma mv_box_inv_halt: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1466
  "\<lbrakk>length initlm > max m n; m \<noteq> n\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1467
  \<exists> stp. (\<lambda> (as, lm). as = 3 \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1468
  mv_box_inv (as, lm) m n initlm) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1469
             (abc_steps_l (0::nat, initlm) (mv_box m n) stp)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1470
thm halt_lemma2
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1471
apply(insert halt_lemma2[of mv_box_LE
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1472
    "\<lambda> ((as, lm), m). mv_box_inv (as, lm) m n initlm"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1473
    "\<lambda> stp. (abc_steps_l (0, initlm) (recursive.mv_box m n) stp, m)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1474
    "\<lambda> ((as, lm), m). as = (3::nat)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1475
    ])
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1476
apply(insert wf_mv_box_le)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1477
apply(simp add: mv_box_inv_init abc_steps_zero)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1478
apply(erule_tac exE)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1479
apply(rule_tac x = na in exI)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1480
apply(case_tac "(abc_steps_l (0, initlm) (recursive.mv_box m n) na)",
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1481
      simp, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1482
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1483
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1484
lemma mv_box_halt_cond:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1485
  "\<lbrakk>m \<noteq> n; mv_box_inv (a, b) m n lm; a = 3\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1486
  b = lm[n := lm ! m + lm ! n, m := 0]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1487
apply(simp add: mv_box_inv.simps, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1488
apply(simp add: list_update_swap)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1489
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1490
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1491
lemma mv_box_ex:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1492
  "\<lbrakk>length lm > max m n; m \<noteq> n\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1493
  \<exists> stp. abc_steps_l (0::nat, lm) (mv_box m n) stp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1494
  = (3, (lm[n := (lm ! m + lm ! n)])[m := 0::nat])"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1495
apply(drule mv_box_inv_halt, simp, erule_tac exE)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1496
apply(rule_tac x = stp in exI)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1497
apply(case_tac "abc_steps_l (0, lm) (recursive.mv_box m n) stp",
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1498
      simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1499
apply(erule_tac mv_box_halt_cond, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1500
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1501
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1502
lemma [simp]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1503
  "\<lbrakk>a_md = Suc (max (Suc (Suc n)) (max bc ba)); 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1504
   length lm = rs_pos \<and> rs_pos = n \<and> n > 0\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1505
  \<Longrightarrow> n - Suc 0 < length lm + 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1506
  (Suc (max (Suc (Suc n)) (max bc ba)) - rs_pos + length suf_lm) \<and>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1507
   Suc (Suc n) < length lm + (Suc (max (Suc (Suc n)) (max bc ba)) -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1508
  rs_pos + length suf_lm) \<and> bc < length lm + (Suc (max (Suc (Suc n)) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1509
 (max bc ba)) - rs_pos + length suf_lm) \<and> ba < length lm + 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1510
  (Suc (max (Suc (Suc n)) (max bc ba)) - rs_pos + length suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1511
apply(arith)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1512
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1513
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1514
lemma [simp]:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1515
  "\<lbrakk>a_md = Suc (max (Suc (Suc n)) (max bc ba)); 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1516
   length lm = rs_pos \<and> rs_pos = n \<and> n > 0\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1517
 \<Longrightarrow> n - Suc 0 < Suc (length suf_lm + max (Suc (Suc n)) (max bc ba)) \<and>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1518
     Suc n < length suf_lm + max (Suc (Suc n)) (max bc ba) \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1519
     bc < Suc (length suf_lm + max (Suc (Suc n)) (max bc ba)) \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1520
     ba < Suc (length suf_lm + max (Suc (Suc n)) (max bc ba))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1521
apply(arith)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1522
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1523
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1524
lemma [simp]: "n - Suc 0 \<noteq> max (Suc (Suc n)) (max bc ba)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1525
apply(arith)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1526
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1527
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1528
lemma [simp]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1529
  "a_md \<ge> Suc bc \<and> rs_pos > 0 \<and> bc \<ge> rs_pos \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1530
 bc - (rs_pos - Suc 0) + a_md - Suc bc = Suc (a_md - rs_pos - Suc 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1531
apply(arith)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1532
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1533
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1534
lemma [simp]: "length lm = n \<and> rs_pos = n \<and> 0 < rs_pos \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1535
                                                  Suc rs_pos < a_md 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1536
       \<Longrightarrow> n - Suc 0 < Suc (Suc (a_md + length suf_lm - Suc (Suc 0))) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1537
        \<and> n < Suc (Suc (a_md + length suf_lm - Suc (Suc 0)))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1538
apply(arith)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1539
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1540
     
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1541
lemma [simp]: "length lm = n \<and> rs_pos = n \<and> 0 < rs_pos \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1542
               Suc rs_pos < a_md \<Longrightarrow> n - Suc 0 \<noteq> n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1543
by arith
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1544
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1545
lemma ci_pr_ex2: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1546
  "\<lbrakk>rec_ci (Pr n f g) = (aprog, rs_pos, a_md);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1547
    rec_calc_rel (Pr n f g) lm rs; 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1548
    rec_ci g = (a, aa, ba); 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1549
    rec_ci f = (ab, ac, bc)\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1550
  \<Longrightarrow> \<exists>ap bp. aprog = ap [+] bp \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1551
         ap = mv_box n (max (Suc (Suc (Suc n))) (max bc ba))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1552
apply(simp add: rec_ci.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1553
apply(rule_tac x = "(ab [+] (recursive.mv_box n (Suc n) [+]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1554
              ([Dec (max (n + 3) (max bc ba)) (length a + 7)] 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1555
      [+] (a [+] [Inc n, Dec (Suc n) 3, Goto (Suc 0)])) @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1556
      [Dec (Suc (Suc n)) 0, Inc (Suc n), Goto (length a + 4)]))" in exI, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1557
apply(simp add: abc_append_commute numeral_3_eq_3)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1558
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1559
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1560
lemma [simp]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1561
  "max (Suc (Suc (Suc n))) (max bc ba) - n < 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1562
     Suc (max (Suc (Suc (Suc n))) (max bc ba)) - n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1563
apply(arith)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1564
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1565
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1566
thm nth_replicate
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1567
(*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1568
lemma exp_nth[simp]: "n < m \<Longrightarrow> a\<up>m ! n = a"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1569
apply(sim)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1570
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1571
*)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1572
lemma [simp]: "length lm = n \<and> rs_pos = n \<and> 0 < n \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1573
                      lm[n - Suc 0 := 0::nat] = butlast lm @ [0]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1574
apply(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1575
apply(insert list_update_append[of "butlast lm" "[last lm]" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1576
                                   "length lm - Suc 0" "0"], simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1577
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1578
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1579
lemma [simp]: "\<lbrakk>length lm = n; 0 < n\<rbrakk>  \<Longrightarrow> lm ! (n - Suc 0) = last lm"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1580
apply(insert nth_append[of "butlast lm" "[last lm]" "n - Suc 0"],
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1581
      simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1582
apply(insert butlast_append_last[of lm], auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1583
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1584
lemma exp_suc_iff: "a\<up>b @ [a] = a\<up>(b + Suc 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1585
apply(simp add: exp_ind del: replicate.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1586
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1587
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1588
lemma less_not_less[simp]: "n > 0 \<Longrightarrow> \<not> n < n - Suc 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1589
by auto
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1590
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1591
lemma [simp]:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1592
  "Suc n < length suf_lm + max (Suc (Suc n)) (max bc ba) \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1593
  bc < Suc (length suf_lm + max (Suc (Suc n)) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1594
  (max bc ba)) \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1595
  ba < Suc (length suf_lm + max (Suc (Suc n)) (max bc ba))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1596
  by arith
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1597
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1598
lemma [simp]: "length lm = n \<and> rs_pos = n \<and> n > 0 \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1599
(lm @ 0\<up>(Suc (max (Suc (Suc n)) (max bc ba)) - n) @ suf_lm) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1600
  [max (Suc (Suc n)) (max bc ba) :=
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1601
   (lm @ 0\<up>(Suc (max (Suc (Suc n)) (max bc ba)) - n) @ suf_lm) ! (n - Suc 0) + 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1602
       (lm @ 0\<up>(Suc (max (Suc (Suc n)) (max bc ba)) - n) @ suf_lm) ! 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1603
                   max (Suc (Suc n)) (max bc ba), n - Suc 0 := 0::nat]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1604
 = butlast lm @ 0 # 0\<up>(max (Suc (Suc n)) (max bc ba) - n) @ last lm # suf_lm"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1605
apply(simp add: nth_append nth_replicate list_update_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1606
apply(insert list_update_append[of "0\<up>((max (Suc (Suc n)) (max bc ba)) - n)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1607
         "[0]" "max (Suc (Suc n)) (max bc ba) - n" "last lm"], simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1608
apply(simp add: exp_suc_iff Suc_diff_le del: list_update.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1609
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1610
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1611
lemma exp_eq: "(a = b) = (c\<up>a = c\<up>b)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1612
apply(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1613
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1614
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1615
lemma [simp]:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1616
  "\<lbrakk>length lm = n; 0 < n;  Suc n < a_md\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1617
   (butlast lm @ rsa # 0\<up>(a_md - Suc n) @ last lm # suf_lm)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1618
    [n := (butlast lm @ rsa # 0\<up>(a_md - Suc n) @ last lm # suf_lm) ! 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1619
        (n - Suc 0) + (butlast lm @ rsa # (0::nat)\<up>(a_md - Suc n) @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1620
                                last lm # suf_lm) ! n, n - Suc 0 := 0]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1621
 = butlast lm @ 0 # rsa # 0\<up>(a_md - Suc (Suc n)) @ last lm # suf_lm"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1622
apply(simp add: nth_append list_update_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1623
apply(case_tac "a_md - Suc n", auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1624
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1625
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1626
lemma [simp]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1627
  "Suc (Suc rs_pos) \<le> a_md \<and> length lm = rs_pos \<and> 0 < rs_pos
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1628
  \<Longrightarrow> a_md - Suc 0 < 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1629
          Suc (Suc (Suc (a_md + length suf_lm - Suc (Suc (Suc 0)))))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1630
by arith
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1631
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1632
lemma [simp]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1633
  "Suc (Suc rs_pos) \<le> a_md \<and> length lm = rs_pos \<and> 0 < rs_pos \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1634
                                   \<not> a_md - Suc 0 < rs_pos - Suc 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1635
by arith
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1636
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1637
lemma [simp]: "Suc (Suc rs_pos) \<le> a_md \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1638
                                \<not> a_md - Suc 0 < rs_pos - Suc 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1639
by arith
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1640
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1641
lemma [simp]: "\<lbrakk>Suc (Suc rs_pos) \<le> a_md\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1642
               \<not> a_md - rs_pos < Suc (Suc (a_md - Suc (Suc rs_pos)))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1643
by arith 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1644
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1645
lemma [simp]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1646
  "Suc (Suc rs_pos) \<le> a_md \<and> length lm = rs_pos \<and> 0 < rs_pos
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1647
 \<Longrightarrow> (abc_lm_v (butlast lm @ last lm # rs # 0\<up>(a_md - Suc (Suc rs_pos)) @
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1648
        0 # suf_lm) (a_md - Suc 0) = 0 \<longrightarrow>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1649
      abc_lm_s (butlast lm @ last lm # rs # 0\<up>(a_md - Suc (Suc rs_pos)) @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1650
        0 # suf_lm) (a_md - Suc 0) 0 = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1651
         lm @ rs # 0\<up>(a_md - Suc rs_pos) @ suf_lm) \<and>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1652
     abc_lm_v (butlast lm @ last lm # rs # 0\<up>(a_md - Suc (Suc rs_pos)) @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1653
               0 # suf_lm) (a_md - Suc 0) = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1654
apply(simp add: abc_lm_v.simps nth_append abc_lm_s.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1655
apply(insert nth_append[of "last lm # rs # 0\<up>(a_md - Suc (Suc rs_pos))" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1656
               "0 # suf_lm" "(a_md - rs_pos)"], auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1657
apply(simp only: exp_suc_iff)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1658
apply(subgoal_tac "a_md - Suc 0 < a_md + length suf_lm", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1659
apply(case_tac "lm = []", auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1660
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1661
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1662
lemma pr_prog_ex[simp]: "\<lbrakk>rec_ci (Pr n f g) = (aprog, rs_pos, a_md); 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1663
      rec_ci g = (a, aa, ba); rec_ci f = (ab, ac, bc)\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1664
    \<Longrightarrow> \<exists>cp. aprog = recursive.mv_box n (max (n + 3) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1665
                    (max bc ba)) [+] cp"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1666
apply(simp add: rec_ci.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1667
apply(rule_tac x = "(ab [+] (recursive.mv_box n (Suc n) [+]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1668
              ([Dec (max (n + 3) (max bc ba)) (length a + 7)] 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1669
             [+] (a [+] [Inc n, Dec (Suc n) 3, Goto (Suc 0)]))
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1670
             @ [Dec (Suc (Suc n)) 0, Inc (Suc n), Goto (length a + 4)]))" in exI)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1671
apply(auto simp: abc_append_commute)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1672
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1673
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1674
lemma [simp]: "mv_box m n \<noteq> []"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1675
by (simp add: mv_box.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1676
(*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1677
lemma [simp]: "\<lbrakk>rs_pos = n; 0 < rs_pos ; Suc rs_pos < a_md\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1678
                        n - Suc 0 < a_md + length suf_lm"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1679
by arith
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1680
*)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1681
lemma [intro]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1682
  "\<lbrakk>rec_ci (Pr n f g) = (aprog, rs_pos, a_md); 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1683
    rec_ci f = (ab, ac, bc)\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1684
   \<exists>ap. (\<exists>cp. aprog = ap [+] ab [+] cp) \<and> length ap = 3"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1685
apply(case_tac "rec_ci g", simp add: rec_ci.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1686
apply(rule_tac x = "mv_box n 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1687
              (max (n + 3) (max bc c))" in exI, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1688
apply(rule_tac x = "recursive.mv_box n (Suc n) [+]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1689
                 ([Dec (max (n + 3) (max bc c)) (length a + 7)]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1690
                 [+] a [+] [Inc n, Dec (Suc n) 3, Goto (Suc 0)])
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1691
               @ [Dec (Suc (Suc n)) 0, Inc (Suc n), Goto (length a + 4)]" in exI, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1692
      auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1693
apply(simp add: abc_append_commute)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1694
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1695
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1696
lemma [intro]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1697
  "\<lbrakk>rec_ci (Pr n f g) = (aprog, rs_pos, a_md);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1698
    rec_ci g = (a, aa, ba); 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1699
    rec_ci f = (ab, ac, bc)\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1700
    \<exists>ap. (\<exists>cp. aprog = ap [+] recursive.mv_box n (Suc n) [+] cp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1701
      \<and> length ap = 3 + length ab"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1702
apply(simp add: rec_ci.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1703
apply(rule_tac x = "recursive.mv_box n (max (n + 3)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1704
                                (max bc ba)) [+] ab" in exI, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1705
apply(rule_tac x = "([Dec (max (n + 3) (max bc ba))
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1706
  (length a + 7)] [+] a [+] 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1707
  [Inc n, Dec (Suc n) 3, Goto (Suc 0)]) @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1708
  [Dec (Suc (Suc n)) 0, Inc (Suc n), Goto (length a + 4)]" in exI)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1709
apply(auto simp: abc_append_commute)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1710
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1711
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1712
lemma [intro]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1713
  "\<lbrakk>rec_ci (Pr n f g) = (aprog, rs_pos, a_md);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1714
    rec_ci g = (a, aa, ba); 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1715
    rec_ci f = (ab, ac, bc)\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1716
    \<Longrightarrow> \<exists>ap. (\<exists>cp. aprog = ap [+] ([Dec (a_md - Suc 0) (length a + 7)]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1717
             [+] (a [+] [Inc (rs_pos - Suc 0), Dec rs_pos 3, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1718
             Goto (Suc 0)])) @ [Dec (Suc (Suc n)) 0, Inc (Suc n),
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1719
             Goto (length a + 4)] [+] cp) \<and>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1720
             length ap = 6 + length ab"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1721
apply(simp add: rec_ci.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1722
apply(rule_tac x = "recursive.mv_box n
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1723
    (max (n + 3) (max bc ba)) [+] ab [+] 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1724
     recursive.mv_box n (Suc n)" in exI, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1725
apply(rule_tac x = "[]" in exI, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1726
apply(simp add: abc_append_commute)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1727
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1728
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1729
lemma [simp]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1730
  "n < Suc (max (n + 3) (max bc ba) + length suf_lm) \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1731
   Suc (Suc n) < max (n + 3) (max bc ba) + length suf_lm \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1732
   bc < Suc (max (n + 3) (max bc ba) + length suf_lm) \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1733
   ba < Suc (max (n + 3) (max bc ba) + length suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1734
by arith
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1735
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1736
lemma [simp]: "n \<noteq> max (n + (3::nat)) (max bc ba)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1737
by arith
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1738
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1739
lemma [simp]:"length lm = Suc n \<Longrightarrow> lm[n := (0::nat)] = butlast lm @ [0]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1740
apply(subgoal_tac "\<exists> xs x. lm = xs @ [x]", auto simp: list_update_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1741
apply(rule_tac x = "butlast lm" in exI, rule_tac x = "last lm" in exI)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1742
apply(case_tac lm, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1743
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1744
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1745
lemma [simp]:  "length lm = Suc n \<Longrightarrow> lm ! n =last lm"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1746
apply(subgoal_tac "lm \<noteq> []")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1747
apply(simp add: last_conv_nth, case_tac lm, simp_all)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1748
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1749
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1750
lemma [simp]: "length lm = Suc n \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1751
      (lm @ (0::nat)\<up>(max (n + 3) (max bc ba) - n) @ suf_lm)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1752
           [max (n + 3) (max bc ba) := (lm @ 0\<up>(max (n + 3) (max bc ba) - n) @ suf_lm) ! n + 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1753
                  (lm @ 0\<up>(max (n + 3) (max bc ba) - n) @ suf_lm) ! max (n + 3) (max bc ba), n := 0]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1754
       = butlast lm @ 0 # 0\<up>(max (n + 3) (max bc ba) - Suc n) @ last lm # suf_lm"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1755
apply(auto simp: list_update_append nth_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1756
apply(subgoal_tac "(0\<up>(max (n + 3) (max bc ba) - n)) = 0\<up>(max (n + 3) (max bc ba) - Suc n) @ [0::nat]")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1757
apply(simp add: list_update_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1758
apply(simp add: exp_suc_iff)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1759
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1760
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1761
lemma [simp]: "Suc (Suc n) < a_md \<Longrightarrow>  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1762
      n < Suc (Suc (a_md + length suf_lm - 2)) \<and>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1763
        n < Suc (a_md + length suf_lm - 2)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1764
by(arith)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1765
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1766
lemma [simp]: "\<lbrakk>length lm = Suc n; Suc (Suc n) < a_md\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1767
        \<Longrightarrow>(butlast lm @ (rsa::nat) # 0\<up>(a_md - Suc (Suc n)) @ last lm # suf_lm)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1768
          [Suc n := (butlast lm @ rsa # 0\<up>(a_md - Suc (Suc n)) @ last lm # suf_lm) ! n +
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1769
                  (butlast lm @ rsa # 0\<up>(a_md - Suc (Suc n)) @ last lm # suf_lm) ! Suc n, n := 0]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1770
    = butlast lm @ 0 # rsa # 0\<up>(a_md - Suc (Suc (Suc n))) @ last lm # suf_lm"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1771
apply(auto simp: list_update_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1772
apply(subgoal_tac "(0\<up>(a_md - Suc (Suc n))) = (0::nat) # (0\<up>(a_md - Suc (Suc (Suc n))))", simp add: nth_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1773
apply(simp add: replicate_Suc[THEN sym])
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1774
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1775
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1776
lemma pr_case:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1777
  assumes nf_ind:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1778
  "\<And> lm rs suf_lm. rec_calc_rel f lm rs \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1779
  \<exists>stp. abc_steps_l (0, lm @ 0\<up>(bc - ac) @ suf_lm) ab stp = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1780
                (length ab, lm @ rs # 0\<up>(bc - Suc ac) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1781
  and ng_ind: "\<And> lm rs suf_lm. rec_calc_rel g lm rs \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1782
        \<exists>stp. abc_steps_l (0, lm @ 0\<up>(ba - aa) @ suf_lm) a stp = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1783
                       (length a, lm @ rs # 0\<up>(ba - Suc aa) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1784
    and h: "rec_ci (Pr n f g) = (aprog, rs_pos, a_md)"  "rec_calc_rel (Pr n f g) lm rs" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1785
           "rec_ci g = (a, aa, ba)" "rec_ci f = (ab, ac, bc)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1786
  shows "\<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) aprog stp = (length aprog, lm @ rs # 0\<up>(a_md - Suc rs_pos) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1787
proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1788
  from h have k1: "\<exists> stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) aprog stp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1789
    = (3, butlast lm @ 0 # 0\<up>(a_md - rs_pos - 1) @ last lm # suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1790
  proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1791
    have "\<exists>bp cp. aprog = bp [+] cp \<and> bp = mv_box n 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1792
                 (max (n + 3) (max bc ba))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1793
      apply(insert h, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1794
      apply(erule pr_prog_ex, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1795
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1796
    thus "?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1797
      apply(erule_tac exE, erule_tac exE, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1798
      apply(subgoal_tac 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1799
           "\<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1800
              ([] [+] recursive.mv_box n
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1801
                  (max (n + 3) (max bc ba)) [+] cp) stp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1802
             (0 + 3, butlast lm @ 0 # 0\<up>(a_md - Suc rs_pos) @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1803
                                        last lm # suf_lm)", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1804
      apply(rule_tac abc_append_exc1, simp_all)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1805
      apply(insert mv_box_ex[of "n" "(max (n + 3) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1806
                 (max bc ba))" "lm @ 0\<up>(a_md - rs_pos) @ suf_lm"], simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1807
      apply(subgoal_tac "a_md = Suc (max (n + 3) (max bc ba))",
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1808
            simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1809
      apply(subgoal_tac "length lm = Suc n \<and> rs_pos = Suc n", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1810
      apply(insert h)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1811
      apply(simp add: para_pattern ci_pr_para_eq)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1812
      apply(rule ci_pr_md_def, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1813
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1814
  qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1815
  from h have k2: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1816
  "\<exists> stp. abc_steps_l (3,  butlast lm @ 0 # 0\<up>(a_md - rs_pos - 1) @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1817
             last lm # suf_lm) aprog stp 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1818
    = (length aprog, lm @ rs # 0\<up>(a_md - Suc rs_pos) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1819
  proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1820
    from h have k2_1: "\<exists> rs. rec_calc_rel f (butlast lm) rs"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1821
      apply(erule_tac calc_pr_zero_ex)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1822
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1823
    thus "?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1824
    proof(erule_tac exE)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1825
      fix rsa
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1826
      assume k2_2: "rec_calc_rel f (butlast lm) rsa"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1827
      from h and k2_2 have k2_2_1: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1828
       "\<exists> stp. abc_steps_l (3, butlast lm @ 0 # 0\<up>(a_md - rs_pos - 1) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1829
                 @ last lm # suf_lm) aprog stp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1830
        = (3 + length ab, butlast lm @ rsa # 0\<up>(a_md - rs_pos - 1) @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1831
                                             last lm # suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1832
      proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1833
	from h have j1: "
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1834
          \<exists> ap bp cp. aprog = ap [+] bp [+] cp \<and> length ap = 3 \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1835
              bp = ab"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1836
	  apply(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1837
	  done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1838
	from h have j2: "ac = rs_pos - 1"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1839
	  apply(drule_tac ci_pr_f_paras, simp, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1840
	  done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1841
	from h and j2 have j3: "a_md \<ge> Suc bc \<and> rs_pos > 0 \<and> bc \<ge> rs_pos"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1842
	  apply(rule_tac conjI)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1843
	  apply(erule_tac ab = ab and ac = ac in ci_pr_md_ge_f, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1844
	  apply(rule_tac context_conjI)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1845
          apply(simp_all add: rec_ci.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1846
	  apply(drule_tac ci_ad_ge_paras, drule_tac ci_ad_ge_paras)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1847
	  apply(arith)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1848
	  done	  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1849
	from j1 and j2 show "?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1850
	  apply(auto simp del: abc_append_commute)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1851
	  apply(rule_tac abc_append_exc1, simp_all)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1852
	  apply(insert nf_ind[of "butlast lm" "rsa" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1853
                "0\<up>(a_md - bc - Suc 0) @ last lm # suf_lm"], 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1854
               simp add: k2_2 j2, erule_tac exE)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1855
	  apply(simp add: exponent_add_iff j3)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1856
	  apply(rule_tac x = "stp" in exI, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1857
	  done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1858
      qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1859
      from h have k2_2_2: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1860
      "\<exists> stp. abc_steps_l (3 + length ab, butlast lm @ rsa # 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1861
                  0\<up>(a_md - rs_pos - 1) @ last lm # suf_lm) aprog stp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1862
        = (6 + length ab, butlast lm @ 0 # rsa # 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1863
                       0\<up>(a_md - rs_pos - 2) @ last lm # suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1864
      proof -	     
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1865
	from h have "\<exists> ap bp cp. aprog = ap [+] bp [+] cp \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1866
          length ap = 3 + length ab \<and> bp = recursive.mv_box n (Suc n)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1867
	  by auto
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1868
	thus "?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1869
	proof(erule_tac exE, erule_tac exE, erule_tac exE, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1870
              erule_tac exE)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1871
	  fix ap cp bp apa
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1872
	  assume "aprog = ap [+] bp [+] cp \<and> length ap = 3 + 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1873
                    length ab \<and> bp = recursive.mv_box n (Suc n)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1874
	  thus "?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1875
	    apply(simp del: abc_append_commute)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1876
	    apply(subgoal_tac 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1877
              "\<exists>stp. abc_steps_l (3 + length ab, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1878
               butlast lm @ rsa # 0\<up>(a_md - Suc rs_pos) @
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1879
                 last lm # suf_lm) (ap [+] 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1880
                   recursive.mv_box n (Suc n) [+] cp) stp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1881
              ((3 + length ab) + 3, butlast lm @ 0 # rsa # 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1882
                  0\<up>(a_md - Suc (Suc rs_pos)) @ last lm # suf_lm)", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1883
	    apply(rule_tac abc_append_exc1, simp_all)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1884
	    apply(insert mv_box_ex[of n "Suc n" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1885
                    "butlast lm @ rsa # 0\<up>(a_md - Suc rs_pos) @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1886
                          last lm # suf_lm"], simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1887
	    apply(subgoal_tac "length lm = Suc n \<and> rs_pos = Suc n \<and> a_md > Suc (Suc n)", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1888
	    apply(insert h, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1889
            done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1890
	qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1891
      qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1892
      from h have k2_3: "lm \<noteq> []"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1893
	apply(rule_tac calc_pr_para_not_null, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1894
	done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1895
      from h and k2_2 and k2_3 have k2_2_3: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1896
      "\<exists> stp. abc_steps_l (6 + length ab, butlast lm @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1897
          (last lm - last lm) # rsa # 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1898
            0\<up>(a_md - (Suc (Suc rs_pos))) @ last lm # suf_lm) aprog stp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1899
        = (6 + length ab, butlast lm @ last lm # rs # 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1900
                        0\<up>(a_md - Suc (Suc (rs_pos))) @ 0 # suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1901
	apply(rule_tac x = "last lm" and g = g in pr_cycle_part, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1902
	apply(rule_tac ng_ind, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1903
	apply(rule_tac rec_calc_rel_def0, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1904
	done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1905
      from h  have k2_2_4: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1906
       "\<exists> stp. abc_steps_l (6 + length ab,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1907
             butlast lm @ last lm # rs # 0\<up>(a_md - rs_pos - 2) @
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1908
                  0 # suf_lm) aprog stp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1909
        = (13 + length ab + length a,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1910
                   lm @ rs # 0\<up>(a_md - rs_pos - 1) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1911
      proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1912
	from h have 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1913
        "\<exists> ap bp cp. aprog = ap [+] bp [+] cp \<and>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1914
                     length ap = 6 + length ab \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1915
                    bp = ([Dec (a_md - Suc 0) (length a + 7)] [+] 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1916
                         (a [+] [Inc (rs_pos - Suc 0), 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1917
                         Dec rs_pos 3, Goto (Suc 0)])) @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1918
                        [Dec (Suc (Suc n)) 0, Inc (Suc n), Goto (length a + 4)]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1919
	  by auto
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1920
	thus "?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1921
	  apply(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1922
	  apply(subgoal_tac  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1923
            "\<exists>stp. abc_steps_l (6 + length ab, butlast lm @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1924
                last lm # rs # 0\<up>(a_md - Suc (Suc rs_pos)) @ 0 # suf_lm)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1925
                (ap [+] ([Dec (a_md - Suc 0) (length a + 7)] [+] 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1926
                (a [+] [Inc (rs_pos - Suc 0), Dec rs_pos 3, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1927
                Goto (Suc 0)])) @ [Dec (Suc (Suc n)) 0, Inc (Suc n), 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1928
                Goto (length a + 4)] [+] cp) stp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1929
            (6 + length ab + (length a + 7) , 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1930
                 lm @ rs # 0\<up>(a_md - Suc rs_pos) @ suf_lm)", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1931
	  apply(subgoal_tac "13 + (length ab + length a) = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1932
                              13 + length ab + length a", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1933
	  apply(arith)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1934
	  apply(rule abc_append_exc1, simp_all)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1935
	  apply(rule_tac x = "Suc 0" in exI, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1936
                simp add: abc_steps_l.simps abc_fetch.simps
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1937
                         nth_append abc_append_nth abc_step_l.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1938
	  apply(subgoal_tac "a_md > Suc (Suc rs_pos) \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1939
                            length lm = rs_pos \<and> rs_pos > 0", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1940
	  apply(insert h, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1941
	  apply(subgoal_tac "rs_pos = Suc n", simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1942
          done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1943
      qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1944
      from h have k2_2_5: "length aprog = 13 + length ab + length a"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1945
	apply(rule_tac ci_pr_length, simp_all)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1946
	done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1947
      from k2_2_1 and k2_2_2 and k2_2_3 and k2_2_4 and k2_2_5 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1948
      show "?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1949
	apply(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1950
	apply(rule_tac x = "stp + stpa + stpb + stpc" in exI, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1951
              simp add: abc_steps_add)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1952
	done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1953
    qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1954
  qed	
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1955
  from k1 and k2 show 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1956
    "\<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) aprog stp 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1957
               = (length aprog, lm @ rs # 0\<up>(a_md - Suc rs_pos) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1958
    apply(erule_tac exE)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1959
    apply(erule_tac exE)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1960
    apply(rule_tac x = "stp + stpa" in exI)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1961
    apply(simp add: abc_steps_add)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1962
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1963
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1964
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1965
thm rec_calc_rel.induct
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1966
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1967
lemma eq_switch: "x = y \<Longrightarrow> y = x"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1968
by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1969
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1970
lemma [simp]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1971
  "\<lbrakk>rec_ci f = (a, aa, ba); 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1972
    rec_ci (Mn n f) = (aprog, rs_pos, a_md)\<rbrakk> \<Longrightarrow> \<exists>bp. aprog = a @ bp"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1973
apply(simp add: rec_ci.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1974
apply(rule_tac x = "[Dec (Suc n) (length a + 5), 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1975
      Dec (Suc n) (length a + 3), Goto (Suc (length a)), 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1976
      Inc n, Goto 0]" in exI, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1977
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1978
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1979
lemma ci_mn_para_eq[simp]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1980
  "rec_ci (Mn n f) = (aprog, rs_pos, a_md) \<Longrightarrow> rs_pos = n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1981
apply(case_tac "rec_ci f", simp add: rec_ci.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1982
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1983
(*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1984
lemma [simp]: "\<lbrakk>rec_ci f = (a, aa, ba); rec_ci (Mn n f) = (aprog, rs_pos, a_md); rec_calc_rel (Mn n f) lm rs\<rbrakk> \<Longrightarrow> aa = Suc rs_pos"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1985
apply(rule_tac calc_mn_reverse, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1986
apply(insert para_pattern [of f a aa ba "lm @ [rs]" 0], simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1987
apply(subgoal_tac "rs_pos = length lm", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1988
apply(drule_tac ci_mn_para_eq, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1989
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1990
*)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1991
lemma [simp]: "rec_ci f = (a, aa, ba) \<Longrightarrow> aa < ba"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1992
apply(simp add: ci_ad_ge_paras)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1993
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1994
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1995
lemma [simp]: "\<lbrakk>rec_ci f = (a, aa, ba); 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1996
                rec_ci (Mn n f) = (aprog, rs_pos, a_md)\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1997
    \<Longrightarrow> ba \<le> a_md"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1998
apply(simp add: rec_ci.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  1999
by arith
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2000
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2001
lemma mn_calc_f: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2002
  assumes ind: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2003
  "\<And>aprog a_md rs_pos rs suf_lm lm.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2004
  \<lbrakk>rec_ci f = (aprog, rs_pos, a_md); rec_calc_rel f lm rs\<rbrakk>  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2005
  \<Longrightarrow> \<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) aprog stp    
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2006
           = (length aprog, lm @ [rs] @ 0\<up>(a_md - rs_pos - 1) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2007
  and h: "rec_ci f = (a, aa, ba)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2008
         "rec_ci (Mn n f) = (aprog, rs_pos, a_md)"  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2009
         "rec_calc_rel f (lm @ [x]) rsx" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2010
         "aa = Suc n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2011
  shows "\<exists>stp. abc_steps_l (0, lm @ x # 0\<up>(a_md - Suc rs_pos) @ suf_lm) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2012
                  aprog stp = (length a, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2013
                   lm @ x # rsx # 0\<up>(a_md - Suc (Suc rs_pos)) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2014
proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2015
  from h have k1: "\<exists> ap bp. aprog = ap @ bp \<and> ap = a"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2016
    by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2017
  from h have k2: "rs_pos = n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2018
    apply(erule_tac ci_mn_para_eq)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2019
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2020
  from h and k1 and k2 show "?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2021
  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2022
  proof(erule_tac exE, erule_tac exE, simp, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2023
        rule_tac abc_add_exc1, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2024
    fix bp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2025
    show 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2026
      "\<exists>astp. abc_steps_l (0, lm @ x # 0\<up>(a_md - Suc n) @ suf_lm) a astp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2027
      = (length a, lm @ x # rsx # 0\<up>(a_md - Suc (Suc n)) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2028
      apply(insert ind[of a "Suc n" ba  "lm @ [x]" rsx 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2029
             "0\<up>(a_md - ba) @ suf_lm"], simp add: exponent_add_iff h k2)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2030
      apply(subgoal_tac "ba > aa \<and> a_md \<ge> ba \<and> aa = Suc n", 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2031
            insert h, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2032
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2033
  qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2034
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2035
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2036
fun mn_ind_inv ::
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2037
  "nat \<times> nat list \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat list \<Rightarrow> nat list \<Rightarrow> bool"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2038
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2039
  "mn_ind_inv (as, lm') ss x rsx suf_lm lm = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2040
           (if as = ss then lm' = lm @ x # rsx # suf_lm
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2041
            else if as = ss + 1 then 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2042
                 \<exists>y. (lm' = lm @ x # y # suf_lm) \<and> y \<le> rsx
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2043
            else if as = ss + 2 then 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2044
                 \<exists>y. (lm' = lm @ x # y # suf_lm) \<and> y \<le> rsx
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2045
            else if as = ss + 3 then lm' = lm @ x # 0 # suf_lm
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2046
            else if as = ss + 4 then lm' = lm @ Suc x # 0 # suf_lm
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2047
            else if as = 0 then lm' = lm @ Suc x # 0 # suf_lm
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2048
            else False
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2049
)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2050
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2051
fun mn_stage1 :: "nat \<times> nat list \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2052
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2053
  "mn_stage1 (as, lm) ss n = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2054
            (if as = 0 then 0 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2055
             else if as = ss + 4 then 1
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2056
             else if as = ss + 3 then 2
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2057
             else if as = ss + 2 \<or> as = ss + 1 then 3
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2058
             else if as = ss then 4
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2059
             else 0
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2060
)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2061
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2062
fun mn_stage2 :: "nat \<times> nat list \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2063
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2064
  "mn_stage2 (as, lm) ss n = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2065
            (if as = ss + 1 \<or> as = ss + 2 then (lm ! (Suc n))
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2066
             else 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2067
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2068
fun mn_stage3 :: "nat \<times> nat list \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2069
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2070
  "mn_stage3 (as, lm) ss n = (if as = ss + 2 then 1 else 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2071
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2072
 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2073
fun mn_measure :: "((nat \<times> nat list) \<times> nat \<times> nat) \<Rightarrow>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2074
                                                (nat \<times> nat \<times> nat)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2075
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2076
  "mn_measure ((as, lm), ss, n) = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2077
     (mn_stage1 (as, lm) ss n, mn_stage2 (as, lm) ss n,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2078
                                       mn_stage3 (as, lm) ss n)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2079
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2080
definition mn_LE :: "(((nat \<times> nat list) \<times> nat \<times> nat) \<times>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2081
                     ((nat \<times> nat list) \<times> nat \<times> nat)) set"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2082
  where "mn_LE \<equiv> (inv_image lex_triple mn_measure)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2083
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2084
thm halt_lemma2
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2085
lemma wf_mn_le[intro]: "wf mn_LE"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2086
by(auto intro:wf_inv_image wf_lex_triple simp: mn_LE_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2087
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2088
declare mn_ind_inv.simps[simp del]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2089
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2090
lemma mn_inv_init: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2091
  "mn_ind_inv (abc_steps_l (length a, lm @ x # rsx # suf_lm) aprog 0)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2092
                                         (length a) x rsx suf_lm lm"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2093
apply(simp add: mn_ind_inv.simps abc_steps_zero)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2094
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2095
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2096
lemma mn_halt_init: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2097
  "rec_ci f = (a, aa, ba) \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2098
  \<not> (\<lambda>(as, lm') (ss, n). as = 0) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2099
    (abc_steps_l (length a, lm @ x # rsx # suf_lm) aprog 0) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2100
                                                       (length a, n)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2101
apply(simp add: abc_steps_zero)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2102
apply(erule_tac rec_ci_not_null)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2103
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2104
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2105
thm rec_ci.simps
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2106
lemma [simp]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2107
  "\<lbrakk>rec_ci f = (a, aa, ba); 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2108
    rec_ci (Mn n f) = (aprog, rs_pos, a_md)\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2109
    \<Longrightarrow> abc_fetch (length a) aprog =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2110
                      Some (Dec (Suc n) (length a + 5))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2111
apply(simp add: rec_ci.simps abc_fetch.simps, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2112
                erule_tac conjE, erule_tac conjE, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2113
apply(drule_tac eq_switch, drule_tac eq_switch, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2114
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2115
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2116
lemma [simp]: "\<lbrakk>rec_ci f = (a, aa, ba); rec_ci (Mn n f) = (aprog, rs_pos, a_md)\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2117
    \<Longrightarrow> abc_fetch (Suc (length a)) aprog = Some (Dec (Suc n) (length a + 3))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2118
apply(simp add: rec_ci.simps abc_fetch.simps, erule_tac conjE, erule_tac conjE, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2119
apply(drule_tac eq_switch, drule_tac eq_switch, simp add: nth_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2120
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2121
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2122
lemma [simp]:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2123
  "\<lbrakk>rec_ci f = (a, aa, ba);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2124
    rec_ci (Mn n f) = (aprog, rs_pos, a_md)\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2125
    \<Longrightarrow> abc_fetch (Suc (Suc (length a))) aprog = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2126
                                     Some (Goto (length a + 1))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2127
apply(simp add: rec_ci.simps abc_fetch.simps,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2128
      erule_tac conjE, erule_tac conjE, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2129
apply(drule_tac eq_switch, drule_tac eq_switch, simp add: nth_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2130
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2131
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2132
lemma [simp]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2133
  "\<lbrakk>rec_ci f = (a, aa, ba);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2134
    rec_ci (Mn n f) = (aprog, rs_pos, a_md)\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2135
    \<Longrightarrow> abc_fetch (length a + 3) aprog = Some (Inc n)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2136
apply(simp add: rec_ci.simps abc_fetch.simps, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2137
      erule_tac conjE, erule_tac conjE, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2138
apply(drule_tac eq_switch, drule_tac eq_switch, simp add: nth_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2139
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2140
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2141
lemma [simp]: "\<lbrakk>rec_ci f = (a, aa, ba); rec_ci (Mn n f) = (aprog, rs_pos, a_md)\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2142
    \<Longrightarrow> abc_fetch (length a + 4) aprog = Some (Goto 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2143
apply(simp add: rec_ci.simps abc_fetch.simps, erule_tac conjE, erule_tac conjE, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2144
apply(drule_tac eq_switch, drule_tac eq_switch, simp add: nth_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2145
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2146
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2147
lemma [simp]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2148
  "0 < rsx
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2149
   \<Longrightarrow> \<exists>y. (lm @ x # rsx # suf_lm)[Suc (length lm) := rsx - Suc 0]   
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2150
    = lm @ x # y # suf_lm \<and> y \<le> rsx"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2151
apply(case_tac rsx, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2152
apply(rule_tac x = nat in exI, simp add: list_update_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2153
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2154
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2155
lemma [simp]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2156
  "\<lbrakk>y \<le> rsx; 0 < y\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2157
   \<Longrightarrow> \<exists>ya. (lm @ x # y # suf_lm)[Suc (length lm) := y - Suc 0] 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2158
          = lm @ x # ya # suf_lm \<and> ya \<le> rsx"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2159
apply(case_tac y, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2160
apply(rule_tac x = nat in exI, simp add: list_update_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2161
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2162
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2163
lemma mn_halt_lemma: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2164
  "\<lbrakk>rec_ci f = (a, aa, ba);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2165
    rec_ci (Mn n f) = (aprog, rs_pos, a_md);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2166
     0 < rsx; length lm = n\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2167
    \<Longrightarrow>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2168
  \<forall>na. \<not> (\<lambda>(as, lm') (ss, n). as = 0)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2169
  (abc_steps_l (length a, lm @ x # rsx # suf_lm) aprog na) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2170
                                                       (length a, n)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2171
 \<and> mn_ind_inv (abc_steps_l (length a, lm @ x # rsx # suf_lm)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2172
                       aprog na) (length a) x rsx suf_lm lm 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2173
\<longrightarrow> mn_ind_inv (abc_steps_l (length a, lm @ x # rsx # suf_lm) aprog 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2174
                         (Suc na)) (length a) x rsx suf_lm lm
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2175
 \<and> ((abc_steps_l (length a, lm @ x # rsx # suf_lm) aprog (Suc na), 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2176
                                                    length a, n), 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2177
    abc_steps_l (length a, lm @ x # rsx # suf_lm) aprog na,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2178
                              length a, n) \<in> mn_LE"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2179
apply(rule allI, rule impI, simp add: abc_steps_ind)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2180
apply(case_tac "(abc_steps_l (length a, lm @ x # rsx # suf_lm) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2181
                                                   aprog na)", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2182
apply(auto split:if_splits simp add:abc_steps_l.simps 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2183
                           mn_ind_inv.simps abc_steps_zero)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2184
apply(auto simp add: mn_LE_def lex_triple_def lex_pair_def 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2185
            abc_step_l.simps abc_steps_l.simps mn_ind_inv.simps
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2186
            abc_lm_v.simps abc_lm_s.simps nth_append
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2187
           split: if_splits)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2188
apply(drule_tac  rec_ci_not_null, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2189
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2190
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2191
lemma mn_halt:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2192
  "\<lbrakk>rec_ci f = (a, aa, ba);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2193
    rec_ci (Mn n f) = (aprog, rs_pos, a_md);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2194
    0 < rsx; length lm = n\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2195
    \<Longrightarrow> \<exists> stp. (\<lambda> (as, lm'). (as = 0 \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2196
           mn_ind_inv (as, lm')  (length a) x rsx suf_lm lm))
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2197
            (abc_steps_l (length a, lm @ x # rsx # suf_lm) aprog stp)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2198
apply(insert wf_mn_le)	  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2199
apply(insert halt_lemma2[of mn_LE
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2200
  "\<lambda> ((as, lm'), ss, n). mn_ind_inv (as, lm') ss x rsx suf_lm lm"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2201
  "\<lambda> stp. (abc_steps_l (length a, lm @ x # rsx # suf_lm) aprog stp, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2202
  length a, n)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2203
  "\<lambda> ((as, lm'), ss, n). as = 0"], 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2204
   simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2205
apply(simp add: mn_halt_init mn_inv_init)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2206
apply(drule_tac x = x and suf_lm = suf_lm in mn_halt_lemma, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2207
apply(rule_tac x = n in exI, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2208
      case_tac "(abc_steps_l (length a, lm @ x # rsx # suf_lm)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2209
                              aprog n)", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2210
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2211
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2212
lemma [simp]: "Suc rs_pos < a_md \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2213
                Suc (a_md - Suc (Suc rs_pos)) = a_md - Suc rs_pos"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2214
by arith
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2215
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2216
term rec_ci
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2217
(*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2218
lemma [simp]: "\<lbrakk>rec_ci (Mn n f) = (aprog, rs_pos, a_md); rec_calc_rel (Mn n f) lm rs\<rbrakk>  \<Longrightarrow> Suc rs_pos < a_md"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2219
apply(case_tac "rec_ci f")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2220
apply(subgoal_tac "c > b \<and> b = Suc rs_pos \<and> a_md \<ge> c")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2221
apply(arith, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2222
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2223
*)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2224
lemma mn_ind_step: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2225
  assumes ind:  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2226
  "\<And>aprog a_md rs_pos rs suf_lm lm.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2227
  \<lbrakk>rec_ci f = (aprog, rs_pos, a_md);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2228
   rec_calc_rel f lm rs\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2229
  \<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) aprog stp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2230
            = (length aprog, lm @ [rs] @ 0\<up>(a_md - rs_pos - 1) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2231
  and h: "rec_ci f = (a, aa, ba)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2232
         "rec_ci (Mn n f) = (aprog, rs_pos, a_md)"  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2233
         "rec_calc_rel f (lm @ [x]) rsx" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2234
         "rsx > 0" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2235
         "Suc rs_pos < a_md" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2236
         "aa = Suc rs_pos"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2237
  shows "\<exists>stp. abc_steps_l (0, lm @ x # 0\<up>(a_md - Suc rs_pos) @ suf_lm) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2238
             aprog stp = (0, lm @ Suc x # 0\<up>(a_md - Suc rs_pos) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2239
thm abc_add_exc1
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2240
proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2241
  have k1: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2242
    "\<exists> stp. abc_steps_l (0, lm @ x #  0\<up>(a_md - Suc (rs_pos)) @ suf_lm)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2243
         aprog stp = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2244
       (length a, lm @ x # rsx # 0\<up>(a_md  - Suc (Suc rs_pos)) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2245
    apply(insert h)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2246
    apply(auto intro: mn_calc_f ind)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2247
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2248
  from h have k2: "length lm = n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2249
    apply(subgoal_tac "rs_pos = n")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2250
    apply(drule_tac  para_pattern, simp, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2251
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2252
  from h have k3: "a_md > (Suc rs_pos)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2253
    apply(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2254
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2255
  from k2 and h and k3 have k4: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2256
    "\<exists> stp. abc_steps_l (length a,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2257
       lm @ x # rsx # 0\<up>(a_md  - Suc (Suc rs_pos)) @ suf_lm) aprog stp = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2258
        (0, lm @ Suc x # 0\<up>(a_md - rs_pos - 1) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2259
    apply(frule_tac x = x and 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2260
       suf_lm = "0\<up>(a_md - Suc (Suc rs_pos)) @ suf_lm" in mn_halt, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2261
    apply(rule_tac x = "stp" in exI, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2262
          simp add: mn_ind_inv.simps rec_ci_not_null)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2263
    apply(simp only: replicate.simps[THEN sym], simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2264
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2265
  from k1 and k4 show "?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2266
    apply(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2267
    apply(rule_tac x = "stp + stpa" in exI, simp add: abc_steps_add)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2268
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2269
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2270
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2271
lemma [simp]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2272
  "\<lbrakk>rec_ci f = (a, aa, ba); rec_ci (Mn n f) = (aprog, rs_pos, a_md);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2273
    rec_calc_rel (Mn n f) lm rs\<rbrakk> \<Longrightarrow> aa = Suc rs_pos"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2274
apply(rule_tac calc_mn_reverse, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2275
apply(insert para_pattern [of f a aa ba "lm @ [rs]" 0], simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2276
apply(subgoal_tac "rs_pos = length lm", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2277
apply(drule_tac ci_mn_para_eq, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2278
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2279
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2280
lemma [simp]: "\<lbrakk>rec_ci (Mn n f) = (aprog, rs_pos, a_md);      
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2281
                rec_calc_rel (Mn n f) lm rs\<rbrakk>  \<Longrightarrow> Suc rs_pos < a_md"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2282
apply(case_tac "rec_ci f")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2283
apply(subgoal_tac "c > b \<and> b = Suc rs_pos \<and> a_md \<ge> c")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2284
apply(arith, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2285
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2286
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2287
lemma mn_ind_steps:  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2288
  assumes ind:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2289
  "\<And>aprog a_md rs_pos rs suf_lm lm. 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2290
  \<lbrakk>rec_ci f = (aprog, rs_pos, a_md); rec_calc_rel f lm rs\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2291
  \<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) aprog stp = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2292
              (length aprog, lm @ [rs] @ 0\<up>(a_md - rs_pos - 1) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2293
  and h: "rec_ci f = (a, aa, ba)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2294
  "rec_ci (Mn n f) = (aprog, rs_pos, a_md)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2295
  "rec_calc_rel (Mn n f) lm rs"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2296
  "rec_calc_rel f (lm @ [rs]) 0" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2297
  "\<forall>x<rs. (\<exists> v. rec_calc_rel f (lm @ [x]) v \<and> 0 < v)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2298
  "n = length lm" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2299
  "x \<le> rs"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2300
  shows "\<exists>stp. abc_steps_l (0, lm @ 0 # 0\<up>(a_md - Suc rs_pos) @ suf_lm)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2301
                 aprog stp = (0, lm @ x # 0\<up>(a_md - Suc rs_pos) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2302
apply(insert h, induct x, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2303
      rule_tac x = 0 in exI, simp add: abc_steps_zero, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2304
proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2305
  fix x
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2306
  assume k1: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2307
    "\<exists>stp. abc_steps_l (0, lm @ 0 # 0\<up>(a_md - Suc rs_pos) @ suf_lm)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2308
                aprog stp = (0, lm @ x # 0\<up>(a_md - Suc rs_pos) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2309
  and k2: "rec_ci (Mn (length lm) f) = (aprog, rs_pos, a_md)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2310
          "rec_calc_rel (Mn (length lm) f) lm rs" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2311
          "rec_calc_rel f (lm @ [rs]) 0" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2312
          "\<forall>x<rs.(\<exists> v. rec_calc_rel f (lm @ [x]) v \<and> v > 0)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2313
          "n = length lm" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2314
          "Suc x \<le> rs" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2315
          "rec_ci f = (a, aa, ba)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2316
  hence k2:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2317
    "\<exists>stp. abc_steps_l (0, lm @ x # 0\<up>(a_md - rs_pos - 1) @ suf_lm) aprog
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2318
               stp = (0, lm @ Suc x # 0\<up>(a_md - rs_pos - 1) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2319
    apply(erule_tac x = x in allE)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2320
    apply(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2321
    apply(rule_tac  x = x in mn_ind_step)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2322
    apply(rule_tac ind, auto)      
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2323
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2324
  from k1 and k2 show 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2325
    "\<exists>stp. abc_steps_l (0, lm @ 0 # 0\<up>(a_md - Suc rs_pos) @ suf_lm)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2326
          aprog stp = (0, lm @ Suc x # 0\<up>(a_md - Suc rs_pos) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2327
    apply(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2328
    apply(rule_tac x = "stp + stpa" in exI, simp only: abc_steps_add)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2329
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2330
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2331
    
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2332
lemma [simp]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2333
"\<lbrakk>rec_ci f = (a, aa, ba); 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2334
  rec_ci (Mn n f) = (aprog, rs_pos, a_md); 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2335
  rec_calc_rel (Mn n f) lm rs;
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2336
  length lm = n\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2337
 \<Longrightarrow> abc_lm_v (lm @ rs # 0\<up>(a_md - Suc rs_pos) @ suf_lm) (Suc n) = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2338
apply(auto simp: abc_lm_v.simps nth_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2339
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2340
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2341
lemma [simp]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2342
  "\<lbrakk>rec_ci f = (a, aa, ba); 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2343
    rec_ci (Mn n f) = (aprog, rs_pos, a_md); 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2344
    rec_calc_rel (Mn n f) lm rs;
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2345
     length lm = n\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2346
    \<Longrightarrow> abc_lm_s (lm @ rs # 0\<up>(a_md - Suc rs_pos) @ suf_lm) (Suc n) 0 =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2347
                           lm @ rs # 0\<up>(a_md - Suc rs_pos) @ suf_lm"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2348
apply(auto simp: abc_lm_s.simps list_update_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2349
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2350
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2351
lemma mn_length: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2352
  "\<lbrakk>rec_ci f = (a, aa, ba);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2353
    rec_ci (Mn n f) = (aprog, rs_pos, a_md)\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2354
  \<Longrightarrow> length aprog = length a + 5"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2355
apply(simp add: rec_ci.simps, erule_tac conjE)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2356
apply(drule_tac eq_switch, drule_tac eq_switch, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2357
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2358
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2359
lemma mn_final_step:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2360
  assumes ind:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2361
  "\<And>aprog a_md rs_pos rs suf_lm lm.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2362
  \<lbrakk>rec_ci f = (aprog, rs_pos, a_md); 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2363
  rec_calc_rel f lm rs\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2364
  \<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) aprog stp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2365
              (length aprog, lm @ [rs] @ 0\<up>(a_md - rs_pos - 1) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2366
  and h: "rec_ci f = (a, aa, ba)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2367
         "rec_ci (Mn n f) = (aprog, rs_pos, a_md)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2368
         "rec_calc_rel (Mn n f) lm rs" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2369
         "rec_calc_rel f (lm @ [rs]) 0" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2370
  shows "\<exists>stp. abc_steps_l (0, lm @ rs # 0\<up>(a_md - Suc rs_pos) @ suf_lm) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2371
     aprog stp = (length aprog, lm @ rs # 0\<up>(a_md - Suc rs_pos) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2372
proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2373
  from h and ind have k1:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2374
    "\<exists>stp.  abc_steps_l (0, lm @ rs # 0\<up>(a_md - Suc rs_pos) @ suf_lm) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2375
        aprog stp = (length a,  lm @ rs # 0\<up>(a_md - Suc rs_pos) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2376
    thm mn_calc_f
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2377
    apply(insert mn_calc_f[of f a aa ba n aprog 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2378
                               rs_pos a_md lm rs 0 suf_lm], simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2379
    apply(subgoal_tac "aa = Suc n", simp add: exponent_cons_iff)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2380
    apply(subgoal_tac "rs_pos = n", simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2381
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2382
  from h have k2: "length lm = n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2383
    apply(subgoal_tac "rs_pos = n")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2384
    apply(drule_tac f = "Mn n f" in para_pattern, simp, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2385
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2386
  from h and k2 have k3: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2387
  "\<exists>stp. abc_steps_l (length a, lm @ rs # 0\<up>(a_md - Suc rs_pos) @ suf_lm)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2388
    aprog stp = (length a + 5, lm @ rs # 0\<up>(a_md - Suc rs_pos) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2389
    apply(rule_tac x = "Suc 0" in exI, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2390
          simp add: abc_step_l.simps abc_steps_l.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2391
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2392
  from h have k4: "length aprog = length a + 5"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2393
    apply(simp add: mn_length)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2394
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2395
  from k1 and k3 and k4 show "?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2396
    apply(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2397
    apply(rule_tac x = "stp + stpa" in exI, simp add: abc_steps_add)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2398
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2399
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2400
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2401
lemma mn_case: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2402
  assumes ind: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2403
  "\<And>aprog a_md rs_pos rs suf_lm lm.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2404
  \<lbrakk>rec_ci f = (aprog, rs_pos, a_md); rec_calc_rel f lm rs\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2405
  \<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) aprog stp = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2406
               (length aprog, lm @ [rs] @ 0\<up>(a_md - rs_pos - 1) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2407
  and h: "rec_ci (Mn n f) = (aprog, rs_pos, a_md)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2408
         "rec_calc_rel (Mn n f) lm rs"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2409
  shows "\<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) aprog stp 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2410
  = (length aprog, lm @ [rs] @ 0\<up>(a_md - rs_pos - 1) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2411
apply(case_tac "rec_ci f", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2412
apply(insert h, rule_tac calc_mn_reverse, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2413
proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2414
  fix a b c v
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2415
  assume h: "rec_ci f = (a, b, c)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2416
            "rec_ci (Mn n f) = (aprog, rs_pos, a_md)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2417
            "rec_calc_rel (Mn n f) lm rs" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2418
            "rec_calc_rel f (lm @ [rs]) 0" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2419
            "\<forall>x<rs. \<exists>v. rec_calc_rel f (lm @ [x]) v \<and> 0 < v"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2420
            "n = length lm"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2421
  hence k1:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2422
    "\<exists>stp. abc_steps_l (0, lm @ 0 # 0\<up>(a_md - Suc rs_pos) @ suf_lm) aprog
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2423
                  stp = (0, lm @ rs # 0\<up>(a_md - Suc rs_pos) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2424
    thm mn_ind_steps
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2425
    apply(auto intro: mn_ind_steps ind)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2426
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2427
  from h have k2: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2428
    "\<exists>stp. abc_steps_l (0, lm @ rs # 0\<up>(a_md - Suc rs_pos) @ suf_lm) aprog
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2429
         stp = (length aprog, lm @ rs # 0\<up>(a_md - Suc rs_pos) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2430
    apply(auto intro: mn_final_step ind)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2431
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2432
  from k1 and k2 show 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2433
    "\<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) aprog stp = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2434
  (length aprog, lm @ rs # 0\<up>(a_md - Suc rs_pos) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2435
    apply(auto, insert h)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2436
    apply(subgoal_tac "Suc rs_pos < a_md")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2437
    apply(rule_tac x = "stp + stpa" in exI, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2438
      simp only: abc_steps_add exponent_cons_iff, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2439
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2440
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2441
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2442
lemma z_rs: "rec_calc_rel z lm rs \<Longrightarrow> rs = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2443
apply(rule_tac calc_z_reverse, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2444
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2445
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2446
lemma z_case:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2447
  "\<lbrakk>rec_ci z = (aprog, rs_pos, a_md); rec_calc_rel z lm rs\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2448
  \<Longrightarrow> \<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) aprog stp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2449
           (length aprog, lm @ [rs] @ 0\<up>(a_md - rs_pos - 1) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2450
apply(simp add: rec_ci.simps rec_ci_z_def, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2451
apply(rule_tac x = "Suc 0" in exI, simp add: abc_steps_l.simps 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2452
                               abc_fetch.simps abc_step_l.simps z_rs)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2453
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2454
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2455
fun addition_inv :: "nat \<times> nat list \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow>     
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2456
                     nat list \<Rightarrow> bool"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2457
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2458
  "addition_inv (as, lm') m n p lm = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2459
        (let sn = lm ! n in
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2460
         let sm = lm ! m in
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2461
         lm ! p = 0 \<and>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2462
             (if as = 0 then \<exists> x. x \<le> lm ! m \<and> lm' = lm[m := x,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2463
                                    n := (sn + sm - x), p := (sm - x)]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2464
             else if as = 1 then \<exists> x. x < lm ! m \<and> lm' = lm[m := x,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2465
                            n := (sn + sm - x - 1), p := (sm - x - 1)]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2466
             else if as = 2 then \<exists> x. x < lm ! m \<and> lm' = lm[m := x, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2467
                               n := (sn + sm - x), p := (sm - x - 1)]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2468
             else if as = 3 then \<exists> x. x < lm ! m \<and> lm' = lm[m := x,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2469
                                   n := (sn + sm - x), p := (sm - x)]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2470
             else if as = 4 then \<exists> x. x \<le> lm ! m \<and> lm' = lm[m := x,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2471
                                       n := (sn + sm), p := (sm - x)] 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2472
             else if as = 5 then \<exists> x. x < lm ! m \<and> lm' = lm[m := x, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2473
                                  n := (sn + sm), p := (sm - x - 1)] 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2474
             else if as = 6 then \<exists> x. x < lm ! m \<and> lm' =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2475
                     lm[m := Suc x, n := (sn + sm), p := (sm - x - 1)]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2476
             else if as = 7 then lm' = lm[m := sm, n := (sn + sm)]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2477
             else False))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2478
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2479
fun addition_stage1 :: "nat \<times> nat list \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2480
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2481
  "addition_stage1 (as, lm) m p = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2482
          (if as = 0 \<or> as = 1 \<or> as = 2 \<or> as = 3 then 2 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2483
           else if as = 4 \<or> as = 5 \<or> as = 6 then 1
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2484
           else 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2485
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2486
fun addition_stage2 :: "nat \<times> nat list \<Rightarrow> nat \<Rightarrow>  nat \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2487
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2488
  "addition_stage2 (as, lm) m p = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2489
              (if 0 \<le> as \<and> as \<le> 3 then lm ! m
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2490
               else if 4 \<le> as \<and> as \<le> 6 then lm ! p
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2491
               else 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2492
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2493
fun addition_stage3 :: "nat \<times> nat list \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2494
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2495
  "addition_stage3 (as, lm) m p = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2496
             (if as = 1 then 4  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2497
              else if as = 2 then 3 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2498
              else if as = 3 then 2
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2499
              else if as = 0 then 1 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2500
              else if as = 5 then 2
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2501
              else if as = 6 then 1 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2502
              else if as = 4 then 0 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2503
              else 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2504
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2505
fun addition_measure :: "((nat \<times> nat list) \<times> nat \<times> nat) \<Rightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2506
                                                 (nat \<times> nat \<times> nat)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2507
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2508
  "addition_measure ((as, lm), m, p) =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2509
     (addition_stage1 (as, lm) m p, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2510
      addition_stage2 (as, lm) m p,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2511
      addition_stage3 (as, lm) m p)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2512
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2513
definition addition_LE :: "(((nat \<times> nat list) \<times> nat \<times> nat) \<times> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2514
                          ((nat \<times> nat list) \<times> nat \<times> nat)) set"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2515
  where "addition_LE \<equiv> (inv_image lex_triple addition_measure)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2516
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2517
lemma [simp]: "wf addition_LE"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2518
by(simp add: wf_inv_image wf_lex_triple addition_LE_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2519
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2520
declare addition_inv.simps[simp del]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2521
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2522
lemma addition_inv_init: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2523
  "\<lbrakk>m \<noteq> n; max m n < p; length lm > p; lm ! p = 0\<rbrakk> \<Longrightarrow>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2524
                                   addition_inv (0, lm) m n p lm"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2525
apply(simp add: addition_inv.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2526
apply(rule_tac x = "lm ! m" in exI, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2527
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2528
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2529
thm addition.simps
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2530
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2531
lemma [simp]: "abc_fetch 0 (addition m n p) = Some (Dec m 4)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2532
by(simp add: abc_fetch.simps addition.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2533
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2534
lemma [simp]: "abc_fetch (Suc 0) (addition m n p) = Some (Inc n)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2535
by(simp add: abc_fetch.simps addition.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2536
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2537
lemma [simp]: "abc_fetch 2 (addition m n p) = Some (Inc p)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2538
by(simp add: abc_fetch.simps addition.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2539
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2540
lemma [simp]: "abc_fetch 3 (addition m n p) = Some (Goto 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2541
by(simp add: abc_fetch.simps addition.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2542
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2543
lemma [simp]: "abc_fetch 4 (addition m n p) = Some (Dec p 7)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2544
by(simp add: abc_fetch.simps addition.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2545
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2546
lemma [simp]: "abc_fetch 5 (addition m n p) = Some (Inc m)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2547
by(simp add: abc_fetch.simps addition.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2548
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2549
lemma [simp]: "abc_fetch 6 (addition m n p) = Some (Goto 4)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2550
by(simp add: abc_fetch.simps addition.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2551
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2552
lemma [simp]:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2553
  "\<lbrakk>m \<noteq> n; p < length lm; lm ! p = 0; m < p; n < p; x \<le> lm ! m; 0 < x\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2554
 \<Longrightarrow> \<exists>xa<lm ! m. lm[m := x, n := lm ! n + lm ! m - x, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2555
                    p := lm ! m - x, m := x - Suc 0] =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2556
                 lm[m := xa, n := lm ! n + lm ! m - Suc xa,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2557
                    p := lm ! m - Suc xa]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2558
apply(case_tac x, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2559
apply(rule_tac x = nat in exI, simp add: list_update_swap 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2560
                                         list_update_overwrite)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2561
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2562
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2563
lemma [simp]:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2564
  "\<lbrakk>m \<noteq> n; p < length lm; lm ! p = 0; m < p; n < p; x < lm ! m\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2565
   \<Longrightarrow> \<exists>xa<lm ! m. lm[m := x, n := lm ! n + lm ! m - Suc x,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2566
                      p := lm ! m - Suc x, n := lm ! n + lm ! m - x]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2567
                 = lm[m := xa, n := lm ! n + lm ! m - xa, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2568
                      p := lm ! m - Suc xa]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2569
apply(rule_tac x = x in exI, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2570
      simp add: list_update_swap list_update_overwrite)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2571
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2572
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2573
lemma [simp]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2574
  "\<lbrakk>m \<noteq> n; p < length lm; lm ! p = 0; m < p; n < p; x < lm ! m\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2575
   \<Longrightarrow> \<exists>xa<lm ! m. lm[m := x, n := lm ! n + lm ! m - x, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2576
                          p := lm ! m - Suc x, p := lm ! m - x]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2577
                 = lm[m := xa, n := lm ! n + lm ! m - xa, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2578
                          p := lm ! m - xa]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2579
apply(rule_tac x = x in exI, simp add: list_update_overwrite)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2580
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2581
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2582
lemma [simp]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2583
  "\<lbrakk>m \<noteq> n; p < length lm; lm ! p = (0::nat); m < p; n < p; x < lm ! m\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2584
  \<Longrightarrow> \<exists>xa\<le>lm ! m. lm[m := x, n := lm ! n + lm ! m - x,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2585
                                   p := lm ! m - x] = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2586
                  lm[m := xa, n := lm ! n + lm ! m - xa, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2587
                                   p := lm ! m - xa]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2588
apply(rule_tac x = x in exI, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2589
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2590
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2591
lemma [simp]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2592
  "\<lbrakk>m \<noteq> n; p < length lm; lm ! p = 0; m < p; n < p;
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2593
    x \<le> lm ! m; lm ! m \<noteq> x\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2594
  \<Longrightarrow> \<exists>xa<lm ! m. lm[m := x, n := lm ! n + lm ! m, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2595
                       p := lm ! m - x, p := lm ! m - Suc x] 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2596
               = lm[m := xa, n := lm ! n + lm ! m, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2597
                       p := lm ! m - Suc xa]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2598
apply(rule_tac x = x in exI, simp add: list_update_overwrite)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2599
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2600
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2601
lemma [simp]:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2602
  "\<lbrakk>m \<noteq> n; p < length lm; lm ! p = 0; m < p; n < p; x < lm ! m\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2603
  \<Longrightarrow> \<exists>xa<lm ! m. lm[m := x, n := lm ! n + lm ! m,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2604
                             p := lm ! m - Suc x, m := Suc x]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2605
                = lm[m := Suc xa, n := lm ! n + lm ! m, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2606
                             p := lm ! m - Suc xa]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2607
apply(rule_tac x = x in exI, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2608
     simp add: list_update_swap list_update_overwrite)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2609
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2610
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2611
lemma [simp]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2612
  "\<lbrakk>m \<noteq> n; p < length lm; lm ! p = 0; m < p; n < p; x < lm ! m\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2613
  \<Longrightarrow> \<exists>xa\<le>lm ! m. lm[m := Suc x, n := lm ! n + lm ! m, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2614
                             p := lm ! m - Suc x] 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2615
               = lm[m := xa, n := lm ! n + lm ! m, p := lm ! m - xa]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2616
apply(rule_tac x = "Suc x" in exI, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2617
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2618
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2619
lemma addition_halt_lemma: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2620
  "\<lbrakk>m \<noteq> n; max m n < p; length lm > p; lm ! p = 0\<rbrakk> \<Longrightarrow>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2621
  \<forall>na. \<not> (\<lambda>(as, lm') (m, p). as = 7) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2622
        (abc_steps_l (0, lm) (addition m n p) na) (m, p) \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2623
  addition_inv (abc_steps_l (0, lm) (addition m n p) na) m n p lm 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2624
\<longrightarrow> addition_inv (abc_steps_l (0, lm) (addition m n p) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2625
                                 (Suc na)) m n p lm 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2626
  \<and> ((abc_steps_l (0, lm) (addition m n p) (Suc na), m, p), 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2627
     abc_steps_l (0, lm) (addition m n p) na, m, p) \<in> addition_LE"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2628
apply(rule allI, rule impI, simp add: abc_steps_ind)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2629
apply(case_tac "(abc_steps_l (0, lm) (addition m n p) na)", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2630
apply(auto split:if_splits simp add: addition_inv.simps
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2631
                                 abc_steps_zero)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2632
apply(simp_all add: abc_steps_l.simps abc_steps_zero)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2633
apply(auto simp add: addition_LE_def lex_triple_def lex_pair_def 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2634
                     abc_step_l.simps addition_inv.simps 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2635
                     abc_lm_v.simps abc_lm_s.simps nth_append
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2636
                split: if_splits)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2637
apply(rule_tac x = x in exI, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2638
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2639
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2640
lemma  addition_ex: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2641
  "\<lbrakk>m \<noteq> n; max m n < p; length lm > p; lm ! p = 0\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2642
  \<exists> stp. (\<lambda> (as, lm'). as = 7 \<and> addition_inv (as, lm') m n p lm) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2643
                        (abc_steps_l (0, lm) (addition m n p) stp)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2644
apply(insert halt_lemma2[of addition_LE
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2645
  "\<lambda> ((as, lm'), m, p). addition_inv (as, lm') m n p lm"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2646
  "\<lambda> stp. (abc_steps_l (0, lm) (addition m n p) stp, m, p)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2647
  "\<lambda> ((as, lm'), m, p). as = 7"], 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2648
  simp add: abc_steps_zero addition_inv_init)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2649
apply(drule_tac addition_halt_lemma, simp, simp, simp,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2650
      simp, erule_tac exE)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2651
apply(rule_tac x = na in exI, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2652
      case_tac "(abc_steps_l (0, lm) (addition m n p) na)", auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2653
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2654
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2655
lemma [simp]: "length (addition m n p) = 7"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2656
by (simp add: addition.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2657
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2658
lemma [elim]: "addition 0 (Suc 0) 2 = [] \<Longrightarrow> RR"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2659
by(simp add: addition.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2660
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2661
lemma [simp]: "(0\<up>2)[0 := n] = [n, 0::nat]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2662
apply(subgoal_tac "2 = Suc 1", 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2663
      simp only: replicate.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2664
apply(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2665
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2666
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2667
lemma [simp]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2668
  "\<exists>stp. abc_steps_l (0, n # 0\<up>2 @ suf_lm) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2669
     (addition 0 (Suc 0) 2 [+] [Inc (Suc 0)]) stp = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2670
                                      (8, n # Suc n # 0 # suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2671
apply(rule_tac bm = "n # n # 0 # suf_lm" in abc_append_exc2, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2672
apply(insert addition_ex[of 0 "Suc 0" 2 "n # 0\<up>2 @ suf_lm"], 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2673
      simp add: nth_append numeral_2_eq_2, erule_tac exE)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2674
apply(rule_tac x = stp in exI,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2675
      case_tac "(abc_steps_l (0, n # 0\<up>2 @ suf_lm)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2676
                      (addition 0 (Suc 0) 2) stp)", 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2677
      simp add: addition_inv.simps nth_append list_update_append numeral_2_eq_2)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2678
apply(simp add: nth_append numeral_2_eq_2, erule_tac exE)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2679
apply(rule_tac x = "Suc 0" in exI,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2680
      simp add: abc_steps_l.simps abc_fetch.simps 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2681
      abc_steps_zero abc_step_l.simps abc_lm_s.simps abc_lm_v.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2682
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2683
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2684
lemma s_case:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2685
  "\<lbrakk>rec_ci s = (aprog, rs_pos, a_md); rec_calc_rel s lm rs\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2686
  \<Longrightarrow> \<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) aprog stp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2687
               (length aprog, lm @ [rs] @ 0\<up>(a_md - rs_pos - 1) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2688
apply(simp add: rec_ci.simps rec_ci_s_def, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2689
apply(rule_tac calc_s_reverse, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2690
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2691
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2692
lemma [simp]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2693
  "\<lbrakk>n < length lm; lm ! n = rs\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2694
    \<Longrightarrow> \<exists>stp. abc_steps_l (0, lm @ 0 # 0 #suf_lm)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2695
                     (addition n (length lm) (Suc (length lm))) stp 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2696
             = (7, lm @ rs # 0 # suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2697
apply(insert addition_ex[of n "length lm"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2698
                           "Suc (length lm)" "lm @ 0 # 0 # suf_lm"])
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2699
apply(simp add: nth_append, erule_tac exE)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2700
apply(rule_tac x = stp in exI)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2701
apply(case_tac "abc_steps_l (0, lm @ 0 # 0 # suf_lm) (addition n (length lm)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2702
                 (Suc (length lm))) stp", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2703
apply(simp add: addition_inv.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2704
apply(insert nth_append[of lm "0 # 0 # suf_lm" "n"], simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2705
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2706
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2707
lemma [simp]: "0\<up>2 = [0, 0::nat]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2708
apply(auto simp:numeral_2_eq_2)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2709
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2710
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2711
lemma id_case: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2712
  "\<lbrakk>rec_ci (id m n) = (aprog, rs_pos, a_md); 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2713
    rec_calc_rel (id m n) lm rs\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2714
  \<Longrightarrow> \<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) aprog stp = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2715
               (length aprog, lm @ [rs] @ 0\<up>(a_md - rs_pos - 1) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2716
apply(simp add: rec_ci.simps rec_ci_id.simps, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2717
apply(rule_tac calc_id_reverse, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2718
done   
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2719
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2720
lemma list_tl_induct:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2721
  "\<lbrakk>P []; \<And>a list. P list \<Longrightarrow> P (list @ [a::'a])\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2722
                                            P ((list::'a list))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2723
apply(case_tac "length list", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2724
proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2725
  fix nat
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2726
  assume ind: "\<And>a list. P list \<Longrightarrow> P (list @ [a])"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2727
  and h: "length list = Suc nat" "P []"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2728
  from h show "P list"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2729
  proof(induct nat arbitrary: list, case_tac lista, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2730
    fix lista a listaa
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2731
    from h show "P [a]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2732
      by(insert ind[of "[]"], simp add: h)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2733
  next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2734
    fix nat list
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2735
    assume nind: "\<And>list. \<lbrakk>length list = Suc nat; P []\<rbrakk> \<Longrightarrow> P list" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2736
    and g: "length (list:: 'a list) = Suc (Suc nat)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2737
    from g show "P (list::'a list)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2738
      apply(insert nind[of "butlast list"], simp add: h)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2739
      apply(insert ind[of "butlast list" "last list"], simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2740
      apply(subgoal_tac "butlast list @ [last list] = list", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2741
      apply(case_tac "list::'a list", simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2742
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2743
  qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2744
qed      
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2745
  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2746
lemma nth_eq_butlast_nth: "\<lbrakk>length ys > Suc k\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2747
                                        ys ! k = butlast ys ! k"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2748
apply(subgoal_tac "\<exists> xs y. ys = xs @ [y]", auto simp: nth_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2749
apply(rule_tac x = "butlast ys" in exI, rule_tac x = "last ys" in exI)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2750
apply(case_tac "ys = []", simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2751
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2752
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2753
lemma [simp]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2754
"\<lbrakk>\<forall>k<Suc (length list). rec_calc_rel ((list @ [a]) ! k) lm (ys ! k);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2755
  length ys = Suc (length list)\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2756
   \<Longrightarrow> \<forall>k<length list. rec_calc_rel (list ! k) lm (butlast ys ! k)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2757
apply(rule allI, rule impI)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2758
apply(erule_tac  x = k in allE, simp add: nth_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2759
apply(subgoal_tac "ys ! k = butlast ys ! k", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2760
apply(rule_tac nth_eq_butlast_nth, arith)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2761
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2762
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2763
lemma cn_merge_gs_tl_app: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2764
  "cn_merge_gs (gs @ [g]) pstr = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2765
        cn_merge_gs gs pstr [+] cn_merge_gs [g] (pstr + length gs)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2766
apply(induct gs arbitrary: pstr, simp add: cn_merge_gs.simps, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2767
apply(case_tac a, simp add: abc_append_commute)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2768
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2769
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2770
lemma cn_merge_gs_length: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2771
  "length (cn_merge_gs (map rec_ci list) pstr) = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2772
      (\<Sum>(ap, pos, n)\<leftarrow>map rec_ci list. length ap) + 3 * length list "
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2773
apply(induct list arbitrary: pstr, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2774
apply(case_tac "rec_ci a", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2775
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2776
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2777
lemma [simp]: "Suc n \<le> pstr \<Longrightarrow> pstr + x - n > 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2778
by arith
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2779
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2780
lemma [simp]:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2781
  "\<lbrakk>Suc (pstr + length list) \<le> a_md; 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2782
    length ys = Suc (length list);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2783
    length lm = n;
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2784
     Suc n \<le> pstr\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2785
   \<Longrightarrow>  (ys ! length list # 0\<up>(pstr - Suc n) @ butlast ys @
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2786
             0\<up>(a_md - (pstr + length list)) @ suf_lm) ! 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2787
                      (pstr + length list - n) = (0 :: nat)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2788
apply(insert nth_append[of "ys ! length list # 0\<up>(pstr - Suc n) @
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2789
     butlast ys" "0\<up>(a_md - (pstr + length list)) @ suf_lm"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2790
      "(pstr + length list - n)"], simp add: nth_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2791
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2792
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2793
lemma [simp]:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2794
  "\<lbrakk>Suc (pstr + length list) \<le> a_md; 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2795
    length ys = Suc (length list);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2796
    length lm = n;
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2797
     Suc n \<le> pstr\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2798
    \<Longrightarrow> (lm @ last ys # 0\<up>(pstr - Suc n) @ butlast ys @
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2799
         0\<up>(a_md - (pstr + length list)) @ suf_lm)[pstr + length list := 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2800
                                        last ys, n := 0] =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2801
        lm @ (0::nat)\<up>(pstr - n) @ ys @ 0\<up>(a_md - Suc (pstr + length list)) @ suf_lm"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2802
apply(insert list_update_length[of 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2803
   "lm @ last ys # 0\<up>(pstr - Suc n) @ butlast ys" 0 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2804
   "0\<up>(a_md - Suc (pstr + length list)) @ suf_lm" "last ys"], simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2805
apply(simp add: exponent_cons_iff)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2806
apply(insert list_update_length[of "lm" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2807
        "last ys" "0\<up>(pstr - Suc n) @ butlast ys @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2808
      last ys # 0\<up>(a_md - Suc (pstr + length list)) @ suf_lm" 0], simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2809
apply(simp add: exponent_cons_iff)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2810
apply(case_tac "ys = []", simp_all add: append_butlast_last_id)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2811
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2812
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2813
lemma cn_merge_gs_ex: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2814
  "\<lbrakk>\<And>x aprog a_md rs_pos rs suf_lm lm.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2815
    \<lbrakk>x \<in> set gs; rec_ci x = (aprog, rs_pos, a_md);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2816
     rec_calc_rel x lm rs\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2817
     \<Longrightarrow> \<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) aprog stp 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2818
           = (length aprog, lm @ [rs] @ 0\<up>(a_md - rs_pos - 1) @ suf_lm); 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2819
   pstr + length gs\<le> a_md;
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2820
   \<forall>k<length gs. rec_calc_rel (gs ! k) lm (ys ! k);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2821
   length ys = length gs; length lm = n;
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2822
   pstr \<ge> Max (set (Suc n # map (\<lambda>(aprog, p, n). n) (map rec_ci gs)))\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2823
  \<Longrightarrow> \<exists> stp. abc_steps_l (0, lm @ 0\<up>(a_md - n) @ suf_lm)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2824
                   (cn_merge_gs (map rec_ci gs) pstr) stp 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2825
   = (listsum (map ((\<lambda>(ap, pos, n). length ap) \<circ> rec_ci) gs) +
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2826
  3 * length gs, lm @ 0\<up>(pstr - n) @ ys @ 0\<up>(a_md - (pstr + length gs)) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2827
apply(induct gs arbitrary: ys rule: list_tl_induct)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2828
apply(simp add: exponent_add_iff, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2829
proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2830
  fix a list ys
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2831
  assume ind: "\<And>x aprog a_md rs_pos rs suf_lm lm.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2832
    \<lbrakk>x = a \<or> x \<in> set list; rec_ci x = (aprog, rs_pos, a_md); 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2833
     rec_calc_rel x lm rs\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2834
    \<Longrightarrow> \<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) aprog stp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2835
                (length aprog, lm @ rs # 0\<up>(a_md - Suc rs_pos) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2836
  and ind2: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2837
    "\<And>ys. \<lbrakk>\<And>x aprog a_md rs_pos rs suf_lm lm.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2838
    \<lbrakk>x \<in> set list; rec_ci x = (aprog, rs_pos, a_md);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2839
     rec_calc_rel x lm rs\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2840
    \<Longrightarrow> \<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) aprog stp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2841
        = (length aprog, lm @ rs # 0\<up>(a_md - Suc rs_pos) @ suf_lm);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2842
    \<forall>k<length list. rec_calc_rel (list ! k) lm (ys ! k); 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2843
    length ys = length list\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2844
    \<Longrightarrow> \<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - n) @ suf_lm) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2845
                   (cn_merge_gs (map rec_ci list) pstr) stp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2846
    (listsum (map ((\<lambda>(ap, pos, n). length ap) \<circ> rec_ci) list) +
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2847
     3 * length list,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2848
                lm @ 0\<up>(pstr - n) @ ys @ 0\<up>(a_md - (pstr + length list)) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2849
    and h: "Suc (pstr + length list) \<le> a_md" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2850
            "\<forall>k<Suc (length list). 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2851
                   rec_calc_rel ((list @ [a]) ! k) lm (ys ! k)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2852
            "length ys = Suc (length list)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2853
            "length lm = n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2854
            "Suc n \<le> pstr \<and> (\<lambda>(aprog, p, n). n) (rec_ci a) \<le> pstr \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2855
            (\<forall>a\<in>set list. (\<lambda>(aprog, p, n). n) (rec_ci a) \<le> pstr)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2856
  from h have k1: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2857
    "\<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - n) @ suf_lm)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2858
                     (cn_merge_gs (map rec_ci list) pstr) stp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2859
    (listsum (map ((\<lambda>(ap, pos, n). length ap) \<circ> rec_ci) list) +
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2860
     3 * length list, lm @ 0\<up>(pstr - n) @ butlast ys @
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2861
                               0\<up>(a_md - (pstr + length list)) @ suf_lm) "
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2862
    apply(rule_tac ind2)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2863
    apply(rule_tac ind, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2864
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2865
  from k1 and h show 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2866
    "\<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - n) @ suf_lm) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2867
          (cn_merge_gs (map rec_ci list @ [rec_ci a]) pstr) stp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2868
        (listsum (map ((\<lambda>(ap, pos, n). length ap) \<circ> rec_ci) list) + 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2869
        (\<lambda>(ap, pos, n). length ap) (rec_ci a) + (3 + 3 * length list),
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2870
             lm @ 0\<up>(pstr - n) @ ys @ 0\<up>(a_md - Suc (pstr + length list)) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2871
    apply(simp add: cn_merge_gs_tl_app)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2872
    thm abc_append_exc2
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2873
    apply(rule_tac as = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2874
  "(\<Sum>(ap, pos, n)\<leftarrow>map rec_ci list. length ap) + 3 * length list"    
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2875
      and bm = "lm @ 0\<up>(pstr - n) @ butlast ys @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2876
                              0\<up>(a_md - (pstr + length list)) @ suf_lm" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2877
      and bs = "(\<lambda>(ap, pos, n). length ap) (rec_ci a) + 3" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2878
      and bm' = "lm @ 0\<up>(pstr - n) @ ys @ 0\<up>(a_md - Suc (pstr + length list)) @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2879
                                  suf_lm" in abc_append_exc2, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2880
    apply(simp add: cn_merge_gs_length)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2881
  proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2882
    from h show 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2883
      "\<exists>bstp. abc_steps_l (0, lm @ 0\<up>(pstr - n) @ butlast ys @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2884
                                  0\<up>(a_md - (pstr + length list)) @ suf_lm) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2885
              ((\<lambda>(gprog, gpara, gn). gprog [+] recursive.mv_box gpara 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2886
              (pstr + length list)) (rec_ci a)) bstp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2887
              ((\<lambda>(ap, pos, n). length ap) (rec_ci a) + 3, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2888
             lm @ 0\<up>(pstr - n) @ ys @ 0\<up>(a_md - Suc (pstr + length list)) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2889
      apply(case_tac "rec_ci a", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2890
      apply(rule_tac as = "length aa" and 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2891
                     bm = "lm @ (ys ! (length list)) # 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2892
          0\<up>(pstr - Suc n) @ butlast ys @ 0\<up>(a_md - (pstr + length list)) @ suf_lm" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2893
        and bs = "3" and bm' = "lm @ 0\<up>(pstr - n) @ ys @
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2894
             0\<up>(a_md - Suc (pstr + length list)) @ suf_lm" in abc_append_exc2)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2895
    proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2896
      fix aa b c
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2897
      assume g: "rec_ci a = (aa, b, c)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2898
      from h and g have k2: "b = n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2899
	apply(erule_tac x = "length list" in allE, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2900
	apply(subgoal_tac "length lm = b", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2901
	apply(rule para_pattern, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2902
	done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2903
      from h and g and this show 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2904
        "\<exists>astp. abc_steps_l (0, lm @ 0\<up>(pstr - n) @ butlast ys @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2905
                         0\<up>(a_md - (pstr + length list)) @ suf_lm) aa astp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2906
        (length aa, lm @ ys ! length list # 0\<up>(pstr - Suc n) @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2907
                       butlast ys @ 0\<up>(a_md - (pstr + length list)) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2908
	apply(subgoal_tac "c \<ge> Suc n")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2909
	apply(insert ind[of a aa b c lm "ys ! length list" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2910
          "0\<up>(pstr - c) @ butlast ys @ 0\<up>(a_md - (pstr + length list)) @ suf_lm"], simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2911
	apply(erule_tac x = "length list" in allE, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2912
              simp add: exponent_add_iff)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2913
	apply(rule_tac Suc_leI, rule_tac ci_ad_ge_paras, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2914
	done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2915
    next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2916
      fix aa b c
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2917
      show "length aa = length aa" by simp 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2918
    next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2919
      fix aa b c
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2920
      assume "rec_ci a = (aa, b, c)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2921
      from h and this show     
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2922
      "\<exists>bstp. abc_steps_l (0, lm @ ys ! length list #
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2923
          0\<up>(pstr - Suc n) @ butlast ys @ 0\<up>(a_md - (pstr + length list)) @ suf_lm)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2924
                 (recursive.mv_box b (pstr + length list)) bstp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2925
       (3, lm @ 0\<up>(pstr - n) @ ys @ 0\<up>(a_md - Suc (pstr + length list)) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2926
	apply(insert mv_box_ex [of b "pstr + length list" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2927
         "lm @ ys ! length list # 0\<up>(pstr - Suc n) @ butlast ys @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2928
         0\<up>(a_md - (pstr + length list)) @ suf_lm"], simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2929
        apply(subgoal_tac "b = n")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2930
	apply(simp add: nth_append split: if_splits)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2931
	apply(erule_tac x = "length list" in allE, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2932
        apply(drule para_pattern, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2933
	done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2934
    next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2935
      fix aa b c
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2936
      show "3 = length (recursive.mv_box b (pstr + length list))" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2937
        by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2938
    next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2939
      fix aa b aaa ba
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2940
      show "length aa + 3 = length aa + 3" by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2941
    next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2942
      fix aa b c
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2943
      show "mv_box b (pstr + length list) \<noteq> []" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2944
        by(simp add: mv_box.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2945
    qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2946
  next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2947
    show "(\<lambda>(ap, pos, n). length ap) (rec_ci a) + 3 = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2948
        length ((\<lambda>(gprog, gpara, gn). gprog [+]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2949
           recursive.mv_box gpara (pstr + length list)) (rec_ci a))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2950
      by(case_tac "rec_ci a", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2951
  next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2952
    show "listsum (map ((\<lambda>(ap, pos, n). length ap) \<circ> rec_ci) list) +
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2953
      (\<lambda>(ap, pos, n). length ap) (rec_ci a) + (3 + 3 * length list)=
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2954
      (\<Sum>(ap, pos, n)\<leftarrow>map rec_ci list. length ap) + 3 * length list + 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2955
                ((\<lambda>(ap, pos, n). length ap) (rec_ci a) + 3)" by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2956
  next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2957
    show "(\<lambda>(gprog, gpara, gn). gprog [+] 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2958
      recursive.mv_box gpara (pstr + length list)) (rec_ci a) \<noteq> []"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2959
      by(case_tac "rec_ci a", 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2960
         simp add: abc_append.simps abc_shift.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2961
  qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2962
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2963
 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2964
lemma [simp]: "length (mv_boxes aa ba n) = 3*n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2965
by(induct n, auto simp: mv_boxes.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2966
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2967
lemma exp_suc: "a\<up>Suc b = a\<up>b @ [a]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2968
by(simp add: exp_ind del: replicate.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2969
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2970
lemma [simp]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2971
  "\<lbrakk>Suc n \<le> ba - aa;  length lm2 = Suc n;
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2972
    length lm3 = ba - Suc (aa + n)\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2973
  \<Longrightarrow> (last lm2 # lm3 @ butlast lm2 @ 0 # lm4) ! (ba - aa) = (0::nat)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2974
proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2975
  assume h: "Suc n \<le> ba - aa"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2976
  and g: "length lm2 = Suc n" "length lm3 = ba - Suc (aa + n)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2977
  from h and g have k: "ba - aa = Suc (length lm3 + n)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2978
    by arith
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2979
  from  k show 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2980
    "(last lm2 # lm3 @ butlast lm2 @ 0 # lm4) ! (ba - aa) = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2981
    apply(simp, insert g)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2982
    apply(simp add: nth_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2983
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2984
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2985
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2986
lemma [simp]: "length lm1 = aa \<Longrightarrow>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2987
      (lm1 @ 0\<up>n @ last lm2 # lm3 @ butlast lm2 @ 0 # lm4) ! (aa + n) = last lm2"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2988
apply(simp add: nth_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2989
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2990
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2991
lemma [simp]: "\<lbrakk>Suc n \<le> ba - aa; aa < ba\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2992
                    (ba < Suc (aa + (ba - Suc (aa + n) + n))) = False"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2993
apply arith
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2994
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2995
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2996
lemma [simp]: "\<lbrakk>Suc n \<le> ba - aa; aa < ba; length lm1 = aa; 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2997
       length lm2 = Suc n; length lm3 = ba - Suc (aa + n)\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2998
     \<Longrightarrow> (lm1 @ 0\<up>n @ last lm2 # lm3 @ butlast lm2 @ 0 # lm4) ! (ba + n) = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  2999
using nth_append[of "lm1 @ (0\<Colon>'a)\<up>n @ last lm2 # lm3 @ butlast lm2" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3000
                     "(0\<Colon>'a) # lm4" "ba + n"]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3001
apply(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3002
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3003
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3004
lemma [simp]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3005
 "\<lbrakk>Suc n \<le> ba - aa; aa < ba; length lm1 = aa; length lm2 = Suc n;
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3006
                 length lm3 = ba - Suc (aa + n)\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3007
  \<Longrightarrow> (lm1 @ 0\<up>n @ last lm2 # lm3 @ butlast lm2 @ (0::nat) # lm4)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3008
  [ba + n := last lm2, aa + n := 0] = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3009
  lm1 @ 0 # 0\<up>n @ lm3 @ lm2 @ lm4"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3010
using list_update_append[of "lm1 @ 0\<up>n @ last lm2 # lm3 @ butlast lm2" "0 # lm4" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3011
                            "ba + n" "last lm2"]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3012
apply(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3013
apply(simp add: list_update_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3014
apply(simp only: exponent_cons_iff exp_suc, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3015
apply(case_tac lm2, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3016
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3017
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3018
lemma mv_boxes_ex:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3019
  "\<lbrakk>n \<le> ba - aa; ba > aa; length lm1 = aa; 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3020
    length (lm2::nat list) = n; length lm3 = ba - aa - n\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3021
     \<Longrightarrow> \<exists> stp. abc_steps_l (0, lm1 @ lm2 @ lm3 @ 0\<up>n @ lm4)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3022
       (mv_boxes aa ba n) stp = (3 * n, lm1 @ 0\<up>n @ lm3 @ lm2 @ lm4)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3023
apply(induct n arbitrary: lm2 lm3 lm4, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3024
apply(rule_tac x = 0 in exI, simp add: abc_steps_zero, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3025
              simp add: mv_boxes.simps del: exp_suc_iff)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3026
apply(rule_tac as = "3 *n" and bm = "lm1 @ 0\<up>n @ last lm2 # lm3 @
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3027
               butlast lm2 @ 0 # lm4" in abc_append_exc2, simp_all)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3028
apply(simp only: exponent_cons_iff, simp only: exp_suc, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3029
proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3030
  fix n lm2 lm3 lm4
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3031
  assume ind:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3032
    "\<And>lm2 lm3 lm4. \<lbrakk>length lm2 = n; length lm3 = ba - (aa + n)\<rbrakk> \<Longrightarrow>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3033
    \<exists>stp. abc_steps_l (0, lm1 @ lm2 @ lm3 @ 0\<up>n @ lm4) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3034
       (mv_boxes aa ba n) stp = (3 * n, lm1 @ 0\<up>n @ lm3 @ lm2 @ lm4)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3035
  and h: "Suc n \<le> ba - aa" "aa < ba" "length (lm1::nat list) = aa" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3036
         "length (lm2::nat list) = Suc n" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3037
         "length (lm3::nat list) = ba - Suc (aa + n)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3038
  from h show 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3039
    "\<exists>astp. abc_steps_l (0, lm1 @ lm2 @ lm3 @ 0\<up>n @ 0 # lm4) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3040
                       (mv_boxes aa ba n) astp = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3041
        (3 * n, lm1 @ 0\<up>n @ last lm2 # lm3 @ butlast lm2 @ 0 # lm4)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3042
    apply(insert ind[of "butlast lm2" "last lm2 # lm3" "0 # lm4"], 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3043
          simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3044
    apply(subgoal_tac "lm1 @ butlast lm2 @ last lm2 # lm3 @ 0\<up>n @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3045
              0 # lm4 = lm1 @ lm2 @ lm3 @ 0\<up>n @ 0 # lm4", simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3046
    apply(case_tac "lm2 = []", simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3047
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3048
next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3049
  fix n lm2 lm3 lm4
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3050
  assume h: "Suc n \<le> ba - aa"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3051
            "aa < ba" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3052
            "length (lm1::nat list) = aa" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3053
            "length (lm2::nat list) = Suc n" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3054
            "length (lm3::nat list) = ba - Suc (aa + n)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3055
  thus " \<exists>bstp. abc_steps_l (0, lm1 @ 0\<up>n @ last lm2 # lm3 @
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3056
                       butlast lm2 @ 0 # lm4) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3057
                         (recursive.mv_box (aa + n) (ba + n)) bstp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3058
               = (3, lm1 @ 0 # 0\<up>n @ lm3 @ lm2 @ lm4)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3059
    apply(insert mv_box_ex[of "aa + n" "ba + n" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3060
       "lm1 @ 0\<up>n @ last lm2 # lm3 @ butlast lm2 @ 0 # lm4"], simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3061
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3062
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3063
(*    
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3064
lemma [simp]: "\<lbrakk>Suc n \<le> aa - ba; 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3065
                ba < aa; 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3066
               length lm2 = aa - Suc (ba + n)\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3067
      \<Longrightarrow> ((0::nat) # lm2 @ 0\<up>n @ last lm3 # lm4) ! (aa - ba)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3068
         = last lm3"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3069
proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3070
  assume h: "Suc n \<le> aa - ba"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3071
    and g: " ba < aa" "length lm2 = aa - Suc (ba + n)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3072
  from h and g have k: "aa - ba = Suc (length lm2 + n)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3073
    by arith
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3074
  thus "((0::nat) # lm2 @ 0\<up>n @ last lm3 # lm4) ! (aa - ba) = last lm3"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3075
    apply(simp,  simp add: nth_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3076
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3077
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3078
*)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3079
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3080
lemma [simp]: "\<lbrakk>Suc n \<le> aa - ba; ba < aa; length lm1 = ba; 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3081
        length lm2 = aa - Suc (ba + n); length lm3 = Suc n\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3082
   \<Longrightarrow> (lm1 @ butlast lm3 @ 0 # lm2 @ 0\<up>n @ last lm3 # lm4) ! (aa + n) = last lm3"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3083
using nth_append[of "lm1 @ butlast lm3 @ 0 # lm2 @ 0\<up>n" "last lm3 # lm4" "aa + n"]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3084
apply(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3085
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3086
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3087
lemma [simp]: "\<lbrakk>Suc n \<le> aa - ba; ba < aa; length lm1 = ba; 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3088
        length lm2 = aa - Suc (ba + n); length lm3 = Suc n\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3089
     \<Longrightarrow> (lm1 @ butlast lm3 @ 0 # lm2 @ 0\<up>n @ last lm3 # lm4) ! (ba + n) = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3090
apply(simp add: nth_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3091
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3092
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3093
lemma [simp]: "\<lbrakk>Suc n \<le> aa - ba; ba < aa; length lm1 = ba; 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3094
        length lm2 = aa - Suc (ba + n); length lm3 = Suc n\<rbrakk> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3095
     \<Longrightarrow> (lm1 @ butlast lm3 @ 0 # lm2 @ 0\<up>n @ last lm3 # lm4)[ba + n := last lm3, aa + n := 0]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3096
      = lm1 @ lm3 @ lm2 @ 0 # 0\<up>n @ lm4"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3097
using list_update_append[of "lm1 @ butlast lm3" "(0\<Colon>'a) # lm2 @ (0\<Colon>'a)\<up>n @ last lm3 # lm4"]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3098
apply(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3099
using list_update_append[of "lm1 @ butlast lm3 @ last lm3 # lm2 @ (0\<Colon>'a)\<up>n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3100
                            "last lm3 # lm4" "aa + n" "0"]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3101
apply(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3102
apply(simp only: replicate_Suc[THEN sym] exp_suc, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3103
apply(case_tac lm3, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3104
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3105
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3106
lemma mv_boxes_ex2:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3107
  "\<lbrakk>n \<le> aa - ba; 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3108
    ba < aa; 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3109
    length (lm1::nat list) = ba;
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3110
    length (lm2::nat list) = aa - ba - n; 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3111
    length (lm3::nat list) = n\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3112
     \<Longrightarrow> \<exists> stp. abc_steps_l (0, lm1 @ 0\<up>n @ lm2 @ lm3 @ lm4) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3113
                (mv_boxes aa ba n) stp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3114
                    (3 * n, lm1 @ lm3 @ lm2 @ 0\<up>n @ lm4)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3115
apply(induct n arbitrary: lm2 lm3 lm4, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3116
apply(rule_tac x = 0 in exI, simp add: abc_steps_zero, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3117
                   simp add: mv_boxes.simps del: exp_suc_iff)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3118
apply(rule_tac as = "3 *n" and bm = "lm1 @ butlast lm3 @ 0 # lm2 @
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3119
                  0\<up>n @ last lm3 # lm4" in abc_append_exc2, simp_all)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3120
apply(simp only: exponent_cons_iff, simp only: exp_suc, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3121
proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3122
  fix n lm2 lm3 lm4
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3123
  assume ind: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3124
"\<And>lm2 lm3 lm4. \<lbrakk>length lm2 = aa - (ba + n); length lm3 = n\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3125
  \<exists>stp. abc_steps_l (0, lm1 @ 0\<up>n @ lm2 @ lm3 @ lm4) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3126
                 (mv_boxes aa ba n) stp = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3127
                            (3 * n, lm1 @ lm3 @ lm2 @ 0\<up>n @ lm4)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3128
  and h: "Suc n \<le> aa - ba" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3129
         "ba < aa"  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3130
         "length (lm1::nat list) = ba" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3131
         "length (lm2::nat list) = aa - Suc (ba + n)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3132
         "length (lm3::nat list) = Suc n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3133
  from h show
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3134
    "\<exists>astp. abc_steps_l (0, lm1 @ 0\<up>n @ 0 # lm2 @ lm3 @ lm4)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3135
        (mv_boxes aa ba n) astp = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3136
          (3 * n, lm1 @ butlast lm3 @ 0 # lm2 @ 0\<up>n @ last lm3 # lm4)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3137
    apply(insert ind[of "0 # lm2" "butlast lm3" "last lm3 # lm4"],
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3138
          simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3139
    apply(subgoal_tac
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3140
      "lm1 @ 0\<up>n @ 0 # lm2 @ butlast lm3 @ last lm3 # lm4 =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3141
           lm1 @ 0\<up>n @ 0 # lm2 @ lm3 @ lm4", simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3142
    apply(case_tac "lm3 = []", simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3143
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3144
next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3145
  fix n lm2 lm3 lm4
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3146
  assume h:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3147
    "Suc n \<le> aa - ba" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3148
    "ba < aa"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3149
    "length lm1 = ba"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3150
    "length (lm2::nat list) = aa - Suc (ba + n)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3151
    "length (lm3::nat list) = Suc n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3152
  thus
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3153
    "\<exists>bstp. abc_steps_l (0, lm1 @ butlast lm3 @ 0 # lm2 @ 0\<up>n @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3154
                               last lm3 # lm4) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3155
           (recursive.mv_box (aa + n) (ba + n)) bstp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3156
                 (3, lm1 @ lm3 @ lm2 @ 0 # 0\<up>n @ lm4)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3157
    apply(insert mv_box_ex[of "aa + n" "ba + n" "lm1 @ butlast lm3 @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3158
                          0 # lm2 @ 0\<up>n @ last lm3 # lm4"], simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3159
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3160
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3161
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3162
lemma cn_merge_gs_len: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3163
  "length (cn_merge_gs (map rec_ci gs) pstr) = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3164
      (\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + 3 * length gs"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3165
apply(induct gs arbitrary: pstr, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3166
apply(case_tac "rec_ci a", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3167
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3168
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3169
lemma [simp]: "n < pstr \<Longrightarrow>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3170
     Suc (pstr + length ys - n) = Suc (pstr + length ys) - n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3171
by arith
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3172
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3173
lemma save_paras':  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3174
  "\<lbrakk>length lm = n; pstr > n; a_md > pstr + length ys + n\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3175
  \<Longrightarrow> \<exists>stp. abc_steps_l (0, lm @ 0\<up>(pstr - n) @ ys @
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3176
               0\<up>(a_md - pstr - length ys) @ suf_lm) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3177
                 (mv_boxes 0 (pstr + Suc (length ys)) n) stp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3178
        = (3 * n, 0\<up>pstr @ ys @ 0 # lm @ 0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3179
thm mv_boxes_ex
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3180
apply(insert mv_boxes_ex[of n "pstr + Suc (length ys)" 0 "[]" "lm" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3181
         "0\<up>(pstr - n) @ ys @ [0]" "0\<up>(a_md - pstr - length ys - n - Suc 0) @ suf_lm"], simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3182
apply(erule_tac exE, rule_tac x = stp in exI,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3183
                            simp add: exponent_add_iff)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3184
apply(simp only: exponent_cons_iff, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3185
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3186
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3187
lemma [simp]:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3188
 "(max ba (Max (insert ba (((\<lambda>(aprog, p, n). n) o rec_ci) ` set gs))))
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3189
 = (Max (insert ba (((\<lambda>(aprog, p, n). n) o rec_ci) ` set gs)))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3190
apply(rule min_max.sup_absorb2, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3191
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3192
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3193
lemma [simp]:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3194
  "((\<lambda>(aprog, p, n). n) ` rec_ci ` set gs) = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3195
                  (((\<lambda>(aprog, p, n). n) o rec_ci) ` set gs)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3196
apply(induct gs)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3197
apply(simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3198
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3199
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3200
lemma ci_cn_md_def:  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3201
  "\<lbrakk>rec_ci (Cn n f gs) = (aprog, rs_pos, a_md); 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3202
  rec_ci f = (a, aa, ba)\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3203
    \<Longrightarrow> a_md = max (Suc n) (Max (insert ba (((\<lambda>(aprog, p, n). n) o 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3204
  rec_ci) ` set gs))) + Suc (length gs) + n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3205
apply(simp add: rec_ci.simps, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3206
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3207
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3208
lemma save_paras_prog_ex:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3209
  "\<lbrakk>rec_ci (Cn n f gs) = (aprog, rs_pos, a_md); 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3210
    rec_ci f = (a, aa, ba); 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3211
    pstr = Max (set (Suc n # ba # map (\<lambda>(aprog, p, n). n)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3212
                                    (map rec_ci (f # gs))))\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3213
    \<Longrightarrow> \<exists>ap bp cp. 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3214
      aprog = ap [+] bp [+] cp \<and>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3215
      length ap = (\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3216
              3 * length gs \<and> bp = mv_boxes 0 (pstr + Suc (length gs)) n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3217
apply(simp add: rec_ci.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3218
apply(rule_tac x = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3219
  "cn_merge_gs (map rec_ci gs) (max (Suc n) (Max (insert ba 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3220
      (((\<lambda>(aprog, p, n). n) o rec_ci) ` set gs))))" in exI,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3221
      simp add: cn_merge_gs_len)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3222
apply(rule_tac x = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3223
  "mv_boxes (max (Suc n) (Max (insert ba (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs))))
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3224
   0 (length gs) [+] a [+]recursive.mv_box aa (max (Suc n) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3225
   (Max (insert ba (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) [+]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3226
   empty_boxes (length gs) [+] recursive.mv_box (max (Suc n) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3227
  (Max (insert ba (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) n [+]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3228
   mv_boxes (Suc (max (Suc n) (Max (insert ba (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3229
   ` set gs))) + length gs)) 0 n" in exI, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3230
apply(simp add: abc_append_commute)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3231
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3232
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3233
lemma save_paras: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3234
  "\<lbrakk>rec_ci (Cn n f gs) = (aprog, rs_pos, a_md);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3235
    rs_pos = n;
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3236
    \<forall>k<length gs. rec_calc_rel (gs ! k) lm (ys ! k);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3237
    length ys = length gs;
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3238
    length lm = n;
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3239
    rec_ci f = (a, aa, ba);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3240
    pstr = Max (set (Suc n # ba # map (\<lambda>(aprog, p, n). n)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3241
                                          (map rec_ci (f # gs))))\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3242
  \<Longrightarrow> \<exists>stp. abc_steps_l ((\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) +
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3243
          3 * length gs, lm @ 0\<up>(pstr - n) @ ys @
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3244
                 0\<up>(a_md - pstr - length ys) @ suf_lm) aprog stp = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3245
           ((\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) +
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3246
                      3 * length gs + 3 * n, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3247
             0\<up>pstr @ ys @ 0 # lm @ 0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3248
proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3249
  assume h:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3250
    "rec_ci (Cn n f gs) = (aprog, rs_pos, a_md)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3251
    "rs_pos = n" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3252
    "\<forall>k<length gs. rec_calc_rel (gs ! k) lm (ys ! k)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3253
    "length ys = length gs"  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3254
    "length lm = n"    
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3255
    "rec_ci f = (a, aa, ba)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3256
    and g: "pstr = Max (set (Suc n # ba # map (\<lambda>(aprog, p, n). n) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3257
                                        (map rec_ci (f # gs))))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3258
  from h and g have k1: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3259
    "\<exists> ap bp cp. aprog = ap [+] bp [+] cp \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3260
    length ap = (\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3261
                3 *length gs \<and> bp = mv_boxes 0 (pstr + Suc (length ys)) n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3262
    apply(drule_tac save_paras_prog_ex, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3263
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3264
  from h have k2: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3265
    "\<exists> stp. abc_steps_l (0, lm @ 0\<up>(pstr - n) @ ys @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3266
                         0\<up>(a_md - pstr - length ys) @ suf_lm)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3267
         (mv_boxes 0 (pstr + Suc (length ys)) n) stp = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3268
        (3 * n, 0\<up>pstr @ ys @ 0 # lm @ 0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3269
    apply(rule_tac save_paras', simp, simp_all add: g)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3270
    apply(drule_tac a = a and aa = aa and ba = ba in 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3271
                                        ci_cn_md_def, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3272
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3273
  from k1 show 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3274
    "\<exists>stp. abc_steps_l ((\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3275
         3 * length gs, lm @ 0\<up>(pstr - n) @ ys @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3276
                 0\<up>(a_md - pstr - length ys) @ suf_lm) aprog stp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3277
             ((\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3278
               3 * length gs + 3 * n, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3279
                0\<up> pstr @ ys @ 0 # lm @ 0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3280
  proof(erule_tac exE, erule_tac exE, erule_tac exE, erule_tac exE)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3281
    fix ap bp apa cp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3282
    assume "aprog = ap [+] bp [+] cp \<and> length ap = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3283
            (\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + 3 * length gs
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3284
            \<and> bp = mv_boxes 0 (pstr + Suc (length ys)) n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3285
    from this and k2 show "?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3286
      apply(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3287
      apply(rule_tac abc_append_exc1, simp, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3288
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3289
  qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3290
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3291
 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3292
lemma ci_cn_para_eq:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3293
  "rec_ci (Cn n f gs) = (aprog, rs_pos, a_md) \<Longrightarrow> rs_pos = n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3294
apply(simp add: rec_ci.simps, case_tac "rec_ci f", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3295
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3296
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3297
lemma calc_gs_prog_ex: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3298
  "\<lbrakk>rec_ci (Cn n f gs) = (aprog, rs_pos, a_md); 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3299
    rec_ci f = (a, aa, ba);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3300
    Max (set (Suc n # ba # map (\<lambda>(aprog, p, n). n) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3301
                         (map rec_ci (f # gs)))) = pstr\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3302
   \<Longrightarrow> \<exists>ap bp. aprog = ap [+] bp \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3303
                 ap = cn_merge_gs (map rec_ci gs) pstr"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3304
apply(simp add: rec_ci.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3305
apply(rule_tac x = "mv_boxes 0 (Suc (max (Suc n)  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3306
   (Max (insert ba (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs))) + length gs)) n [+]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3307
   mv_boxes (max (Suc n) (Max (insert ba 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3308
  (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) 0 (length gs) [+]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3309
   a [+] recursive.mv_box aa (max (Suc n)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3310
    (Max (insert ba (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) [+]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3311
   empty_boxes (length gs) [+] recursive.mv_box (max (Suc n)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3312
    (Max (insert ba (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) n [+]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3313
    mv_boxes (Suc (max (Suc n) (Max 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3314
    (insert ba (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs))) + length gs)) 0 n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3315
   in exI)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3316
apply(auto simp: abc_append_commute)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3317
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3318
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3319
lemma cn_calc_gs: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3320
  assumes ind: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3321
  "\<And>x aprog a_md rs_pos rs suf_lm lm.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3322
  \<lbrakk>x \<in> set gs; 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3323
   rec_ci x = (aprog, rs_pos, a_md); 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3324
   rec_calc_rel x lm rs\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3325
  \<Longrightarrow> \<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) aprog stp = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3326
     (length aprog, lm @ [rs] @ 0\<up>(a_md - rs_pos - 1) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3327
  and h:  "rec_ci (Cn n f gs) = (aprog, rs_pos, a_md)"  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3328
          "\<forall>k<length gs. rec_calc_rel (gs ! k) lm (ys ! k)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3329
          "length ys = length gs" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3330
          "length lm = n" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3331
          "rec_ci f = (a, aa, ba)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3332
          "Max (set (Suc n # ba # map (\<lambda>(aprog, p, n). n) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3333
                               (map rec_ci (f # gs)))) = pstr"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3334
  shows  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3335
  "\<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) aprog stp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3336
  ((\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + 3 * length gs, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3337
   lm @ 0\<up>(pstr - n) @ ys @ 0\<up>(a_md -pstr - length ys) @ suf_lm) "
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3338
proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3339
  from h have k1:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3340
    "\<exists> ap bp. aprog = ap [+] bp \<and> ap = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3341
                        cn_merge_gs (map rec_ci gs) pstr"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3342
    by(erule_tac calc_gs_prog_ex, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3343
  from h have j1: "rs_pos = n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3344
    by(simp add: ci_cn_para_eq)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3345
  from h have j2: "a_md \<ge> pstr"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3346
    by(drule_tac a = a and aa = aa and ba = ba in 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3347
                                ci_cn_md_def, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3348
  from h have j3: "pstr > n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3349
    by(auto)    
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3350
  from j1 and j2 and j3 and h have k2:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3351
    "\<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3352
                         (cn_merge_gs (map rec_ci gs) pstr) stp 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3353
    = ((\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + 3 * length gs, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3354
                  lm @ 0\<up>(pstr - n) @ ys @ 0\<up>(a_md - pstr - length ys) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3355
    apply(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3356
    apply(rule_tac cn_merge_gs_ex, rule_tac ind, simp, simp, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3357
    apply(drule_tac a = a and aa = aa and ba = ba in 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3358
                                 ci_cn_md_def, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3359
    apply(rule min_max.le_supI2, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3360
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3361
  from k1 show "?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3362
  proof(erule_tac exE, erule_tac exE, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3363
    fix ap bp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3364
    from k2 show 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3365
      "\<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3366
           (cn_merge_gs (map rec_ci gs) pstr [+] bp) stp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3367
      (listsum (map ((\<lambda>(ap, pos, n). length ap) \<circ> rec_ci) gs) +
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3368
         3 * length gs, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3369
         lm @ 0\<up>(pstr - n) @ ys @ 0\<up>(a_md - (pstr + length ys)) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3370
      apply(insert abc_append_exc1[of 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3371
        "lm @ 0\<up>(a_md - rs_pos) @ suf_lm" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3372
        "(cn_merge_gs (map rec_ci gs) pstr)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3373
        "length (cn_merge_gs (map rec_ci gs) pstr)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3374
        "lm @ 0\<up>(pstr - n) @ ys @ 0\<up>(a_md - pstr - length ys) @ suf_lm" 0 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3375
        "[]" bp], simp add: cn_merge_gs_len)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3376
      done      
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3377
  qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3378
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3379
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3380
lemma reset_new_paras': 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3381
  "\<lbrakk>length lm = n; 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3382
    pstr > 0; 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3383
    a_md \<ge> pstr + length ys + n;
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3384
     pstr > length ys\<rbrakk> \<Longrightarrow>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3385
   \<exists>stp. abc_steps_l (0, 0\<up>pstr @ ys @ 0 # lm @  0\<up>(a_md - Suc (pstr + length ys + n)) @
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3386
          suf_lm) (mv_boxes pstr 0 (length ys)) stp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3387
  (3 * length ys, ys @ 0\<up>pstr @ 0 # lm @ 0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3388
thm mv_boxes_ex2
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3389
apply(insert mv_boxes_ex2[of "length ys" "pstr" 0 "[]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3390
     "0\<up>(pstr - length ys)" "ys" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3391
     "0 # lm @ 0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm"], 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3392
     simp add: exponent_add_iff)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3393
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3394
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3395
lemma [simp]:  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3396
  "\<lbrakk>rec_ci (Cn n f gs) = (aprog, rs_pos, a_md);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3397
  rec_calc_rel f ys rs; rec_ci f = (a, aa, ba);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3398
  pstr = Max (set (Suc n # ba # map (\<lambda>(aprog, p, n). n) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3399
               (map rec_ci (f # gs))))\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3400
  \<Longrightarrow> length ys < pstr"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3401
apply(subgoal_tac "length ys = aa", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3402
apply(subgoal_tac "aa < ba \<and> ba \<le> pstr", 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3403
      rule basic_trans_rules(22), auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3404
apply(rule min_max.le_supI2)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3405
apply(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3406
apply(erule_tac para_pattern, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3407
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3408
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3409
lemma reset_new_paras_prog_ex: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3410
  "\<lbrakk>rec_ci (Cn n f gs) = (aprog, rs_pos, a_md); 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3411
   rec_ci f = (a, aa, ba);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3412
   Max (set (Suc n # ba # map (\<lambda>(aprog, p, n). n) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3413
  (map rec_ci (f # gs)))) = pstr\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3414
  \<Longrightarrow> \<exists> ap bp cp. aprog = ap [+] bp [+] cp \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3415
  length ap = (\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) +
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3416
           3 *length gs + 3 * n \<and> bp = mv_boxes pstr 0 (length gs)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3417
apply(simp add: rec_ci.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3418
apply(rule_tac x = "cn_merge_gs (map rec_ci gs) (max (Suc n) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3419
          (Max (insert ba (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) [+] 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3420
          mv_boxes 0 (Suc (max (Suc n) (Max (insert ba 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3421
           (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs))) + length gs)) n" in exI, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3422
       simp add: cn_merge_gs_len)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3423
apply(rule_tac x = "a [+]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3424
     recursive.mv_box aa (max (Suc n) (Max (insert ba 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3425
     (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) [+]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3426
     empty_boxes (length gs) [+] recursive.mv_box 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3427
     (max (Suc n) (Max (insert ba (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) n
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3428
      [+] mv_boxes (Suc (max (Suc n) (Max (insert ba 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3429
     (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs))) + length gs)) 0 n" in exI,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3430
       auto simp: abc_append_commute)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3431
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3432
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3433
lemma reset_new_paras:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3434
       "\<lbrakk>rec_ci (Cn n f gs) = (aprog, rs_pos, a_md);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3435
        rs_pos = n;
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3436
        \<forall>k<length gs. rec_calc_rel (gs ! k) lm (ys ! k);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3437
        length ys = length gs;
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3438
        length lm = n;
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3439
        length ys = aa;
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3440
        rec_ci f = (a, aa, ba);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3441
        pstr = Max (set (Suc n # ba # map (\<lambda>(aprog, p, n). n)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3442
                                    (map rec_ci (f # gs))))\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3443
\<Longrightarrow> \<exists>stp. abc_steps_l ((\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3444
                                               3 * length gs + 3 * n,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3445
        0\<up>pstr @ ys @ 0 # lm @ 0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm) aprog stp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3446
  ((\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + 6 * length gs + 3 * n,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3447
           ys @ 0\<up>pstr @ 0 # lm @ 0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3448
proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3449
  assume h:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3450
    "rec_ci (Cn n f gs) = (aprog, rs_pos, a_md)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3451
    "rs_pos = n" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3452
    "length ys = aa"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3453
    "\<forall>k<length gs. rec_calc_rel (gs ! k) lm (ys ! k)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3454
    "length ys = length gs"  "length lm = n"    
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3455
    "rec_ci f = (a, aa, ba)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3456
    and g: "pstr = Max (set (Suc n # ba # map (\<lambda>(aprog, p, n). n)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3457
                                         (map rec_ci (f # gs))))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3458
  thm rec_ci.simps
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3459
  from h and g have k1:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3460
    "\<exists> ap bp cp. aprog = ap [+] bp [+] cp \<and> length ap = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3461
    (\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) +
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3462
          3 *length gs + 3 * n \<and> bp = mv_boxes pstr 0 (length ys)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3463
    by(drule_tac reset_new_paras_prog_ex, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3464
  from h have k2:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3465
    "\<exists> stp. abc_steps_l (0, 0\<up>pstr @ ys @ 0 # lm @ 0\<up>(a_md - Suc (pstr + length ys + n)) @
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3466
              suf_lm) (mv_boxes pstr 0 (length ys)) stp = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3467
    (3 * (length ys), 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3468
     ys @ 0\<up>pstr @ 0 # lm @ 0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3469
    apply(rule_tac reset_new_paras', simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3470
    apply(simp add: g)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3471
    apply(drule_tac a = a and aa = aa and ba = ba in ci_cn_md_def,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3472
      simp, simp add: g, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3473
    apply(subgoal_tac "length gs = aa \<and> aa < ba \<and> ba \<le> pstr", arith,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3474
          simp add: para_pattern)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3475
    apply(insert g, auto intro: min_max.le_supI2)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3476
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3477
  from k1 show 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3478
    "\<exists>stp. abc_steps_l ((\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + 3
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3479
    * length gs + 3 * n, 0\<up>pstr @ ys @ 0 # lm @ 0\<up>(a_md - Suc (pstr + length ys + n)) @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3480
     suf_lm) aprog stp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3481
    ((\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + 6 * length gs +
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3482
      3 * n, ys @ 0\<up>pstr @ 0 # lm @ 0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3483
  proof(erule_tac exE, erule_tac exE, erule_tac exE, erule_tac exE)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3484
    fix ap bp apa cp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3485
    assume "aprog = ap [+] bp [+] cp \<and> length ap = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3486
      (\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + 3 * length gs +
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3487
                  3 * n \<and> bp = mv_boxes pstr 0 (length ys)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3488
    from this and k2 show "?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3489
      apply(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3490
      apply(drule_tac as = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3491
        "(\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + 3 * length gs +
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3492
        3 * n" and ap = ap and cp = cp in abc_append_exc1, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3493
      apply(rule_tac x = stp in exI, simp add: h)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3494
      using h
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3495
      apply(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3496
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3497
  qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3498
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3499
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3500
thm rec_ci.simps 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3501
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3502
lemma calc_f_prog_ex: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3503
  "\<lbrakk>rec_ci (Cn n f gs) = (aprog, rs_pos, a_md);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3504
    rec_ci f = (a, aa, ba);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3505
    Max (set (Suc n # ba # map (\<lambda>(aprog, p, n). n) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3506
                   (map rec_ci (f # gs)))) = pstr\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3507
   \<Longrightarrow> \<exists> ap bp cp. aprog = ap [+] bp [+] cp \<and>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3508
  length ap = (\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) +
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3509
                                6 *length gs + 3 * n \<and> bp = a"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3510
apply(simp add: rec_ci.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3511
apply(rule_tac x = "cn_merge_gs (map rec_ci gs) (max (Suc n) (Max (insert ba
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3512
     (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) [+] 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3513
     mv_boxes 0 (Suc (max (Suc n) (Max (insert ba 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3514
            (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs))) + length gs)) n [+]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3515
     mv_boxes (max (Suc n) (Max (insert ba 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3516
      (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) 0 (length gs)" in exI,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3517
     simp add: cn_merge_gs_len)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3518
apply(rule_tac x = "recursive.mv_box aa (max (Suc n) (Max (insert ba 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3519
     (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) [+]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3520
     empty_boxes (length gs) [+] recursive.mv_box (max (Suc n) (
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3521
     Max (insert ba (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) n [+]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3522
     mv_boxes (Suc (max (Suc n) (Max (insert ba 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3523
     (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs))) + length gs)) 0 n" in exI,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3524
  auto simp: abc_append_commute)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3525
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3526
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3527
lemma calc_cn_f:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3528
  assumes ind:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3529
  "\<And>x aprog a_md rs_pos rs suf_lm lm.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3530
  \<lbrakk>x \<in> set (f # gs);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3531
  rec_ci x = (aprog, rs_pos, a_md); 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3532
  rec_calc_rel x lm rs\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3533
  \<Longrightarrow> \<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) aprog stp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3534
  (length aprog, lm @ [rs] @ 0\<up>(a_md - rs_pos - 1) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3535
  and h: "rec_ci (Cn n f gs) = (aprog, rs_pos, a_md)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3536
  "rec_calc_rel (Cn n f gs) lm rs"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3537
  "length ys = length gs"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3538
  "rec_calc_rel f ys rs"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3539
  "length lm = n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3540
  "rec_ci f = (a, aa, ba)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3541
  and p: "pstr = Max (set (Suc n # ba # map (\<lambda>(aprog, p, n). n)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3542
                                (map rec_ci (f # gs))))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3543
  shows "\<exists>stp. abc_steps_l   
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3544
  ((\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + 6 * length gs + 3 * n,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3545
  ys @ 0\<up>pstr @ 0 # lm @ 0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm) aprog stp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3546
  ((\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + 6 * length gs + 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3547
                3 * n + length a,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3548
  ys @ rs # 0\<up>pstr @ lm @ 0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3549
proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3550
  from h have k1: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3551
    "\<exists> ap bp cp. aprog = ap [+] bp [+] cp \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3552
    length ap = (\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3553
    6 *length gs + 3 * n \<and> bp = a"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3554
    by(drule_tac calc_f_prog_ex, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3555
  from h and k1 show "?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3556
  proof (erule_tac exE, erule_tac exE, erule_tac exE, erule_tac exE)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3557
    fix ap bp apa cp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3558
    assume
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3559
      "aprog = ap [+] bp [+] cp \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3560
      length ap = (\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3561
      6 * length gs + 3 * n \<and> bp = a"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3562
    from h and this show "?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3563
      apply(simp, rule_tac abc_append_exc1, simp_all)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3564
      apply(insert ind[of f "a" aa ba ys rs 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3565
        "0\<up>(pstr - ba + length gs) @ 0 # lm @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3566
        0\<up>(a_md - Suc (pstr + length gs + n)) @ suf_lm"], simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3567
      apply(subgoal_tac "ba > aa \<and> aa = length gs\<and> pstr \<ge> ba", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3568
      apply(simp add: exponent_add_iff)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3569
      apply(case_tac pstr, simp add: p)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3570
      apply(simp only: exp_suc, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3571
      apply(rule conjI, rule ci_ad_ge_paras, simp, rule conjI)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3572
      apply(subgoal_tac "length ys = aa", simp,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3573
        rule para_pattern, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3574
      apply(insert p, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3575
      apply(auto intro: min_max.le_supI2)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3576
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3577
  qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3578
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3579
(*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3580
lemma [simp]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3581
  "\<lbrakk>pstr + length ys + n \<le> a_md; ys \<noteq> []\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3582
                          pstr < a_md + length suf_lm"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3583
apply(case_tac "length ys", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3584
apply(arith)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3585
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3586
*)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3587
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3588
lemma [simp]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3589
  "pstr > length ys 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3590
  \<Longrightarrow> (ys @ rs # 0\<up>pstr @ lm @
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3591
  0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm) ! pstr = (0::nat)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3592
apply(simp add: nth_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3593
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3594
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3595
(*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3596
lemma [simp]: "\<lbrakk>length ys < pstr; pstr - length ys = Suc x\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3597
  \<Longrightarrow> pstr - Suc (length ys) = x"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3598
by arith
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3599
*)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3600
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3601
lemma [simp]: "pstr > length ys \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3602
      (ys @ rs # 0\<up>pstr @ lm @ 0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3603
                                         [pstr := rs, length ys := 0] =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3604
       ys @ 0\<up>(pstr - length ys) @ (rs::nat) # 0\<up>length ys @ lm @ 0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3605
apply(auto simp: list_update_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3606
apply(case_tac "pstr - length ys",simp_all)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3607
using list_update_length[of 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3608
  "0\<up>(pstr - Suc (length ys))" "0" "0\<up>length ys @ lm @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3609
  0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm" rs]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3610
apply(simp only: exponent_cons_iff exponent_add_iff, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3611
apply(subgoal_tac "pstr - Suc (length ys) = nat", simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3612
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3613
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3614
lemma save_rs': 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3615
  "\<lbrakk>pstr > length ys\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3616
  \<Longrightarrow> \<exists>stp. abc_steps_l (0, ys @ rs # 0\<up>pstr @ lm @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3617
  0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3618
  (recursive.mv_box (length ys) pstr) stp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3619
  (3, ys @ 0\<up>(pstr - (length ys)) @ rs # 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3620
  0\<up>length ys  @ lm @ 0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3621
apply(insert mv_box_ex[of "length ys" pstr 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3622
  "ys @ rs # 0\<up>pstr @ lm @ 0\<up>(a_md - Suc(pstr + length ys + n)) @ suf_lm"], 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3623
  simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3624
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3625
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3626
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3627
lemma save_rs_prog_ex:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3628
  "\<lbrakk>rec_ci (Cn n f gs) = (aprog, rs_pos, a_md);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3629
  rec_ci f = (a, aa, ba);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3630
  Max (set (Suc n # ba # map (\<lambda>(aprog, p, n). n) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3631
                        (map rec_ci (f # gs)))) = pstr\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3632
  \<Longrightarrow> \<exists> ap bp cp. aprog = ap [+] bp [+] cp \<and>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3633
  length ap = (\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) +
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3634
              6 *length gs + 3 * n + length a
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3635
  \<and> bp = mv_box aa pstr"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3636
apply(simp add: rec_ci.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3637
apply(rule_tac x =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3638
  "cn_merge_gs (map rec_ci gs) (max (Suc n) (Max (insert ba 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3639
   (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs))))
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3640
   [+] mv_boxes 0 (Suc (max (Suc n) (Max (insert ba 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3641
   (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs))) + length gs)) n [+]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3642
   mv_boxes (max (Suc n) (Max (insert ba (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs))))
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3643
    0 (length gs) [+] a" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3644
  in exI, simp add: cn_merge_gs_len)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3645
apply(rule_tac x = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3646
  "empty_boxes (length gs) [+]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3647
   recursive.mv_box (max (Suc n) (Max (insert ba 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3648
    (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) n [+]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3649
   mv_boxes (Suc (max (Suc n) (Max (insert ba (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3650
    + length gs)) 0 n" in exI, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3651
  auto simp: abc_append_commute)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3652
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3653
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3654
lemma save_rs:  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3655
  assumes h: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3656
  "rec_ci (Cn n f gs) = (aprog, rs_pos, a_md)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3657
  "rec_calc_rel (Cn n f gs) lm rs"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3658
  "\<forall>k<length gs. rec_calc_rel (gs ! k) lm (ys ! k)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3659
  "length ys = length gs" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3660
  "rec_calc_rel f ys rs" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3661
  "rec_ci f = (a, aa, ba)"  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3662
  "length lm = n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3663
  and pdef: "pstr = Max (set (Suc n # ba # map (\<lambda>(aprog, p, n). n) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3664
                                            (map rec_ci (f # gs))))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3665
  shows "\<exists>stp. abc_steps_l
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3666
           ((\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + 6 * length gs
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3667
          + 3 * n + length a, ys @ rs # 0\<up>pstr @ lm @
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3668
             0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm) aprog stp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3669
  ((\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + 6 * length gs 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3670
  + 3 * n + length a + 3,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3671
  ys @ 0\<up>(pstr - length ys) @ rs # 0\<up>length ys @ lm @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3672
                               0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3673
proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3674
  thm rec_ci.simps
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3675
  from h and pdef have k1: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3676
    "\<exists> ap bp cp. aprog = ap [+] bp [+] cp \<and>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3677
    length ap = (\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) +
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3678
    6 *length gs + 3 * n + length a \<and> bp = mv_box (length ys) pstr "
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3679
    apply(subgoal_tac "length ys = aa")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3680
    apply(drule_tac a = a and aa = aa and ba = ba in save_rs_prog_ex, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3681
      simp, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3682
    by(rule_tac para_pattern, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3683
  from k1 show 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3684
    "\<exists>stp. abc_steps_l
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3685
    ((\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + 6 * length gs + 3 * n
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3686
    + length a, ys @ rs # 0\<up>pstr @ lm @ 0\<up>(a_md - Suc (pstr + length ys + n)) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3687
    @ suf_lm) aprog stp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3688
    ((\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + 6 * length gs + 3 * n
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3689
    + length a + 3, ys @ 0\<up>(pstr - length ys) @ rs # 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3690
    0\<up>length ys @ lm @ 0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3691
  proof (erule_tac exE, erule_tac exE, erule_tac exE, erule_tac exE)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3692
    fix ap bp apa cp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3693
    assume "aprog = ap [+] bp [+] cp \<and> length ap = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3694
      (\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + 6 * length gs + 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3695
      3 * n + length a \<and> bp = recursive.mv_box (length ys) pstr"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3696
    thus"?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3697
      apply(simp, rule_tac abc_append_exc1, simp_all)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3698
      apply(rule_tac save_rs', insert h)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3699
      apply(subgoal_tac "length gs = aa \<and> pstr \<ge> ba \<and> ba > aa",
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3700
            arith)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3701
      apply(simp add: para_pattern, insert pdef, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3702
      apply(rule_tac min_max.le_supI2, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3703
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3704
  qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3705
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3706
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3707
lemma [simp]: "length (empty_boxes n) = 2*n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3708
apply(induct n, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3709
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3710
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3711
lemma mv_box_step_ex: "length lm = n \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3712
      \<exists>stp. abc_steps_l (0, lm @ Suc x # suf_lm) [Dec n 2, Goto 0] stp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3713
  = (0, lm @ x # suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3714
apply(rule_tac x = "Suc (Suc 0)" in exI, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3715
  simp add: abc_steps_l.simps abc_step_l.simps abc_fetch.simps 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3716
         abc_lm_v.simps abc_lm_s.simps nth_append list_update_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3717
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3718
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3719
lemma mv_box_ex': 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3720
  "\<lbrakk>length lm = n\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3721
  \<exists> stp. abc_steps_l (0, lm @ x # suf_lm) [Dec n 2, Goto 0] stp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3722
  (Suc (Suc 0), lm @ 0 # suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3723
apply(induct x)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3724
apply(rule_tac x = "Suc 0" in exI, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3725
  simp add: abc_steps_l.simps abc_fetch.simps abc_step_l.simps
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3726
            abc_lm_v.simps nth_append abc_lm_s.simps, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3727
apply(drule_tac x = x and suf_lm = suf_lm in mv_box_step_ex, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3728
      erule_tac exE, erule_tac exE)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3729
apply(rule_tac x = "stpa + stp" in exI, simp add: abc_steps_add)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3730
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3731
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3732
lemma [simp]: "drop n lm = a # list \<Longrightarrow> list = drop (Suc n) lm"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3733
apply(induct n arbitrary: lm a list, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3734
apply(case_tac "lm", simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3735
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3736
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3737
lemma empty_boxes_ex: "\<lbrakk>length lm \<ge> n\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3738
     \<Longrightarrow> \<exists>stp. abc_steps_l (0, lm) (empty_boxes n) stp = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3739
                                          (2*n, 0\<up>n @ drop n lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3740
apply(induct n, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3741
apply(rule_tac abc_append_exc2, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3742
apply(case_tac "drop n lm", simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3743
proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3744
  fix n stp a list
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3745
  assume h: "Suc n \<le> length lm"  "drop n lm = a # list"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3746
  thus "\<exists>bstp. abc_steps_l (0, 0\<up>n @ a # list) [Dec n 2, Goto 0] bstp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3747
                       (Suc (Suc 0), 0 # 0\<up>n @ drop (Suc n) lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3748
    apply(insert mv_box_ex'[of "0\<up>n" n a list], simp, erule_tac exE)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3749
    apply(rule_tac x = stp in exI, simp, simp only: exponent_cons_iff)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3750
    apply(simp add:exp_ind del: replicate.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3751
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3752
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3753
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3754
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3755
lemma mv_box_paras_prog_ex:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3756
  "\<lbrakk>rec_ci (Cn n f gs) = (aprog, rs_pos, a_md);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3757
  rec_ci f = (a, aa, ba); 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3758
  Max (set (Suc n # ba # map (\<lambda>(aprog, p, n). n) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3759
                    (map rec_ci (f # gs)))) = pstr\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3760
  \<Longrightarrow> \<exists> ap bp cp. aprog = ap [+] bp [+] cp \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3761
  length ap = (\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3762
  6 *length gs + 3 * n + length a + 3 \<and> bp = empty_boxes (length gs)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3763
apply(simp add: rec_ci.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3764
apply(rule_tac x = "cn_merge_gs (map rec_ci gs) (max (Suc n) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3765
    (Max (insert ba (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) [+] 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3766
    mv_boxes 0 (Suc (max (Suc n) (Max 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3767
     (insert ba (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs))) + length gs)) n
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3768
    [+] mv_boxes (max (Suc n) (Max (insert ba 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3769
    (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) 0 (length gs) [+]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3770
     a [+] recursive.mv_box aa (max (Suc n) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3771
   (Max (insert ba (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs))))" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3772
    in exI, simp add: cn_merge_gs_len)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3773
apply(rule_tac x = " recursive.mv_box (max (Suc n) (Max (insert ba
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3774
     (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) n [+]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3775
     mv_boxes (Suc (max (Suc n) (Max (insert ba 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3776
     (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs))) + length gs)) 0 n" in exI, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3777
  auto simp: abc_append_commute)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3778
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3779
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3780
lemma mv_box_paras: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3781
 assumes h: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3782
  "rec_ci (Cn n f gs) = (aprog, rs_pos, a_md)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3783
  "rec_calc_rel (Cn n f gs) lm rs" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3784
  "\<forall>k<length gs. rec_calc_rel (gs ! k) lm (ys ! k)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3785
  "length ys = length gs" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3786
  "rec_calc_rel f ys rs" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3787
  "rec_ci f = (a, aa, ba)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3788
  and pdef: "pstr = Max (set (Suc n # ba # map (\<lambda>(aprog, p, n). n) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3789
                                             (map rec_ci (f # gs))))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3790
  and starts: "ss = (\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) +
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3791
                              6 * length gs + 3 * n + length a + 3"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3792
  shows "\<exists>stp. abc_steps_l
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3793
           (ss, ys @ 0\<up>(pstr - length ys) @ rs # 0\<up>length ys 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3794
               @ lm @ 0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm) aprog stp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3795
   (ss + 2 * length gs, 0\<up>pstr @ rs # 0\<up>length ys  @ lm @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3796
                                0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3797
proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3798
  from h and pdef and starts have k1: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3799
    "\<exists> ap bp cp. aprog = ap [+] bp [+] cp \<and>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3800
    length ap = (\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3801
                               6 *length gs + 3 * n + length a + 3
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3802
    \<and> bp = empty_boxes (length ys)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3803
    by(drule_tac mv_box_paras_prog_ex, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3804
  from h have j1: "aa < ba"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3805
    by(simp add: ci_ad_ge_paras)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3806
  from h have j2: "length gs = aa"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3807
    by(drule_tac f = f in para_pattern, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3808
  from h and pdef have j3: "ba \<le> pstr"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3809
    apply simp 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3810
    apply(rule_tac min_max.le_supI2, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3811
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3812
  from k1 show "?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3813
  proof (erule_tac exE, erule_tac exE, erule_tac exE, erule_tac exE)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3814
    fix ap bp apa cp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3815
    assume "aprog = ap [+] bp [+] cp \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3816
      length ap = (\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) +
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3817
      6 * length gs + 3 * n + length a + 3 \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3818
      bp = empty_boxes (length ys)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3819
    thus"?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3820
      apply(simp, rule_tac abc_append_exc1, simp_all add: starts h)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3821
      apply(insert empty_boxes_ex[of 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3822
        "length gs" "ys @ 0\<up>(pstr - (length gs)) @ rs #
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3823
        0\<up>length gs @ lm @ 0\<up>(a_md - Suc (pstr + length gs + n)) @ suf_lm"], 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3824
        simp add: h)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3825
      apply(erule_tac exE, rule_tac x = stp in exI, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3826
        simp add: replicate.simps[THEN sym]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3827
        replicate_add[THEN sym] del: replicate.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3828
      apply(subgoal_tac "pstr >(length gs)", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3829
      apply(subgoal_tac "ba > aa \<and> length gs = aa \<and> pstr \<ge> ba", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3830
      apply(simp add: j1 j2 j3)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3831
      done     
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3832
  qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3833
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3834
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3835
lemma restore_rs_prog_ex:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3836
  "\<lbrakk>rec_ci (Cn n f gs) = (aprog, rs_pos, a_md);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3837
  rec_ci f = (a, aa, ba);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3838
  Max (set (Suc n # ba # map (\<lambda>(aprog, p, n). n)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3839
  (map rec_ci (f # gs)))) = pstr;
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3840
  ss = (\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) +
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3841
  8 * length gs + 3 * n + length a + 3\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3842
  \<Longrightarrow> \<exists> ap bp cp. aprog = ap [+] bp [+] cp \<and> length ap = ss \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3843
                                           bp = mv_box pstr n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3844
apply(simp add: rec_ci.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3845
apply(rule_tac x = "cn_merge_gs (map rec_ci gs) (max (Suc n) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3846
      (Max (insert ba (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) [+] 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3847
      mv_boxes 0 (Suc (max (Suc n) (Max (insert ba (((\<lambda>(aprog, p, n). n)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3848
        \<circ> rec_ci) ` set gs))) + length gs)) n [+]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3849
     mv_boxes (max (Suc n) (Max (insert ba 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3850
      (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) 0 (length gs) [+]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3851
     a [+] recursive.mv_box aa (max (Suc n)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3852
       (Max (insert ba (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) [+]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3853
     empty_boxes (length gs)" in exI, simp add: cn_merge_gs_len)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3854
apply(rule_tac x = "mv_boxes (Suc (max (Suc n) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3855
       (Max (insert ba (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs))) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3856
        + length gs)) 0 n" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3857
  in exI, auto simp: abc_append_commute)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3858
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3859
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3860
lemma exp_add: "a\<up>(b+c) = a\<up>b @ a\<up>c"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3861
apply(simp add:replicate_add)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3862
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3863
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3864
lemma [simp]: "n < pstr \<Longrightarrow> (0\<up>pstr)[n := rs] @ [0::nat] = 0\<up>n @ rs # 0\<up>(pstr - n)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3865
using list_update_length[of "0\<up>n" "0::nat" "0\<up>(pstr - Suc n)" rs]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3866
apply(simp add: replicate_Suc[THEN sym] exp_add[THEN sym] exp_suc[THEN sym])
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3867
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3868
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3869
lemma restore_rs:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3870
  assumes h: "rec_ci (Cn n f gs) = (aprog, rs_pos, a_md)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3871
  "rec_calc_rel (Cn n f gs) lm rs" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3872
  "\<forall>k<length gs. rec_calc_rel (gs ! k) lm (ys ! k)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3873
  "length ys = length gs"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3874
  "rec_calc_rel f ys rs" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3875
  "rec_ci f = (a, aa, ba)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3876
  and pdef: "pstr = Max (set (Suc n # ba # map (\<lambda>(aprog, p, n). n)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3877
                                        (map rec_ci (f # gs))))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3878
  and starts: "ss = (\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3879
                              8 * length gs + 3 * n + length a + 3" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3880
  shows "\<exists>stp. abc_steps_l
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3881
           (ss, 0\<up>pstr @ rs # 0\<up>length ys  @ lm @
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3882
                    0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm) aprog stp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3883
  (ss + 3, 0\<up>n @ rs # 0\<up>(pstr - n) @ 0\<up>length ys  @ lm @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3884
                                   0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3885
proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3886
 from h and pdef and starts have k1:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3887
   "\<exists> ap bp cp. aprog = ap [+] bp [+] cp \<and> length ap = ss \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3888
                                            bp = mv_box pstr n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3889
   by(drule_tac restore_rs_prog_ex, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3890
 from k1 show "?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3891
 proof (erule_tac exE, erule_tac exE, erule_tac exE, erule_tac exE)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3892
   fix ap bp apa cp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3893
   assume "aprog = ap [+] bp [+] cp \<and> length ap = ss \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3894
                                 bp = recursive.mv_box pstr n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3895
   thus"?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3896
     apply(simp, rule_tac abc_append_exc1, simp_all add: starts h)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3897
     apply(insert mv_box_ex[of pstr n "0\<up>pstr @ rs # 0\<up>length gs @
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3898
                     lm @ 0\<up>(a_md - Suc (pstr + length gs + n)) @ suf_lm"], simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3899
     apply(subgoal_tac "pstr > n", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3900
     apply(erule_tac exE, rule_tac x = stp in exI, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3901
                         simp add: nth_append list_update_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3902
     apply(simp add: pdef)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3903
     done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3904
  qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3905
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3906
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3907
lemma [simp]:"xs \<noteq> [] \<Longrightarrow> length xs \<ge> Suc 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3908
by(case_tac xs, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3909
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3910
lemma  [simp]: "n < max (Suc n) (max ba (Max (((\<lambda>(aprog, p, n). n) o 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3911
                                                  rec_ci) ` set gs)))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3912
by(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3913
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3914
lemma restore_paras_prog_ex: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3915
  "\<lbrakk>rec_ci (Cn n f gs) = (aprog, rs_pos, a_md); 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3916
  rec_ci f = (a, aa, ba);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3917
  Max (set (Suc n # ba # map (\<lambda>(aprog, p, n). n)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3918
                          (map rec_ci (f # gs)))) = pstr;
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3919
  ss = (\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) +
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3920
                         8 * length gs + 3 * n + length a + 6\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3921
  \<Longrightarrow> \<exists> ap bp cp. aprog = ap [+] bp [+] cp \<and> length ap = ss \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3922
                      bp = mv_boxes (pstr + Suc (length gs)) (0::nat) n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3923
apply(simp add: rec_ci.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3924
apply(rule_tac x = "cn_merge_gs (map rec_ci gs) (max (Suc n) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3925
      (Max (insert ba (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs))))
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3926
      [+] mv_boxes 0 (Suc (max (Suc n) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3927
       (Max (insert ba (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs))) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3928
     + length gs)) n [+] mv_boxes (max (Suc n) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3929
    (Max (insert ba (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) 0 (length gs) [+]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3930
     a [+] recursive.mv_box aa (max (Suc n) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3931
      (Max (insert ba (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) [+]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3932
     empty_boxes (length gs) [+]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3933
     recursive.mv_box (max (Suc n) (Max (insert ba 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3934
     (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) n" in exI, simp add: cn_merge_gs_len)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3935
apply(rule_tac x = "[]" in exI, auto simp: abc_append_commute)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3936
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3937
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3938
lemma restore_paras: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3939
  assumes h: "rec_ci (Cn n f gs) = (aprog, rs_pos, a_md)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3940
  "rec_calc_rel (Cn n f gs) lm rs" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3941
  "\<forall>k<length gs. rec_calc_rel (gs ! k) lm (ys ! k)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3942
  "length ys = length gs"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3943
  "rec_calc_rel f ys rs" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3944
  "rec_ci f = (a, aa, ba)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3945
  and pdef: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3946
  "pstr = Max (set (Suc n # ba # map (\<lambda>(aprog, p, n). n) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3947
                         (map rec_ci (f # gs))))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3948
  and starts: "ss = (\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) + 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3949
                              8 * length gs + 3 * n + length a + 6" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3950
  shows "\<exists>stp. abc_steps_l (ss, 0\<up>n @ rs # 0\<up>(pstr - n+ length ys) @
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3951
                         lm @ 0\<up>(a_md - Suc (pstr + length ys + n)) @ suf_lm)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3952
  aprog stp = (ss + 3 * n, lm @ rs # 0\<up>(a_md - Suc n) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3953
proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3954
  thm rec_ci.simps
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3955
  from h and pdef and starts have k1:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3956
    "\<exists> ap bp cp. aprog = ap [+] bp [+] cp \<and> length ap = ss \<and>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3957
                     bp = mv_boxes (pstr + Suc (length gs)) (0::nat) n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3958
    by(drule_tac restore_paras_prog_ex, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3959
  from k1 show "?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3960
  proof (erule_tac exE, erule_tac exE, erule_tac exE, erule_tac exE)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3961
    fix ap bp apa cp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3962
    assume "aprog = ap [+] bp [+] cp \<and> length ap = ss \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3963
                              bp = mv_boxes (pstr + Suc (length gs)) 0 n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3964
    thus"?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3965
      apply(simp, rule_tac abc_append_exc1, simp_all add: starts h)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3966
      apply(insert mv_boxes_ex2[of n "pstr + Suc (length gs)" 0 "[]" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3967
        "rs # 0\<up>(pstr - n + length gs)" "lm" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3968
        "0\<up>(a_md - Suc (pstr + length gs + n)) @ suf_lm"], simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3969
      apply(subgoal_tac "pstr > n \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3970
        a_md > pstr + length gs + n \<and> length lm = n" , simp add: exponent_add_iff h)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3971
      using h pdef
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3972
      apply(simp)     
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3973
      apply(frule_tac a = a and 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3974
        aa = aa and ba = ba in ci_cn_md_def, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3975
      apply(subgoal_tac "length lm = rs_pos",
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3976
        simp add: ci_cn_para_eq, erule_tac para_pattern, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3977
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3978
  qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3979
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3980
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3981
lemma ci_cn_length:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3982
  "\<lbrakk>rec_ci (Cn n f gs) = (aprog, rs_pos, a_md); 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3983
  rec_calc_rel (Cn n f gs) lm rs;
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3984
  rec_ci f = (a, aa, ba)\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3985
  \<Longrightarrow> length aprog = (\<Sum>(ap, pos, n)\<leftarrow>map rec_ci gs. length ap) +
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3986
                             8 * length gs + 6 * n + length a + 6"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3987
apply(simp add: rec_ci.simps, auto simp: cn_merge_gs_len)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3988
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3989
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3990
lemma  cn_case: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3991
  assumes ind:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3992
  "\<And>x aprog a_md rs_pos rs suf_lm lm.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3993
  \<lbrakk>x \<in> set (f # gs);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3994
  rec_ci x = (aprog, rs_pos, a_md);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3995
  rec_calc_rel x lm rs\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3996
  \<Longrightarrow> \<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) aprog stp = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3997
               (length aprog, lm @ [rs] @ 0\<up>(a_md - rs_pos - 1) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3998
  and h: "rec_ci (Cn n f gs) = (aprog, rs_pos, a_md)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  3999
         "rec_calc_rel (Cn n f gs) lm rs"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4000
  shows "\<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) aprog stp 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4001
  = (length aprog, lm @ [rs] @ 0\<up>(a_md - rs_pos - 1) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4002
apply(insert h, case_tac "rec_ci f",  rule_tac calc_cn_reverse, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4003
proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4004
  fix a b c ys
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4005
  let ?pstr = "Max (set (Suc n # c # (map (\<lambda>(aprog, p, n). n) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4006
                                         (map rec_ci (f # gs)))))"  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4007
  let ?gs_len = "listsum (map (\<lambda> (ap, pos, n). length ap) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4008
                                                (map rec_ci (gs)))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4009
  assume g: "rec_ci (Cn n f gs) = (aprog, rs_pos, a_md)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4010
    "rec_calc_rel (Cn n f gs) lm rs"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4011
    "\<forall>k<length gs. rec_calc_rel (gs ! k) lm (ys ! k)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4012
    "length ys = length gs" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4013
    "rec_calc_rel f ys rs"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4014
    "n = length lm"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4015
    "rec_ci f = (a, b, c)"  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4016
  hence k1:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4017
    "\<exists> stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) aprog stp = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4018
    (?gs_len + 3 * length gs, lm @ 0\<up>(?pstr - n) @ ys @
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4019
                               0\<up>(a_md - ?pstr - length ys) @ suf_lm)"	
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4020
    apply(rule_tac a = a and aa = b and ba = c in cn_calc_gs)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4021
    apply(rule_tac ind, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4022
    done  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4023
  thm rec_ci.simps
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4024
  from g have k2: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4025
    "\<exists> stp. abc_steps_l (?gs_len + 3 * length gs,  lm @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4026
        0\<up>(?pstr - n) @ ys @ 0\<up>(a_md - ?pstr - length ys) @ suf_lm) aprog stp = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4027
    (?gs_len + 3 * length gs + 3 * n, 0\<up>?pstr @ ys @ 0 # lm @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4028
                              0\<up>(a_md - Suc (?pstr + length ys + n)) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4029
    thm save_paras
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4030
    apply(erule_tac ba = c in save_paras, auto intro: ci_cn_para_eq)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4031
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4032
  from g have k3: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4033
    "\<exists> stp. abc_steps_l (?gs_len + 3 * length gs + 3 * n,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4034
    0\<up>?pstr @ ys @ 0 # lm @ 0\<up>(a_md - Suc (?pstr + length ys + n)) @ suf_lm) aprog stp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4035
    (?gs_len + 6 * length gs + 3 * n,  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4036
           ys @ 0\<up>?pstr @ 0 # lm @ 0\<up>(a_md - Suc (?pstr + length ys + n)) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4037
    apply(erule_tac ba = c in reset_new_paras, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4038
          auto intro: ci_cn_para_eq)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4039
    using para_pattern[of f a b c ys rs]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4040
    apply(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4041
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4042
  from g have k4: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4043
    "\<exists>stp. abc_steps_l  (?gs_len + 6 * length gs + 3 * n,  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4044
    ys @ 0\<up>?pstr @ 0 # lm @ 0\<up>(a_md - Suc (?pstr + length ys + n)) @ suf_lm) aprog stp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4045
    (?gs_len + 6 * length gs + 3 * n + length a, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4046
   ys @ rs # 0\<up>?pstr  @ lm @ 0\<up>(a_md - Suc (?pstr + length ys + n)) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4047
    apply(rule_tac ba = c in calc_cn_f, rule_tac ind, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4048
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4049
thm rec_ci.simps
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4050
  from g h have k5:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4051
    "\<exists> stp. abc_steps_l (?gs_len + 6 * length gs + 3 * n + length a,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4052
    ys @ rs # 0\<up>?pstr @ lm @ 0\<up>(a_md - Suc (?pstr + length ys + n)) @ suf_lm)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4053
    aprog stp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4054
    (?gs_len + 6 * length gs + 3 * n + length a + 3,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4055
    ys @ 0\<up>(?pstr - length ys) @ rs # 0\<up>length ys @ lm @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4056
    0\<up>(a_md  - Suc (?pstr + length ys + n)) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4057
    apply(rule_tac save_rs, auto simp: h)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4058
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4059
  from g have k6: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4060
    "\<exists> stp. abc_steps_l (?gs_len + 6 * length gs + 3 * n + 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4061
    length a + 3, ys @ 0\<up>(?pstr - length ys) @ rs # 0\<up>length ys @ lm @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4062
    0\<up>(a_md  - Suc (?pstr + length ys + n)) @ suf_lm) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4063
    aprog stp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4064
    (?gs_len + 8 * length gs + 3 *n + length a + 3,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4065
    0\<up>?pstr @ rs # 0\<up>length ys @ lm @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4066
                        0\<up>(a_md -Suc (?pstr + length ys + n)) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4067
    apply(drule_tac suf_lm = suf_lm in mv_box_paras, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4068
    apply(rule_tac x = stp in exI, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4069
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4070
  from g have k7: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4071
    "\<exists> stp. abc_steps_l (?gs_len + 8 * length gs + 3 *n + 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4072
    length a + 3, 0\<up>?pstr  @ rs # 0\<up>length ys @ lm @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4073
    0\<up>(a_md -Suc (?pstr + length ys + n)) @ suf_lm) aprog stp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4074
    (?gs_len + 8 * length gs + 3 * n + length a + 6, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4075
    0\<up>n @ rs # 0\<up>(?pstr  - n) @ 0\<up>length ys @ lm @
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4076
                        0\<up>(a_md -Suc (?pstr + length ys + n)) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4077
    apply(drule_tac suf_lm = suf_lm in restore_rs, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4078
    apply(rule_tac x = stp in exI, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4079
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4080
  from g have k8: "\<exists> stp. abc_steps_l (?gs_len + 8 * length gs + 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4081
    3 * n + length a + 6,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4082
    0\<up>n @ rs # 0\<up>(?pstr  - n) @ 0\<up>length ys @ lm @
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4083
                      0\<up>(a_md -Suc (?pstr + length ys + n)) @ suf_lm) aprog stp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4084
    (?gs_len + 8 * length gs + 6 * n + length a + 6,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4085
                           lm @ rs # 0\<up>(a_md - Suc n) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4086
    apply(drule_tac suf_lm = suf_lm in restore_paras, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4087
    apply(simp add: exponent_add_iff)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4088
    apply(rule_tac x = stp in exI, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4089
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4090
  from g have j1: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4091
    "length aprog = ?gs_len + 8 * length gs + 6 * n + length a + 6"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4092
    by(drule_tac a = a and aa = b and ba = c in ci_cn_length,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4093
      simp, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4094
  from g have j2: "rs_pos = n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4095
    by(simp add: ci_cn_para_eq)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4096
  from k1 and k2 and k3 and k4 and k5 and k6 and k7 and k8
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4097
    and j1 and j2 show 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4098
    "\<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) aprog stp = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4099
    (length aprog, lm @ [rs] @ 0\<up>(a_md - rs_pos - 1) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4100
    apply(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4101
    apply(rule_tac x = "stp + stpa + stpb + stpc +
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4102
      stpd + stpe + stpf + stpg" in exI, simp add: abc_steps_add)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4103
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4104
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4105
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4106
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4107
  Correctness of the complier (terminate case), which says if the execution of 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4108
  a recursive function @{text "recf"} terminates and gives result, then 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4109
  the Abacus program compiled from @{text "recf"} termintes and gives the same result.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4110
  Additionally, to facilitate induction proof, we append @{text "anything"} to the
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4111
  end of Abacus memory.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4112
*}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4113
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4114
lemma recursive_compile_correct:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4115
  "\<lbrakk>rec_ci recf = (ap, arity, fp);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4116
    rec_calc_rel recf args r\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4117
  \<Longrightarrow> (\<exists> stp. (abc_steps_l (0, args @ 0\<up>(fp - arity) @ anything) ap stp) = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4118
              (length ap, args@[r]@0\<up>(fp - arity - 1) @ anything))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4119
apply(induct arbitrary: ap fp arity r anything args
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4120
  rule: rec_ci.induct)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4121
prefer 5
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4122
proof(case_tac "rec_ci g", case_tac "rec_ci f", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4123
  fix n f g ap fp arity r anything args  a b c aa ba ca
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4124
  assume f_ind:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4125
    "\<And>ap fp arity r anything args.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4126
    \<lbrakk>aa = ap \<and> ba = arity \<and> ca = fp; rec_calc_rel f args r\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4127
    \<exists>stp. abc_steps_l (0, args @ 0\<up>(fp - arity) @ anything) ap stp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4128
    (length ap, args @ r # 0\<up>(fp - Suc arity) @ anything)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4129
    and g_ind:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4130
    "\<And>x xa y xb ya ap fp arity r anything args.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4131
    \<lbrakk>x = (aa, ba, ca); xa = aa \<and> y = (ba, ca); xb = ba \<and> ya = ca; 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4132
    a = ap \<and> b = arity \<and> c = fp; rec_calc_rel g args r\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4133
    \<Longrightarrow> \<exists>stp. abc_steps_l (0, args @ 0\<up>(fp - arity) @ anything) ap stp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4134
    (length ap, args @ r # 0\<up>(fp - Suc arity) @ anything)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4135
    and h: "rec_ci (Pr n f g) = (ap, arity, fp)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4136
    "rec_calc_rel (Pr n f g) args r" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4137
    "rec_ci g = (a, b, c)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4138
    "rec_ci f = (aa, ba, ca)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4139
  from h have nf_ind: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4140
    "\<And> args r anything. rec_calc_rel f args r \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4141
    \<exists>stp. abc_steps_l (0, args @ 0\<up>(ca - ba) @ anything) aa stp = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4142
    (length aa, args @ r # 0\<up>(ca - Suc ba) @ anything)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4143
    and ng_ind: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4144
    "\<And> args r anything. rec_calc_rel g args r \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4145
    \<exists>stp. abc_steps_l (0, args @ 0\<up>(c - b) @ anything) a stp = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4146
         (length a, args @ r # 0\<up>(c - Suc b)  @ anything)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4147
    apply(insert f_ind[of aa ba ca], simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4148
    apply(insert g_ind[of "(aa, ba, ca)" aa "(ba, ca)" ba ca a b c],
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4149
      simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4150
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4151
  from nf_ind and ng_ind and h show 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4152
    "\<exists>stp. abc_steps_l (0, args @ 0\<up>(fp - arity) @ anything) ap stp = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4153
    (length ap, args @ r # 0\<up>(fp - Suc arity) @ anything)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4154
    apply(auto intro: nf_ind ng_ind pr_case)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4155
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4156
next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4157
  fix ap fp arity r anything args
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4158
  assume h:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4159
    "rec_ci z = (ap, arity, fp)" "rec_calc_rel z args r"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4160
  thus "\<exists>stp. abc_steps_l (0, args @ 0\<up>(fp - arity) @ anything) ap stp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4161
    (length ap, args @ [r] @ 0\<up>(fp - arity - 1) @ anything)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4162
    by (rule_tac z_case)    
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4163
next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4164
  fix ap fp arity r anything args
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4165
  assume h: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4166
    "rec_ci s = (ap, arity, fp)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4167
    "rec_calc_rel s args r"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4168
  thus 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4169
    "\<exists>stp. abc_steps_l (0, args @ 0\<up>(fp - arity) @ anything) ap stp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4170
    (length ap, args @ [r] @ 0\<up>(fp - arity - 1) @ anything)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4171
    by(erule_tac s_case, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4172
next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4173
  fix m n ap fp arity r anything args
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4174
  assume h: "rec_ci (id m n) = (ap, arity, fp)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4175
    "rec_calc_rel (id m n) args r"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4176
  thus "\<exists>stp. abc_steps_l (0, args @ 0\<up>(fp - arity) @ anything) ap stp 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4177
    = (length ap, args @ [r] @ 0\<up>(fp - arity - 1) @ anything)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4178
    by(erule_tac id_case)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4179
next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4180
  fix n f gs ap fp arity r anything args
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4181
  assume ind: "\<And>x ap fp arity r anything args.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4182
    \<lbrakk>x \<in> set (f # gs); 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4183
    rec_ci x = (ap, arity, fp); 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4184
    rec_calc_rel x args r\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4185
    \<Longrightarrow> \<exists>stp. abc_steps_l (0, args @ 0\<up>(fp - arity) @ anything) ap stp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4186
    (length ap, args @ [r] @ 0\<up>(fp - arity - 1) @ anything)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4187
  and h: "rec_ci (Cn n f gs) = (ap, arity, fp)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4188
    "rec_calc_rel (Cn n f gs) args r"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4189
  from h show
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4190
    "\<exists>stp. abc_steps_l (0, args @ 0\<up>(fp - arity) @ anything) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4191
       ap stp = (length ap, args @ [r] @ 0\<up>(fp - arity - 1) @ anything)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4192
    apply(rule_tac cn_case, rule_tac ind, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4193
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4194
next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4195
  fix n f ap fp arity r anything args
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4196
  assume ind:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4197
    "\<And>ap fp arity r anything args.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4198
    \<lbrakk>rec_ci f = (ap, arity, fp); rec_calc_rel f args r\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4199
    \<exists>stp. abc_steps_l (0, args @ 0\<up>(fp - arity) @ anything) ap stp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4200
    (length ap, args @ [r] @ 0\<up>(fp - arity - 1) @ anything)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4201
  and h: "rec_ci (Mn n f) = (ap, arity, fp)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4202
    "rec_calc_rel (Mn n f) args r"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4203
  from h show 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4204
    "\<exists>stp. abc_steps_l (0, args @ 0\<up>(fp - arity) @ anything) ap stp = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4205
              (length ap, args @ [r] @ 0\<up>(fp - arity - 1) @ anything)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4206
    apply(rule_tac mn_case, rule_tac ind, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4207
    done    
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4208
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4209
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4210
lemma abc_append_uhalt1:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4211
  "\<lbrakk>\<forall> stp. (\<lambda> (ss, e). ss < length bp) (abc_steps_l (0, lm) bp stp);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4212
    p = ap [+] bp [+] cp\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4213
  \<Longrightarrow> \<forall> stp. (\<lambda> (ss, e). ss < length p) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4214
                     (abc_steps_l (length ap, lm) p stp)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4215
apply(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4216
apply(erule_tac x = stp in allE, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4217
apply(frule_tac ap = ap and cp = cp in abc_append_state_in_exc, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4218
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4219
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4220
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4221
lemma abc_append_unhalt2:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4222
  "\<lbrakk>abc_steps_l (0, am) ap stp = (length ap, lm); bp \<noteq> [];
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4223
  \<forall> stp. (\<lambda> (ss, e). ss < length bp) (abc_steps_l (0, lm) bp stp);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4224
  p = ap [+] bp [+] cp\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4225
  \<Longrightarrow> \<forall> stp. (\<lambda> (ss, e). ss < length p) (abc_steps_l (0, am) p stp)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4226
proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4227
  assume h: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4228
    "abc_steps_l (0, am) ap stp = (length ap, lm)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4229
    "bp \<noteq> []"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4230
    "\<forall> stp. (\<lambda> (ss, e). ss < length bp) (abc_steps_l (0, lm) bp stp)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4231
    "p = ap [+] bp [+] cp"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4232
  have "\<exists> stp. (abc_steps_l (0, am) p stp) = (length ap, lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4233
    using h
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4234
    thm abc_add_exc1
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4235
    apply(simp add: abc_append.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4236
    apply(rule_tac abc_add_exc1, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4237
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4238
  from this obtain stpa where g1: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4239
    "(abc_steps_l (0, am) p stpa) = (length ap, lm)" ..
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4240
  moreover have g2: "\<forall> stp. (\<lambda> (ss, e). ss < length p) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4241
                          (abc_steps_l (length ap, lm) p stp)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4242
    using h
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4243
    apply(erule_tac abc_append_uhalt1, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4244
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4245
  moreover from g1 and g2 have
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4246
    "\<forall> stp. (\<lambda> (ss, e). ss < length p) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4247
                    (abc_steps_l (0, am) p (stpa + stp))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4248
    apply(simp add: abc_steps_add)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4249
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4250
  thus "\<forall> stp. (\<lambda> (ss, e). ss < length p) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4251
                           (abc_steps_l (0, am) p stp)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4252
    apply(rule_tac allI, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4253
    apply(case_tac "stp \<ge>  stpa")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4254
    apply(erule_tac x = "stp - stpa" in allE, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4255
  proof - 	
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4256
    fix stp a b
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4257
    assume g3:  "abc_steps_l (0, am) p stp = (a, b)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4258
                "\<not> stpa \<le> stp"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4259
    thus "a < length p"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4260
      using g1 h
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4261
      apply(case_tac "a < length p", simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4262
      apply(subgoal_tac "\<exists> d. stpa = stp + d")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4263
      using  abc_state_keep[of p a b "stpa - stp"]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4264
      apply(erule_tac exE, simp add: abc_steps_add)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4265
      apply(rule_tac x = "stpa - stp" in exI, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4266
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4267
  qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4268
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4269
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4270
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4271
  Correctness of the complier (non-terminating case for Mn). There are many cases when a 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4272
  recursive function does not terminate. For the purpose of Uiversal Turing Machine, we only 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4273
  need to prove the case for @{text "Mn"} and @{text "Cn"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4274
  This lemma is for @{text "Mn"}. For @{text "Mn n f"}, this lemma describes what 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4275
  happens when @{text "f"} always terminates but always does not return zero, so that
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4276
  @{text "Mn"} has to loop forever.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4277
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4278
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4279
lemma Mn_unhalt:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4280
  assumes mn_rf: "rf = Mn n f"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4281
  and compiled_mnrf: "rec_ci rf = (aprog, rs_pos, a_md)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4282
  and compiled_f: "rec_ci f = (aprog', rs_pos', a_md')"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4283
  and args: "length lm = n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4284
  and unhalt_condition: "\<forall> y. (\<exists> rs. rec_calc_rel f (lm @ [y]) rs \<and> rs \<noteq> 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4285
  shows "\<forall> stp. case abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4286
               aprog stp of (ss, e) \<Rightarrow> ss < length aprog"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4287
  using mn_rf compiled_mnrf compiled_f args unhalt_condition
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4288
proof(rule_tac allI)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4289
  fix stp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4290
  assume h: "rf = Mn n f" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4291
            "rec_ci rf = (aprog, rs_pos, a_md)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4292
            "rec_ci f = (aprog', rs_pos', a_md')" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4293
            "\<forall>y. \<exists>rs. rec_calc_rel f (lm @ [y]) rs \<and> rs \<noteq> 0" "length lm = n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4294
  thm mn_ind_step
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4295
  have "\<exists>stpa \<ge> stp. abc_steps_l (0, lm @ 0 # 0\<up>(a_md - Suc rs_pos) @ suf_lm) aprog stpa 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4296
         = (0, lm @ stp # 0\<up>(a_md - Suc rs_pos) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4297
  proof(induct stp, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4298
    show "\<exists>stpa. abc_steps_l (0, lm @ 0 # 0\<up>(a_md - Suc rs_pos) @ suf_lm) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4299
          aprog stpa = (0, lm @ 0 # 0\<up>(a_md - Suc rs_pos) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4300
      apply(rule_tac x = 0 in exI, simp add: abc_steps_l.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4301
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4302
  next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4303
    fix stp stpa
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4304
    assume g1: "stp \<le> stpa"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4305
      and g2: "abc_steps_l (0, lm @ 0 # 0\<up>(a_md - Suc rs_pos) @ suf_lm)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4306
                            aprog stpa
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4307
               = (0, lm @ stp # 0\<up>(a_md - Suc rs_pos) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4308
    have "\<exists>rs. rec_calc_rel f (lm @ [stp]) rs \<and> rs \<noteq> 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4309
      using h
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4310
      apply(erule_tac x = stp in allE, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4311
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4312
    from this obtain rs where g3:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4313
      "rec_calc_rel f (lm @ [stp]) rs \<and> rs \<noteq> 0" ..
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4314
    hence "\<exists> stpb. abc_steps_l (0, lm @ stp # 0\<up>(a_md - Suc rs_pos) @
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4315
                     suf_lm) aprog stpb 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4316
      = (0, lm @ Suc stp # 0\<up>(a_md - Suc rs_pos) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4317
      using h
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4318
      apply(rule_tac mn_ind_step)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4319
      apply(rule_tac recursive_compile_correct, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4320
    proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4321
      show "rec_ci f = ((aprog', rs_pos', a_md'))" using h by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4322
    next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4323
      show "rec_ci (Mn n f) = (aprog, rs_pos, a_md)" using h by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4324
    next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4325
      show "rec_calc_rel f (lm @ [stp]) rs" using g3 by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4326
    next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4327
      show "0 < rs" using g3 by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4328
    next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4329
      show "Suc rs_pos < a_md"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4330
        using g3 h
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4331
        apply(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4332
        apply(frule_tac f = f in para_pattern, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4333
        apply(simp add: rec_ci.simps, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4334
        apply(subgoal_tac "Suc (length lm) < a_md'")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4335
        apply(arith)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4336
        apply(simp add: ci_ad_ge_paras)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4337
        done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4338
    next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4339
      show "rs_pos' = Suc rs_pos"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4340
        using g3 h
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4341
        apply(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4342
        apply(frule_tac f = f in para_pattern, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4343
        apply(simp add: rec_ci.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4344
        done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4345
    qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4346
    thus "\<exists>stpa\<ge>Suc stp. abc_steps_l (0, lm @ 0 # 0\<up>(a_md - Suc rs_pos) @
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4347
                 suf_lm) aprog stpa 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4348
      = (0, lm @ Suc stp # 0\<up>(a_md - Suc rs_pos) @ suf_lm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4349
      using g2
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4350
      apply(erule_tac exE)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4351
      apply(case_tac "stpb = 0", simp add: abc_steps_l.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4352
      apply(rule_tac x = "stpa + stpb" in exI, simp add:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4353
        abc_steps_add)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4354
      using g1
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4355
      apply(arith)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4356
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4357
  qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4358
  from this obtain stpa where 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4359
    "stp \<le> stpa \<and> abc_steps_l (0, lm @ 0 # 0\<up>(a_md - Suc rs_pos) @ suf_lm)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4360
         aprog stpa = (0, lm @ stp # 0\<up>(a_md - Suc rs_pos) @ suf_lm)" ..
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4361
  thus "case abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) aprog stp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4362
    of (ss, e) \<Rightarrow> ss < length aprog"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4363
    apply(case_tac "abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suf_lm) aprog
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4364
      stp", simp, case_tac "a \<ge> length aprog", 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4365
        simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4366
    apply(subgoal_tac "\<exists> d. stpa = stp + d", erule_tac exE)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4367
    apply(subgoal_tac "lm @ 0\<up>(a_md - rs_pos) @ suf_lm = lm @ 0 # 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4368
             0\<up>(a_md - Suc rs_pos) @ suf_lm", simp add: abc_steps_add)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4369
    apply(frule_tac as = a and lm = b and stp = d in abc_state_keep, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4370
          simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4371
    using h  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4372
    apply(simp add: rec_ci.simps, simp, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4373
              simp only: replicate_Suc[THEN sym])
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4374
    apply(case_tac rs_pos, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4375
    apply(rule_tac x = "stpa - stp" in exI, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4376
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4377
qed   
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4378
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4379
lemma abc_append_cons_eq[intro!]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4380
  "\<lbrakk>ap = bp; cp = dp\<rbrakk> \<Longrightarrow> ap [+] cp = bp [+] dp"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4381
by simp 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4382
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4383
lemma cn_merge_gs_split: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4384
  "\<lbrakk>i < length gs; rec_ci (gs!i) = (ga, gb, gc)\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4385
     cn_merge_gs (map rec_ci gs) p = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4386
        cn_merge_gs (map rec_ci (take i gs)) p [+] ga [+] 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4387
       mv_box gb (p + i) [+] 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4388
      cn_merge_gs (map rec_ci (drop (Suc i) gs)) (p + Suc i)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4389
apply(induct i arbitrary: gs p, case_tac gs, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4390
apply(case_tac gs, simp, case_tac "rec_ci a", 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4391
       simp add: abc_append_commute[THEN sym])
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4392
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4393
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4394
text {*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4395
  Correctness of the complier (non-terminating case for Mn). There are many cases when a 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4396
  recursive function does not terminate. For the purpose of Uiversal Turing Machine, we only 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4397
  need to prove the case for @{text "Mn"} and @{text "Cn"}.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4398
  This lemma is for @{text "Cn"}. For @{text "Cn f g1 g2 \<dots>gi, gi+1, \<dots> gn"}, this lemma describes what 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4399
  happens when every one of @{text "g1, g2, \<dots> gi"} terminates, but 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4400
  @{text "gi+1"} does not terminate, so that whole function @{text "Cn f g1 g2 \<dots>gi, gi+1, \<dots> gn"}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4401
  does not terminate.
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4402
  *}
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4403
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4404
lemma cn_gi_uhalt: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4405
  assumes cn_recf: "rf = Cn n f gs"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4406
  and compiled_cn_recf: "rec_ci rf = (aprog, rs_pos, a_md)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4407
  and args_length: "length lm = n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4408
  and exist_unhalt_recf: "i < length gs" "gi = gs ! i"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4409
  and complied_unhalt_recf: "rec_ci gi = (ga, gb, gc)"  "gb = n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4410
  and all_halt_before_gi: "\<forall> j < i. (\<exists> rs. rec_calc_rel (gs!j) lm rs)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4411
  and unhalt_condition: "\<And> slm. \<forall> stp. case abc_steps_l (0, lm @ 0\<up>(gc - gb) @ slm) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4412
     ga stp of (se, e) \<Rightarrow> se < length ga"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4413
  shows " \<forall> stp. case abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suflm) aprog
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4414
  stp of (ss, e) \<Rightarrow> ss < length aprog"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4415
  using cn_recf compiled_cn_recf args_length exist_unhalt_recf complied_unhalt_recf
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4416
        all_halt_before_gi unhalt_condition
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4417
proof(case_tac "rec_ci f", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4418
  fix a b c
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4419
  assume h1: "rf = Cn n f gs" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4420
    "rec_ci (Cn n f gs) = (aprog, rs_pos, a_md)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4421
    "length lm = n" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4422
    "gi = gs ! i" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4423
    "rec_ci (gs!i) = (ga, n, gc)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4424
    "gb = n" "rec_ci f = (a, b, c)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4425
    and h2: "\<forall>j<i. \<exists>rs. rec_calc_rel (gs ! j) lm rs"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4426
    "i < length gs"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4427
  and ind:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4428
    "\<And> slm. \<forall> stp. case abc_steps_l (0, lm @ 0\<up>(gc - n) @ slm) ga stp of (se, e) \<Rightarrow> se < length ga"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4429
  have h3: "rs_pos = n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4430
    using h1
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4431
    by(rule_tac ci_cn_para_eq, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4432
  let ?ggs = "take i gs"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4433
  have "\<exists> ys. (length ys = i \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4434
    (\<forall> k < i. rec_calc_rel (?ggs ! k) lm (ys ! k)))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4435
    using h2
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4436
    apply(induct i, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4437
    apply(erule_tac exE)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4438
    apply(erule_tac x = ia in allE, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4439
    apply(erule_tac exE)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4440
    apply(rule_tac x = "ys @ [x]" in exI, simp add: nth_append, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4441
    apply(subgoal_tac "k = length ys", simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4442
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4443
  from this obtain ys where g1:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4444
    "(length ys = i \<and> (\<forall> k < i. rec_calc_rel (?ggs ! k)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4445
                        lm (ys ! k)))" ..
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4446
  let ?pstr = "Max (set (Suc n # c # map (\<lambda>(aprog, p, n). n)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4447
    (map rec_ci (f # gs))))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4448
  have "\<exists>stp. abc_steps_l (0, lm @ 0\<up>(a_md - n) @ suflm) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4449
    (cn_merge_gs (map rec_ci ?ggs) ?pstr) stp =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4450
    (listsum (map ((\<lambda>(ap, pos, n). length ap) \<circ> rec_ci) ?ggs) +
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4451
    3 * length ?ggs, lm @ 0\<up>(?pstr - n) @ ys @ 0\<up>(a_md -(?pstr + length ?ggs)) @
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4452
    suflm) "
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4453
    apply(rule_tac  cn_merge_gs_ex)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4454
    apply(rule_tac  recursive_compile_correct, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4455
    using h1
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4456
    apply(simp add: rec_ci.simps, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4457
    using g1
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4458
    apply(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4459
    using h2 g1
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4460
    apply(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4461
    apply(rule_tac min_max.le_supI2)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4462
    apply(rule_tac Max_ge, simp, simp, rule_tac disjI2)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4463
    apply(subgoal_tac "aa \<in> set gs", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4464
    using h2
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4465
    apply(rule_tac A = "set (take i gs)" in subsetD, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4466
      simp add: set_take_subset, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4467
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4468
  thm cn_merge_gs.simps
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4469
  from this obtain stpa where g2: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4470
    "abc_steps_l (0, lm @ 0\<up>(a_md - n) @ suflm) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4471
    (cn_merge_gs (map rec_ci ?ggs) ?pstr) stpa =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4472
    (listsum (map ((\<lambda>(ap, pos, n). length ap) \<circ> rec_ci) ?ggs) +
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4473
    3 * length ?ggs, lm @ 0\<up>(?pstr - n) @ ys @ 0\<up>(a_md -(?pstr + length ?ggs)) @
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4474
    suflm)" ..
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4475
  moreover have 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4476
    "\<exists> cp. aprog = (cn_merge_gs
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4477
    (map rec_ci ?ggs) ?pstr) [+] ga [+] cp"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4478
    using h1
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4479
    apply(simp add: rec_ci.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4480
    apply(rule_tac x = "mv_box n (?pstr + i) [+] 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4481
      (cn_merge_gs (map rec_ci (drop (Suc i) gs)) (?pstr + Suc i))
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4482
      [+]mv_boxes 0 (Suc (max (Suc n) (Max (insert c 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4483
     (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs))) +
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4484
      length gs)) n [+] mv_boxes (max (Suc n) (Max (insert c 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4485
      (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) 0 (length gs) [+]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4486
      a [+] recursive.mv_box b (max (Suc n) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4487
      (Max (insert c (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) [+]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4488
     empty_boxes (length gs) [+] recursive.mv_box (max (Suc n) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4489
      (Max (insert c (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs)))) n [+]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4490
      mv_boxes (Suc (max (Suc n) (Max (insert c 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4491
    (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs))) + length gs)) 0 n" in exI)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4492
    apply(simp add: abc_append_commute [THEN sym])
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4493
    apply(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4494
    using cn_merge_gs_split[of i gs ga "length lm" gc 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4495
      "(max (Suc (length lm))
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4496
       (Max (insert c (((\<lambda>(aprog, p, n). n) \<circ> rec_ci) ` set gs))))"] 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4497
      h2
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4498
    apply(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4499
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4500
  from this obtain cp where g3: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4501
    "aprog = (cn_merge_gs (map rec_ci ?ggs) ?pstr) [+] ga [+] cp" ..
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4502
  show "\<forall> stp. case abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suflm) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4503
    aprog stp of (ss, e) \<Rightarrow> ss < length aprog"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4504
  proof(rule_tac abc_append_unhalt2)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4505
    show "abc_steps_l (0, lm @ 0\<up>(a_md - rs_pos) @ suflm) (
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4506
      cn_merge_gs (map rec_ci ?ggs) ?pstr) stpa =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4507
         (length ((cn_merge_gs (map rec_ci ?ggs) ?pstr)),  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4508
          lm @ 0\<up>(?pstr - n) @ ys @ 0\<up>(a_md -(?pstr + length ?ggs)) @ suflm)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4509
      using h3 g2
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4510
      apply(simp add: cn_merge_gs_length)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4511
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4512
  next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4513
    show "ga \<noteq> []"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4514
      using h1
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4515
      apply(simp add: rec_ci_not_null)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4516
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4517
  next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4518
    show "\<forall>stp. case abc_steps_l (0, lm @ 0\<up>(?pstr - n) @ ys
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4519
      @ 0\<up>(a_md - (?pstr + length (take i gs))) @ suflm) ga  stp of
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4520
          (ss, e) \<Rightarrow> ss < length ga"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4521
      using ind[of "0\<up>(?pstr - gc) @ ys @ 0\<up>(a_md - (?pstr + length (take i gs)))
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4522
        @ suflm"]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4523
      apply(subgoal_tac "lm @ 0\<up>(?pstr - n) @ ys
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4524
        @ 0\<up>(a_md - (?pstr + length (take i gs))) @ suflm
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4525
                       = lm @ 0\<up>(gc - n) @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4526
        0\<up>(?pstr - gc) @ ys @ 0\<up>(a_md - (?pstr + length (take i gs))) @ suflm", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4527
      apply(simp add: replicate_add[THEN sym])
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4528
      apply(subgoal_tac "gc > n \<and> ?pstr \<ge> gc")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4529
      apply(erule_tac conjE)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4530
      apply(simp add: h1)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4531
      using h1
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4532
      apply(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4533
      apply(rule_tac min_max.le_supI2)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4534
      apply(rule_tac Max_ge, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4535
      apply(rule_tac disjI2)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4536
      using h2
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4537
      thm rev_image_eqI
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4538
      apply(rule_tac x = "gs!i" in rev_image_eqI, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4539
      done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4540
  next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4541
    show "aprog = cn_merge_gs (map rec_ci (take i gs)) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4542
              ?pstr [+] ga [+] cp"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4543
      using g3 by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4544
  qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4545
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4546
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4547
lemma recursive_compile_correct_spec: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4548
  "\<lbrakk>rec_ci re = (ap, ary, fp); 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4549
    rec_calc_rel re args r\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4550
  \<Longrightarrow> (\<exists> stp. (abc_steps_l (0, args @ 0\<up>(fp - ary)) ap stp) = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4551
                     (length ap, args@[r]@0\<up>(fp - ary - 1)))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4552
using recursive_compile_correct[of re ap ary fp args r "[]"]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4553
by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4554
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4555
definition dummy_abc :: "nat \<Rightarrow> abc_inst list"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4556
where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4557
"dummy_abc k = [Inc k, Dec k 0, Goto 3]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4558
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4559
definition abc_list_crsp:: "nat list \<Rightarrow> nat list \<Rightarrow> bool"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4560
  where
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4561
  "abc_list_crsp xs ys = (\<exists> n. xs = ys @ 0\<up>n \<or> ys = xs @ 0\<up>n)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4562
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4563
lemma [intro]: "abc_list_crsp (lm @ 0\<up>m) lm"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4564
apply(auto simp: abc_list_crsp_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4565
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4566
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4567
lemma abc_list_crsp_lm_v: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4568
  "abc_list_crsp lma lmb \<Longrightarrow> abc_lm_v lma n = abc_lm_v lmb n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4569
apply(auto simp: abc_list_crsp_def abc_lm_v.simps 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4570
                 nth_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4571
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4572
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4573
lemma  rep_app_cons_iff: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4574
  "k < n \<Longrightarrow> replicate n a[k:=b] = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4575
          replicate k a @ b # replicate (n - k - 1) a"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4576
apply(induct n arbitrary: k, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4577
apply(simp split:nat.splits)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4578
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4579
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4580
lemma abc_list_crsp_lm_s: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4581
  "abc_list_crsp lma lmb \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4582
      abc_list_crsp (abc_lm_s lma m n) (abc_lm_s lmb m n)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4583
apply(auto simp: abc_list_crsp_def abc_lm_v.simps abc_lm_s.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4584
apply(simp_all add: list_update_append, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4585
proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4586
  fix na
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4587
  assume h: "m < length lmb + na" " \<not> m < length lmb"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4588
  hence "m - length lmb < na" by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4589
  hence "replicate na 0[(m- length lmb):= n] = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4590
           replicate (m - length lmb) 0 @ n # 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4591
              replicate (na - (m - length lmb) - 1) 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4592
    apply(erule_tac rep_app_cons_iff)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4593
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4594
  thus "\<exists>nb. replicate na 0[m - length lmb := n] =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4595
                 replicate (m - length lmb) 0 @ n # replicate nb 0 \<or>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4596
                 replicate (m - length lmb) 0 @ [n] =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4597
                 replicate na 0[m - length lmb := n] @ replicate nb 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4598
    apply(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4599
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4600
next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4601
  fix na
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4602
  assume h: "\<not> m < length lmb + na"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4603
  show 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4604
    "\<exists>nb. replicate na 0 @ replicate (m - (length lmb + na)) 0 @ [n] =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4605
           replicate (m - length lmb) 0 @ n # replicate nb 0 \<or>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4606
          replicate (m - length lmb) 0 @ [n] =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4607
            replicate na 0 @
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4608
            replicate (m - (length lmb + na)) 0 @ n # replicate nb 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4609
    apply(rule_tac x = 0 in exI, simp, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4610
    using h
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4611
    apply(simp add: replicate_add[THEN sym])
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4612
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4613
next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4614
  fix na
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4615
  assume h: "\<not> m < length lma" "m < length lma + na"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4616
  hence "m - length lma < na" by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4617
  hence 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4618
    "replicate na 0[(m- length lma):= n] = replicate (m - length lma) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4619
                  0 @ n # replicate (na - (m - length lma) - 1) 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4620
    apply(erule_tac rep_app_cons_iff)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4621
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4622
  thus "\<exists>nb. replicate (m - length lma) 0 @ [n] =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4623
                 replicate na 0[m - length lma := n] @ replicate nb 0 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4624
           \<or> replicate na 0[m - length lma := n] =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4625
                 replicate (m - length lma) 0 @ n # replicate nb 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4626
    apply(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4627
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4628
next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4629
  fix na
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4630
  assume "\<not> m < length lma + na"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4631
  thus " \<exists>nb. replicate (m - length lma) 0 @ [n] =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4632
            replicate na 0 @
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4633
            replicate (m - (length lma + na)) 0 @ n # replicate nb 0 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4634
        \<or>   replicate na 0 @ 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4635
               replicate (m - (length lma + na)) 0 @ [n] =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4636
            replicate (m - length lma) 0 @ n # replicate nb 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4637
    apply(rule_tac x = 0 in exI, simp, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4638
    apply(simp add: replicate_add[THEN sym])
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4639
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4640
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4641
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4642
lemma abc_list_crsp_step: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4643
  "\<lbrakk>abc_list_crsp lma lmb; abc_step_l (aa, lma) i = (a, lma'); 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4644
    abc_step_l (aa, lmb) i = (a', lmb')\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4645
    \<Longrightarrow> a' = a \<and> abc_list_crsp lma' lmb'"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4646
apply(case_tac i, auto simp: abc_step_l.simps 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4647
       abc_list_crsp_lm_s abc_list_crsp_lm_v Let_def 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4648
                       split: abc_inst.splits if_splits)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4649
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4650
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4651
lemma abc_list_crsp_steps: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4652
  "\<lbrakk>abc_steps_l (0, lm @ 0\<up>m) aprog stp = (a, lm'); aprog \<noteq> []\<rbrakk> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4653
      \<Longrightarrow> \<exists> lma. abc_steps_l (0, lm) aprog stp = (a, lma) \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4654
                                          abc_list_crsp lm' lma"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4655
apply(induct stp arbitrary: a lm', simp add: abc_steps_l.simps, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4656
apply(case_tac "abc_steps_l (0, lm @ 0\<up>m) aprog stp", 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4657
      simp add: abc_step_red)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4658
proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4659
  fix stp a lm' aa b
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4660
  assume ind:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4661
    "\<And>a lm'. aa = a \<and> b = lm' \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4662
     \<exists>lma. abc_steps_l (0, lm) aprog stp = (a, lma) \<and>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4663
                                          abc_list_crsp lm' lma"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4664
    and h: "abc_steps_l (0, lm @ 0\<up>m) aprog (Suc stp) = (a, lm')" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4665
           "abc_steps_l (0, lm @ 0\<up>m) aprog stp = (aa, b)" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4666
           "aprog \<noteq> []"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4667
  hence g1: "abc_steps_l (0, lm @ 0\<up>m) aprog (Suc stp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4668
          = abc_step_l (aa, b) (abc_fetch aa aprog)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4669
    apply(rule_tac abc_step_red, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4670
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4671
  have "\<exists>lma. abc_steps_l (0, lm) aprog stp = (aa, lma) \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4672
              abc_list_crsp b lma"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4673
    apply(rule_tac ind, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4674
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4675
  from this obtain lma where g2: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4676
    "abc_steps_l (0, lm) aprog stp = (aa, lma) \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4677
     abc_list_crsp b lma"   ..
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4678
  hence g3: "abc_steps_l (0, lm) aprog (Suc stp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4679
          = abc_step_l (aa, lma) (abc_fetch aa aprog)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4680
    apply(rule_tac abc_step_red, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4681
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4682
  show "\<exists>lma. abc_steps_l (0, lm) aprog (Suc stp) = (a, lma) \<and> abc_list_crsp lm' lma"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4683
    using g1 g2 g3 h
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4684
    apply(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4685
    apply(case_tac "abc_step_l (aa, b) (abc_fetch aa aprog)",
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4686
          case_tac "abc_step_l (aa, lma) (abc_fetch aa aprog)", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4687
    apply(rule_tac abc_list_crsp_step, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4688
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4689
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4690
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4691
lemma recursive_compile_correct_norm: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4692
  "\<lbrakk>rec_ci re = (aprog, rs_pos, a_md);  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4693
   rec_calc_rel re lm rs\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4694
  \<Longrightarrow> (\<exists> stp lm' m. (abc_steps_l (0, lm) aprog stp) = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4695
  (length aprog, lm') \<and> abc_list_crsp lm' (lm @ rs # 0\<up>m))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4696
apply(frule_tac recursive_compile_correct_spec, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4697
apply(drule_tac abc_list_crsp_steps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4698
apply(rule_tac rec_ci_not_null, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4699
apply(erule_tac exE, rule_tac x = stp in exI, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4700
  auto simp: abc_list_crsp_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4701
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4702
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4703
lemma [simp]: "length (dummy_abc (length lm)) = 3"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4704
apply(simp add: dummy_abc_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4705
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4706
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4707
lemma [simp]: "dummy_abc (length lm) \<noteq> []"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4708
apply(simp add: dummy_abc_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4709
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4710
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4711
lemma dummy_abc_steps_ex: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4712
  "\<exists>bstp. abc_steps_l (0, lm') (dummy_abc (length lm)) bstp = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4713
  ((Suc (Suc (Suc 0))), abc_lm_s lm' (length lm) (abc_lm_v lm' (length lm)))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4714
apply(rule_tac x = "Suc (Suc (Suc 0))" in exI)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4715
apply(auto simp: abc_steps_l.simps abc_step_l.simps 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4716
  dummy_abc_def abc_fetch.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4717
apply(auto simp: abc_lm_s.simps abc_lm_v.simps nth_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4718
apply(simp add: butlast_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4719
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4720
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4721
lemma [simp]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4722
  "\<lbrakk>Suc (length lm) - length lm' \<le> n; \<not> length lm < length lm'; lm @ rs # 0 \<up> m = lm' @ 0 \<up> n\<rbrakk> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4723
  \<Longrightarrow> lm' @ 0 \<up> Suc (length lm - length lm') = lm @ [rs]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4724
apply(subgoal_tac "n > m")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4725
apply(subgoal_tac "\<exists> d. n = d + m", erule_tac exE)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4726
apply(simp add: replicate_add)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4727
apply(drule_tac length_equal, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4728
apply(simp add: replicate_Suc[THEN sym] del: replicate_Suc)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4729
apply(rule_tac x = "n - m" in exI, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4730
apply(drule_tac length_equal, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4731
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4732
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4733
lemma [elim]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4734
  "lm @ rs # 0\<up>m = lm' @ 0\<up>n \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4735
  \<exists>m. abc_lm_s lm' (length lm) (abc_lm_v lm' (length lm)) = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4736
                            lm @ rs # 0\<up>m"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4737
proof(cases "length lm' > length lm")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4738
  case True 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4739
  assume h: "lm @ rs # 0\<up>m = lm' @ 0\<up>n" "length lm < length lm'"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4740
  hence "m \<ge> n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4741
    apply(drule_tac length_equal)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4742
    apply(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4743
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4744
  hence "\<exists> d. m = d + n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4745
    apply(rule_tac x = "m - n" in exI, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4746
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4747
  from this obtain d where "m = d + n" ..
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4748
  from h and this show "?thesis"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4749
    apply(auto simp: abc_lm_s.simps abc_lm_v.simps 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4750
                     replicate_add)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4751
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4752
next
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4753
  case False
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4754
  assume h:"lm @ rs # 0\<up>m = lm' @ 0\<up>n" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4755
    and    g: "\<not> length lm < length lm'"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4756
  have "take (Suc (length lm)) (lm @ rs # 0\<up>m) = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4757
                        take (Suc (length lm)) (lm' @ 0\<up>n)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4758
    using h by simp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4759
  moreover have "n \<ge> (Suc (length lm) - length lm')"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4760
    using h g
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4761
    apply(drule_tac length_equal)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4762
    apply(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4763
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4764
  ultimately show 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4765
    "\<exists>m. abc_lm_s lm' (length lm) (abc_lm_v lm' (length lm)) =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4766
                                                       lm @ rs # 0\<up>m"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4767
    using g h
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4768
    apply(simp add: abc_lm_s.simps abc_lm_v.simps min_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4769
    apply(rule_tac x = 0 in exI, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4770
      simp add:replicate_append_same replicate_Suc[THEN sym]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4771
                                      del:replicate_Suc)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4772
    done    
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4773
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4774
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4775
lemma [elim]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4776
  "abc_list_crsp lm' (lm @ rs # 0\<up>m)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4777
  \<Longrightarrow> \<exists>m. abc_lm_s lm' (length lm) (abc_lm_v lm' (length lm)) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4778
             = lm @ rs # 0\<up>m"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4779
apply(auto simp: abc_list_crsp_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4780
apply(simp add: abc_lm_v.simps abc_lm_s.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4781
apply(rule_tac x =  "m + n" in exI, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4782
      simp add: replicate_add)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4783
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4784
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4785
lemma abc_append_dummy_complie:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4786
  "\<lbrakk>rec_ci recf = (ap, ary, fp);  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4787
    rec_calc_rel recf args r; 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4788
    length args = k\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4789
  \<Longrightarrow> (\<exists> stp m. (abc_steps_l (0, args) (ap [+] dummy_abc k) stp) = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4790
                  (length ap + 3, args @ r # 0\<up>m))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4791
apply(drule_tac recursive_compile_correct_norm, auto simp: numeral_3_eq_3)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4792
proof -
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4793
  fix stp lm' m
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4794
  assume h: "rec_calc_rel recf args r"  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4795
    "abc_steps_l (0, args) ap stp = (length ap, lm')" 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4796
    "abc_list_crsp lm' (args @ r # 0\<up>m)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4797
  thm abc_append_exc2
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4798
  thm abc_lm_s.simps
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4799
  have "\<exists>stp. abc_steps_l (0, args) (ap [+] 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4800
    (dummy_abc (length args))) stp = (length ap + 3, 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4801
    abc_lm_s lm' (length args) (abc_lm_v lm' (length args)))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4802
    using h
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4803
    apply(rule_tac bm = lm' in abc_append_exc2,
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4804
          auto intro: dummy_abc_steps_ex simp: numeral_3_eq_3)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4805
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4806
  thus "\<exists>stp m. abc_steps_l (0, args) (ap [+] 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4807
    dummy_abc (length args)) stp = (Suc (Suc (Suc (length ap))), args @ r # 0\<up>m)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4808
    using h
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4809
    apply(erule_tac exE)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4810
    apply(rule_tac x = stpa in exI, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4811
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4812
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4813
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4814
lemma [simp]: "length (dummy_abc k) = 3"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4815
apply(simp add: dummy_abc_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4816
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4817
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4818
lemma [simp]: "length args = k \<Longrightarrow> abc_lm_v (args @ r # 0\<up>m) k = r "
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4819
apply(simp add: abc_lm_v.simps nth_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4820
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4821
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4822
lemma [simp]: "crsp (layout_of (ap [+] dummy_abc k)) (0, args)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4823
  (Suc 0, Bk # Bk # ires, <args> @ Bk \<up> rn) ires"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4824
apply(auto simp: crsp.simps start_of.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4825
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4826
129
c3832c4963c4 updated recursive
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 126
diff changeset
  4827
(* cccc *)
c3832c4963c4 updated recursive
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 126
diff changeset
  4828
c3832c4963c4 updated recursive
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 126
diff changeset
  4829
fun tm_of_rec :: "recf \<Rightarrow> instr list"
c3832c4963c4 updated recursive
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 126
diff changeset
  4830
where "tm_of_rec recf = (let (ap, k, fp) = rec_ci recf in
c3832c4963c4 updated recursive
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 126
diff changeset
  4831
                         let tp = tm_of (ap [+] dummy_abc k) in 
c3832c4963c4 updated recursive
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 126
diff changeset
  4832
                             tp @ (shift (mopup k) (length tp div 2)))"
c3832c4963c4 updated recursive
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 126
diff changeset
  4833
70
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4834
lemma recursive_compile_to_tm_correct: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4835
  "\<lbrakk>rec_ci recf = (ap, ary, fp); 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4836
    rec_calc_rel recf args r;
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4837
    length args = k;
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4838
    ly = layout_of (ap [+] dummy_abc k);
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4839
    tp = tm_of (ap [+] dummy_abc k)\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4840
  \<Longrightarrow> \<exists> stp m l. steps0 (Suc 0, Bk # Bk # ires, <args> @ Bk\<up>rn)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4841
  (tp @ shift (mopup k) (length tp div 2)) stp
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4842
  = (0, Bk\<up>m @ Bk # Bk # ires, Oc\<up>Suc r @ Bk\<up>l)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4843
  using abc_append_dummy_complie[of recf ap ary fp args r k]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4844
apply(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4845
apply(erule_tac exE)+
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4846
apply(frule_tac tp = tp and n = k 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4847
               and ires = ires in compile_correct_halt, simp_all add: length_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4848
apply(simp_all add: length_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4849
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4850
126
0b302c0b449a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 70
diff changeset
  4851
lemma recursive_compile_to_tm_correct2: 
0b302c0b449a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 70
diff changeset
  4852
  assumes "rec_ci recf = (ap, ary, fp)" 
0b302c0b449a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 70
diff changeset
  4853
  and     "rec_calc_rel recf args r"
0b302c0b449a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 70
diff changeset
  4854
  and     "length args = k"
0b302c0b449a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 70
diff changeset
  4855
  and     "tp = tm_of (ap [+] dummy_abc k)"
0b302c0b449a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 70
diff changeset
  4856
  shows "\<exists> m n. {\<lambda>tp. tp = ([Bk, Bk], <args>)}
0b302c0b449a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 70
diff changeset
  4857
             (tp @ (shift (mopup k) (length tp div 2)))
0b302c0b449a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 70
diff changeset
  4858
             {\<lambda>tp. tp = (Bk \<up> m, Oc \<up> (Suc r) @ Bk \<up> n)}"
0b302c0b449a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 70
diff changeset
  4859
using recursive_compile_to_tm_correct[where ires="[]" and rn="0", OF assms(1-3) _ assms(4)]
0b302c0b449a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 70
diff changeset
  4860
apply(simp add: Hoare_halt_def)
0b302c0b449a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 70
diff changeset
  4861
apply(drule_tac x="layout_of (ap [+] dummy_abc k)" in meta_spec)
0b302c0b449a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 70
diff changeset
  4862
apply(auto)
0b302c0b449a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 70
diff changeset
  4863
apply(rule_tac x="m + 2" in exI)
0b302c0b449a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 70
diff changeset
  4864
apply(rule_tac x="l" in exI)
0b302c0b449a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 70
diff changeset
  4865
apply(rule_tac x="stp" in exI)
0b302c0b449a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 70
diff changeset
  4866
apply(auto)
0b302c0b449a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 70
diff changeset
  4867
by (metis append_Nil2 replicate_app_Cons_same)
0b302c0b449a updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 70
diff changeset
  4868
129
c3832c4963c4 updated recursive
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 126
diff changeset
  4869
lemma recursive_compile_to_tm_correct3: 
c3832c4963c4 updated recursive
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 126
diff changeset
  4870
  assumes "rec_calc_rel recf args r"
130
1e89c65f844b added UTM
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 129
diff changeset
  4871
  shows "{\<lambda>tp. tp = ([Bk, Bk], <args>)} tm_of_rec recf {\<lambda>tp. \<exists>k l. tp = (Bk \<up> k, <r> @ Bk \<up> l)}"
129
c3832c4963c4 updated recursive
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 126
diff changeset
  4872
using recursive_compile_to_tm_correct2[OF _ assms] 
c3832c4963c4 updated recursive
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 126
diff changeset
  4873
apply(auto)
c3832c4963c4 updated recursive
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 126
diff changeset
  4874
apply(case_tac "rec_ci recf")
c3832c4963c4 updated recursive
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 126
diff changeset
  4875
apply(auto)
c3832c4963c4 updated recursive
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 126
diff changeset
  4876
apply(drule_tac x="a" in meta_spec)
c3832c4963c4 updated recursive
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 126
diff changeset
  4877
apply(drule_tac x="b" in meta_spec)
c3832c4963c4 updated recursive
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 126
diff changeset
  4878
apply(drule_tac x="c" in meta_spec)
c3832c4963c4 updated recursive
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 126
diff changeset
  4879
apply(drule_tac x="length args" in meta_spec)
c3832c4963c4 updated recursive
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 126
diff changeset
  4880
apply(drule_tac x="tm_of (a [+] dummy_abc (length args))" in meta_spec)
c3832c4963c4 updated recursive
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 126
diff changeset
  4881
apply(auto)
c3832c4963c4 updated recursive
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 126
diff changeset
  4882
apply(simp add: tape_of_nat_abv)
c3832c4963c4 updated recursive
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 126
diff changeset
  4883
apply(subgoal_tac "b = length args")
131
e995ae949731 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 130
diff changeset
  4884
apply(simp add: Hoare_halt_def)
e995ae949731 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 130
diff changeset
  4885
apply(auto)[1]
e995ae949731 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 130
diff changeset
  4886
apply(rule_tac x="na" in exI)
e995ae949731 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 130
diff changeset
  4887
apply(auto)[1]
e995ae949731 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 130
diff changeset
  4888
apply(case_tac "steps0 (Suc 0, [Bk, Bk], <args>)
e995ae949731 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 130
diff changeset
  4889
                                   (tm_of (a [+] dummy_abc (length args)) @
e995ae949731 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 130
diff changeset
  4890
                                    shift (mopup (length args))
e995ae949731 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 130
diff changeset
  4891
                                     (listsum
e995ae949731 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 130
diff changeset
  4892
 (layout_of (a [+] dummy_abc (length args)))))
e995ae949731 updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 130
diff changeset
  4893
                                   na")
129
c3832c4963c4 updated recursive
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 126
diff changeset
  4894
apply(simp)
c3832c4963c4 updated recursive
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 126
diff changeset
  4895
by (metis assms para_pattern)
c3832c4963c4 updated recursive
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 126
diff changeset
  4896
c3832c4963c4 updated recursive
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents: 126
diff changeset
  4897
70
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4898
lemma [simp]:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4899
  "list_all (\<lambda>(acn, s). s \<le> Suc (Suc (Suc (Suc (Suc (Suc (2 * n))))))) xs \<Longrightarrow>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4900
  list_all (\<lambda>(acn, s). s \<le> Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (2 * n))))))))) xs"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4901
apply(induct xs, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4902
apply(case_tac a, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4903
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4904
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4905
lemma shift_append: "shift (xs @ ys) n = shift xs n @ shift ys n"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4906
apply(simp add: shift.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4907
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4908
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4909
lemma [simp]: "length (shift (mopup n) ss) = 4 * n + 12"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4910
apply(auto simp: mopup.simps shift_append mopup_b_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4911
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4912
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4913
lemma length_tm_even[intro]: "length (tm_of ap) mod 2 = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4914
apply(simp add: tm_of.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4915
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4916
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4917
lemma [simp]: "k < length ap \<Longrightarrow> tms_of ap ! k  = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4918
 ci (layout_of ap) (start_of (layout_of ap) k) (ap ! k)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4919
apply(simp add: tms_of.simps tpairs_of.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4920
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4921
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4922
lemma start_of_suc_inc:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4923
  "\<lbrakk>k < length ap; ap ! k = Inc n\<rbrakk> \<Longrightarrow> start_of (layout_of ap) (Suc k) =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4924
                        start_of (layout_of ap) k + 2 * n + 9"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4925
apply(rule_tac start_of_Suc1, auto simp: abc_fetch.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4926
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4927
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4928
lemma start_of_suc_dec:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4929
  "\<lbrakk>k < length ap; ap ! k = (Dec n e)\<rbrakk> \<Longrightarrow> start_of (layout_of ap) (Suc k) =
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4930
                        start_of (layout_of ap) k + 2 * n + 16"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4931
apply(rule_tac start_of_Suc2, auto simp: abc_fetch.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4932
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4933
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4934
lemma inc_state_all_le:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4935
  "\<lbrakk>k < length ap; ap ! k = Inc n; 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4936
       (a, b) \<in> set (shift (shift tinc_b (2 * n)) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4937
                            (start_of (layout_of ap) k - Suc 0))\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4938
       \<Longrightarrow> b \<le> start_of (layout_of ap) (length ap)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4939
apply(subgoal_tac "b \<le> start_of (layout_of ap) (Suc k)")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4940
apply(subgoal_tac "start_of (layout_of ap) (Suc k) \<le> start_of (layout_of ap) (length ap) ")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4941
apply(arith)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4942
apply(case_tac "Suc k = length ap", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4943
apply(rule_tac start_of_less, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4944
apply(auto simp: tinc_b_def shift.simps start_of_suc_inc length_of.simps startof_not0)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4945
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4946
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4947
lemma findnth_le[elim]: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4948
  "(a, b) \<in> set (shift (findnth n) (start_of (layout_of ap) k - Suc 0))
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4949
  \<Longrightarrow> b \<le> Suc (start_of (layout_of ap) k + 2 * n)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4950
apply(induct n, simp add: findnth.simps shift.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4951
apply(simp add: findnth.simps shift_append, auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4952
apply(auto simp: shift.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4953
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4954
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4955
lemma findnth_state_all_le1:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4956
  "\<lbrakk>k < length ap; ap ! k = Inc n;
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4957
  (a, b) \<in> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4958
  set (shift (findnth n) (start_of (layout_of ap) k - Suc 0))\<rbrakk> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4959
  \<Longrightarrow> b \<le> start_of (layout_of ap) (length ap)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4960
apply(subgoal_tac "b \<le> start_of (layout_of ap) (Suc k)")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4961
apply(subgoal_tac "start_of (layout_of ap) (Suc k) \<le> start_of (layout_of ap) (length ap) ")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4962
apply(arith)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4963
apply(case_tac "Suc k = length ap", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4964
apply(rule_tac start_of_less, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4965
apply(subgoal_tac "b \<le> start_of (layout_of ap) k + 2*n + 1 \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4966
     start_of (layout_of ap) k + 2*n + 1 \<le>  start_of (layout_of ap) (Suc k)", auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4967
apply(auto simp: tinc_b_def shift.simps length_of.simps startof_not0 start_of_suc_inc)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4968
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4969
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4970
lemma start_of_eq: "length ap < as \<Longrightarrow> start_of (layout_of ap) as = start_of (layout_of ap) (length ap)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4971
apply(induct as, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4972
apply(case_tac "length ap < as", simp add: start_of.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4973
apply(subgoal_tac "as = length ap")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4974
apply(simp add: start_of.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4975
apply arith
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4976
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4977
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4978
lemma start_of_all_le: "start_of (layout_of ap) as \<le> start_of (layout_of ap) (length ap)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4979
apply(subgoal_tac "as > length ap \<or> as = length ap \<or> as < length ap", 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4980
      auto simp: start_of_eq start_of_less)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4981
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4982
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4983
lemma findnth_state_all_le2: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4984
  "\<lbrakk>k < length ap; 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4985
  ap ! k = Dec n e;
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4986
  (a, b) \<in> set (shift (findnth n) (start_of (layout_of ap) k - Suc 0))\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4987
  \<Longrightarrow> b \<le> start_of (layout_of ap) (length ap)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4988
apply(subgoal_tac "b \<le> start_of (layout_of ap) k + 2*n + 1 \<and> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4989
     start_of (layout_of ap) k + 2*n + 1 \<le>  start_of (layout_of ap) (Suc k) \<and>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4990
      start_of (layout_of ap) (Suc k) \<le> start_of (layout_of ap) (length ap)", auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4991
apply(subgoal_tac "start_of (layout_of ap) (Suc k) = 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4992
  start_of  (layout_of ap)  k + 2*n + 16", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4993
apply(simp add: start_of_suc_dec)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4994
apply(rule_tac start_of_all_le)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4995
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4996
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4997
lemma dec_state_all_le[simp]:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4998
  "\<lbrakk>k < length ap; ap ! k = Dec n e; 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  4999
  (a, b) \<in> set (shift (shift tdec_b (2 * n))
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5000
  (start_of (layout_of ap) k - Suc 0))\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5001
       \<Longrightarrow> b \<le> start_of (layout_of ap) (length ap)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5002
apply(subgoal_tac "2*n + start_of (layout_of ap) k + 16 \<le> start_of (layout_of ap) (length ap) \<and> start_of (layout_of ap) k > 0")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5003
prefer 2
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5004
apply(subgoal_tac "start_of (layout_of ap) (Suc k) = start_of (layout_of ap) k + 2*n + 16
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5005
                 \<and> start_of (layout_of ap) (Suc k) \<le> start_of (layout_of ap) (length ap)")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5006
apply(simp add: startof_not0, rule_tac conjI)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5007
apply(simp add: start_of_suc_dec)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5008
apply(rule_tac start_of_all_le)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5009
apply(auto simp: tdec_b_def shift.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5010
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5011
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5012
lemma tms_any_less: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5013
  "\<lbrakk>k < length ap; (a, b) \<in> set (tms_of ap ! k)\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5014
  b \<le> start_of (layout_of ap) (length ap)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5015
apply(case_tac "ap!k", auto simp: tms_of.simps tpairs_of.simps ci.simps shift_append sete.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5016
apply(erule_tac findnth_state_all_le1, simp_all)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5017
apply(erule_tac inc_state_all_le, simp_all)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5018
apply(erule_tac findnth_state_all_le2, simp_all)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5019
apply(rule_tac start_of_all_le)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5020
apply(rule_tac dec_state_all_le, simp_all)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5021
apply(rule_tac start_of_all_le)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5022
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5023
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5024
lemma concat_in: "i < length (concat xs) \<Longrightarrow> \<exists>k < length xs. concat xs ! i \<in> set (xs ! k)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5025
apply(induct xs rule: list_tl_induct, simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5026
apply(case_tac "i < length (concat list)", simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5027
apply(erule_tac exE, rule_tac x = k in exI)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5028
apply(simp add: nth_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5029
apply(rule_tac x = "length list" in exI, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5030
apply(simp add: nth_append)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5031
done 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5032
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5033
lemma [simp]: "length (tms_of ap) = length ap"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5034
apply(simp add: tms_of.simps tpairs_of.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5035
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5036
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5037
declare length_concat[simp]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5038
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5039
lemma in_tms: "i < length (tm_of ap) \<Longrightarrow> \<exists> k < length ap. (tm_of ap ! i) \<in> set (tms_of ap ! k)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5040
apply(simp only: tm_of.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5041
using concat_in[of i "tms_of ap"]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5042
apply(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5043
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5044
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5045
lemma all_le_start_of: "list_all (\<lambda>(acn, s). 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5046
  s \<le> start_of (layout_of ap) (length ap)) (tm_of ap)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5047
apply(simp only: list_all_length)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5048
apply(rule_tac allI, rule_tac impI)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5049
apply(drule_tac in_tms, auto elim: tms_any_less)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5050
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5051
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5052
lemma length_ci: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5053
"\<lbrakk>k < length ap; length (ci ly y (ap ! k)) = 2 * qa\<rbrakk>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5054
      \<Longrightarrow> layout_of ap ! k = qa"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5055
apply(case_tac "ap ! k")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5056
apply(auto simp: layout_of.simps ci.simps 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5057
  length_of.simps tinc_b_def tdec_b_def length_findnth sete.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5058
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5059
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5060
lemma [intro]: "length (ci ly y i) mod 2 = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5061
apply(case_tac i, auto simp: ci.simps length_findnth
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5062
  tinc_b_def sete.simps tdec_b_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5063
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5064
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5065
lemma [intro]: "listsum (map (length \<circ> (\<lambda>(x, y). ci ly x y)) zs) mod 2 = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5066
apply(induct zs rule: list_tl_induct, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5067
apply(case_tac a, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5068
apply(subgoal_tac "length (ci ly aa b) mod 2 = 0")
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5069
apply(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5070
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5071
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5072
lemma zip_pre:
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5073
  "(length ys) \<le> length ap \<Longrightarrow>
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5074
  zip ys ap = zip ys (take (length ys) (ap::'a list))"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5075
proof(induct ys arbitrary: ap, simp, case_tac ap, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5076
  fix a ys ap aa list
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5077
  assume ind: "\<And>(ap::'a list). length ys \<le> length ap \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5078
    zip ys ap = zip ys (take (length ys) ap)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5079
  and h: "length (a # ys) \<le> length ap" "(ap::'a list) = aa # (list::'a list)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5080
  from h show "zip (a # ys) ap = zip (a # ys) (take (length (a # ys)) ap)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5081
    using ind[of list]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5082
    apply(simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5083
    done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5084
qed
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5085
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5086
lemma length_start_of_tm: "start_of (layout_of ap) (length ap) = Suc (length (tm_of ap)  div 2)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5087
using tpa_states[of "tm_of ap"  "length ap" ap]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5088
apply(simp add: tm_of.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5089
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5090
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5091
lemma [elim]: "list_all (\<lambda>(acn, s). s \<le> Suc q) xs
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5092
        \<Longrightarrow> list_all (\<lambda>(acn, s). s \<le> q + (2 * n + 6)) xs"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5093
apply(simp add: list_all_length)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5094
apply(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5095
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5096
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5097
lemma [simp]: "length mopup_b = 12"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5098
apply(simp add: mopup_b_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5099
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5100
(*
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5101
lemma [elim]: "\<lbrakk>na < 4 * n; tshift (mop_bef n) q ! na = (a, b)\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5102
  b \<le> q + (2 * n + 6)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5103
apply(induct n, simp, simp add: mop_bef.simps nth_append tshift_append shift_length)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5104
apply(case_tac "na < 4*n", simp, simp)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5105
apply(subgoal_tac "na = 4*n \<or> na = 1 + 4*n \<or> na = 2 + 4*n \<or> na = 3 + 4*n",
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5106
  auto simp: shift_length)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5107
apply(simp_all add: tshift.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5108
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5109
*)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5110
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5111
lemma mp_up_all_le: "list_all  (\<lambda>(acn, s). s \<le> q + (2 * n + 6)) 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5112
  [(R, Suc (Suc (2 * n + q))), (R, Suc (2 * n + q)), 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5113
  (L, 5 + 2 * n + q), (W0, Suc (Suc (Suc (2 * n + q)))), (R, 4 + 2 * n + q),
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5114
  (W0, Suc (Suc (Suc (2 * n + q)))), (R, Suc (Suc (2 * n + q))),
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5115
  (W0, Suc (Suc (Suc (2 * n + q)))), (L, 5 + 2 * n + q),
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5116
  (L, 6 + 2 * n + q), (R, 0),  (L, 6 + 2 * n + q)]"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5117
apply(auto)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5118
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5119
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5120
lemma [simp]: "(a, b) \<in> set (mopup_a n) \<Longrightarrow> b \<le> 2 * n + 6"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5121
apply(induct n, auto simp: mopup_a.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5122
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5123
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5124
lemma [simp]: "(a, b) \<in> set (shift (mopup n) (listsum (layout_of ap)))
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5125
  \<Longrightarrow> b \<le> (2 * listsum (layout_of ap) + length (mopup n)) div 2"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5126
apply(auto simp: mopup.simps shift_append shift.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5127
apply(auto simp: mopup_a.simps mopup_b_def)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5128
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5129
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5130
lemma [intro]: " 2 \<le> 2 * listsum (layout_of ap) + length (mopup n)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5131
apply(simp add: mopup.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5132
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5133
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5134
lemma [intro]: " (2 * listsum (layout_of ap) + length (mopup n)) mod 2 = 0"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5135
apply(auto simp: mopup.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5136
apply arith
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5137
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5138
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5139
lemma [simp]: "b \<le> Suc x
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5140
          \<Longrightarrow> b \<le> (2 * x + length (mopup n)) div 2"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5141
apply(auto simp: mopup.simps)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5142
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5143
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5144
lemma t_compiled_correct: 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5145
  "\<lbrakk>tp = tm_of ap; ly = layout_of ap; mop_ss = start_of ly (length ap)\<rbrakk> \<Longrightarrow> 
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5146
    tm_wf (tp @ shift( mopup n) (length tp div 2), 0)"
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5147
  using length_start_of_tm[of ap] all_le_start_of[of ap]
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5148
apply(auto simp: tm_wf.simps List.list_all_iff)
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5149
done
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5150
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5151
end
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5152
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5153
    
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5154
  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5155
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5156
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5157
  
2363eb91d9fd updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
diff changeset
  5158