# HG changeset patch # User Christian Urban # Date 1415495157 0 # Node ID 5f6b72bb5f7f253312a7b17d6e5564a6ae84816b # Parent 530b98bcc36fc0b714693448cce482512b691b39 updated diff -r 530b98bcc36f -r 5f6b72bb5f7f hws/hw06.pdf Binary file hws/hw06.pdf has changed diff -r 530b98bcc36f -r 5f6b72bb5f7f hws/hw06.tex --- a/hws/hw06.tex Sun Nov 09 00:38:23 2014 +0000 +++ b/hws/hw06.tex Sun Nov 09 01:05:57 2014 +0000 @@ -8,87 +8,16 @@ \section*{Homework 6} \begin{enumerate} -\item Access-control logic includes formulas of the form -\begin{center} -$P\;\textit{says}\;F$ -\end{center} - -where $P$ is a principal and $F$ a formula. Give two inference rules -of access-control logic involving $\textit{says}$. - -\item -Assume an access control logic with security levels, say top secret ({\it TS}), -secret ({\it S}) and public ({\it P}), with -\begin{center} -$slev(\textit{P}) < slev(\textit{S}) < slev(\textit{TS})$ -\end{center} - -(a) Modify the formula -\begin{center} -\begin{tabular}{l} -$P\;\textit{controls}\;\textit{Permitted}(O, \textit{write})$\\ -\end{tabular} -\end{center} -using security levels so that it satisfies the {\it write rule} from the {\it -Bell-LaPadula} access policy. Do the same again, but satisfy the {\it write rule} -from the {\it Biba} access policy. - -(b)Modify the formula -\begin{center} -\begin{tabular}{l} -$P\;\textit{controls}\;\textit{Permitted}(O, \textit{read})$\\ -\end{tabular} -\end{center} -using security levels so that it satisfies the {\it read rule} from the {\it -Bell-LaPadula} access policy. Do the same again, but satisfy the {\it read rule} -from the {\it Biba} access policy. +\item Zero-knowledge protocols depend on three main properties called + completeness, soundness and zero-knowledge. Explain what they mean? -\item Assume two security levels $\textit{S}$ and $\textit{TS}$, which are ordered so that $slev(\textit{S}) < slev(\textit{TS})$. -Assume further the substitution rules -\begin{center} -\begin{tabular}{c} -$\Gamma \vdash slev(P) = l_1$ \hspace{4mm} $\Gamma \vdash slev(Q) = l_2$ -\hspace{4mm} $\Gamma \vdash l_1 < l_2$\\\hline -$\Gamma \vdash slev(P) < slev(Q)$ -\end{tabular} -\end{center} - -\begin{center} -\begin{tabular}{c} -$\Gamma \vdash slev(P) = l$ \hspace{4mm} $\Gamma \vdash slev(Q) = l$\\\hline -$\Gamma \vdash slev(P) = slev(Q)$ -\end{tabular} -\end{center} +\item Why do zero-knowledge protocols require an NP-problem as building + block? -Let $\Gamma$ be the set containing the following six formulas -\begin{center} -\begin{tabular}{l} -\\ -$slev(\textit{S}) < slev(\textit{TS})$\smallskip\\ -$slev(\textit{Agent}) = slev(\textit{TS})$\smallskip\\ -$slev(\textit{File}_1) = slev(\textit{S})$\smallskip\\ -$slev(\textit{File}_2) = slev(\textit{TS})$\smallskip\\ -$\forall O.\;slev(O) < slev(\textit{Agent}) \Rightarrow -(\textit{Agent}\;\textit{controls}\;\textit{Permitted}(O, \textit{read}))$\smallskip\\ -$\forall O.\;slev(O) = slev(\textit{Agent}) \Rightarrow -(\textit{Agent}\;\textit{controls}\;\textit{Permitted}(O, \textit{read}))$\\ -\\ -\end{tabular} -\end{center} -Using the inference rules of access-control logic and the substitution rules shown above, -give proofs for the two judgements -\begin{center} -\begin{tabular}{l} -$\Gamma \vdash -(\textit{Agent}\;\textit{says}\;\textit{Permitted}(\textit{File}_1, -\textit{read})) \Rightarrow \textit{Permitted}(\textit{File}_1, \textit{read})$\smallskip\\ -$\Gamma \vdash -(\textit{Agent}\;\textit{says}\;\textit{Permitted}(\textit{File}_2, -\textit{read})) \Rightarrow \textit{Permitted}(\textit{File}_2, \textit{read})$\\ -\end{tabular} -\end{center} +\item Why is it a good choice in a ZKP to flip a coin when requesting a + proof from the person who knows the secret? +\end{enumerate} -\end{enumerate} \end{document} %%% Local Variables: