
Handout 5 (Protocols)
Protocols are the computer science equivalent to fractals and theMandelbrot set
in mathematics. With the laĴer two you have a simple formula, which you just
iterate and then you test whether a point is inside or outside a region…it does
not look exciting, but voila somethingmagically happened.1 Protocols are simi-
lar: they are simple exchanges ofmessages, but in the end something “magical”
can happen—for example a secret channel has been established or two entities
have authenticated themselves to each other. This can happen even in face of
strong adversaries who have complete control over the network involved in the
message exchange. The problemwithmagic is of course it is poorly understood
and even experts often got, and get, it wrong with protocols.

To have an idea what kind of protocols we are interested in, let us look at a
few examples. One example are (wireless) key fobs, which operate the central
locking system and the ignition in a car.

The point of these key fobs is that everything is done over the “air”—there is no
physical connection between the key, doors and engine, as was the case with
the old solid metal keys. With the key fobs we must achieve security by ex-
changing certain messages between the key fob on one side and the doors and
engine on the other. Clearly what we like to accomplish is that I can get intomy
car and start it, but that thieves are kept out. The problem is that everybody can
“overhear” or skim the exchange of messages between the key fob and car. In
this scenario the simplest aĴack you need to defend against is a person-in-the-
middle aĴack. For this imagine you park your car in front of a supermarket.
One thief follows you with a strong transmiĴer. A second thief “listens” to the
signals from the car and wirelessly transmits them to the “colleague” who fol-
lowed you. This thief silently enquires what the key fob answers. This answer
is then send back to the thief at the car. If done properly, the car will dutifully
open and possibly start. No need to steal your keys anymore. That this is an
aĴack one needs to reckon with is demonstrated by the fact that dodgy web-
sites2 sell the necessary equipment for top Ruble. This webpage is notable for
the very helpful picture of a person-in-the-middle aĴack (see Figure 1).

But there are many more such protocols we like to study. Another exam-
ple is Wifi—you might sit at a Starbucks and talk wirelessly to the free access
point there and from there talk to your bank (see The Guardian article cited at

© Christian Urban, King’s College London, 2014, 2016, 2017
1http://en.wikipedia.org/wiki/Fractal, http://en.wikipedia.org/wiki/Mandelbrot_

set
2http://autokeydevices.com/product/wave/… funnily this webpage says “not intended for

illegal use”, but I have a hard time finding any legal purpose for such a device.

1

http://en.wikipedia.org/wiki/Fractal
http://en.wikipedia.org/wiki/Mandelbrot_set
http://en.wikipedia.org/wiki/Mandelbrot_set
http://autokeydevices.com/product/wave/

Figure 1: From a dodgy webpage about modern car theft. Note the stylish
aĴackers.

the very end of this handout). Moreover, even if you have to touch in and out
your Oyster card at the reader each time you enter or exit the Tube, it actually
operates wirelessly andwith appropriate equipment over some quite large dis-
tance (several meters). But there are many, many more examples for protocols
(Bitcoins, Tor, mobile phones,…).

The common characteristics of the protocols we are interested in is that an
adversary or aĴacker is assumed to be in complete control of the network or
channel over which we exchanging messages. An aĴacker can install a packet
sniffer on a network, inject packets, intercept packets, modify packets, replay
old messages, or fake preĴy much everything else. In this hostile environment,
the purpose of a protocol (that is exchange of messages) is to achieve some
security goal. For example only allow the owner of the car in, but everybody
else should be kept out.

The protocols we are interested here are generic descriptions of how to ex-
change messages in order to achieve a goal. Unlike the distant past where, for
example, we had to meet a person in order to authenticate him or her (via a
passport for example), the problemwe are facing on the Internet is that we can-
not easily be sure who we are “talking” to. The obvious reason is that only
some electrons arrive at our computer; we do not see the person, or computer,
behind the incoming electrons (messages).

To start, let us look at one of the simplest protocols that are part of the TCP
protocol (which underlies the Internet). This protocol does not do anything se-
curity relevant, it just establishes a “hello” from a client to a server which the
server answers with “I heard you” and the client answers in turn with some-
thing like “thanks”. This protocol is often called a three-way handshake. Graph-
ically it can be illustrated as follows

2

On the left-hand side is a client, say Alice, on the right-hand side is a server,
say. Time is running from top to boĴom. Alice initial SYN message needs
some time to travel to the server. The server answers with SYN-ACK, which
will require some time to arrive at Alice. Her answer ACKwill again take some
time to arrive at the server. After the messages are exchanged, Alice and the
server simply have established a channel to communicate over. Alice does not
knowwhether she is really talking to the server (somebody else on the network
might have intercepted her message and replied in place of the server). Simi-
larly, the server has no idea who it is talking to. Whether they can authenticate
themselves depends onwhat is exchanged next and is the point of the protocols
we want to study in more detail.

Before we start in earnest, we need to fix a more convenient notation for
protocols. Drawing pictures like the one above would be awkward in the long-
run. The notation we will adopt abstracts away from a few details we are not
interested in: for example the time the messages need to travel between end-
points. What we are interested in is in which order the messages are sent. For
the SYN-ACK protocol we will therefore use the notation

A → S : SYN
S → A : SYN_ACK
A → S : ACK

(1)

The left-hand side of each clause specifies who is the sender and who is the
receiver of the message. On the right of the colon is the message that is send.
The order from top to down specifies in which order the messages are sent.
We also have the convention that messages, like SYN above, are send in clear-
text over the network. If we want that a message is encrypted, then we use the
notation

{msg}K

for messages. The curly braces indicate a kind of envelope which can only be
opened if you know the key K with which the message has been encrypted. We
always assume that an aĴacker, say Eve, cannot get to the content of the mes-
sage, unless she is also in the possession of the key. We explicitly exclude in our
study that the encryption can be broken.3 It is also possible that an encrypted
message contains several parts. In this case we would write something like

{msg1, msg2}K

But again Eve would not be able to know this unless she also has the key. We
also allow the possibility that amessage is encrypted twice under different keys.
In this case we write

{{msg}K1}K2

3…which of course is what a good protocol designer needs to ensure and more often than not
protocols are broken because of a weak encryption method. For example Oyster cards contain a
very weak encryption mechanism which has been aĴacked and broken.

3

The idea is that even if aĴacker Eve has the key K2, she could decrypt the outer
envelop, but still does not get to the message, because it is still encrypted with
the key K1. Note, however, while an aĴacker cannot obtain the content of the
messagewithout the key, encryptedmessages can be observed and be recorded
and then replayed at another time, or send to another person!

Another very important point is that our notation for protocols such as
shown in (1) is a schema how the protocol should proceed. It could be instan-
tiated by an actual protocol run between Alice, say, and the server Calcium at
King’s. In this case the specific instance would look like

Alice → Calcium : SYN
Calcium → Alice : SYN_ACK
Alice → Calcium : ACK

But a server like Calcium of course needs to serve many clients. So there could
be the same protocol also running with Bob, say

Bob → Calcium : SYN
Calcium → Bob : SYN_ACK
Bob → Calcium : ACK

And these two instances of the protocol could be running in parallel or be at
different stages. So the protocol schema shown in (1) can be thought of how
two programs need to run on the side of A and S in order to successfully com-
plete the protocol. But it is really just a blueprint for how the communication
is supposed to proceed.

This is actually already a way how such protocols can fail. Although very
simple, the SYN_ACK protocol can cause headaches for system administrators
where an aĴacker starts the protocol, but then does not complete it. This looks
graphically like

The aĴacker sends lots of SYN requests which the server dutifully answers.
But in doing so the server needs to keep track of such protocol exchanges. As
a result every time the protocol is initiated a liĴle bit of memory will be eaten
away on the server side until all memory is exhausted. When poor Alice then

4

tries to contact the server, it is overwhelmed and does not respond anymore.
This kind of aĴack is called SYN floods.4

After reading four pages, you might be wondering where the magic is with
protocols. For this let us take a closer look at authentication protocols.

Authentication Protocols

The simplest authentication protocol between principals A and B, say is

A → B : KAB

It can be thought of as A sends a common secret to B, for example a password.
The idea is that if only A and B know the key KAB then this should be sufficient
for B to infer it is talking to A. But this is of course too naive in the context
where the message can be observed by everybody else on the network. Eve,
for example, could just record this message A just sent, and next time sends
the same message to B. B has no other choice than believing it talks to A. But
actually it talks to Eve, who now clears out A’s bank account assuming B had
been a bank.

A more sophisticated protocol which tries to avoid the replay aĴack is as
follows

A → B : HELLO
B → A : N
A → B : {N}KAB

With this protocol the idea is that A first sends a message to B saying “I want
to talk to you”. B sends then a challenge in form of a random number N. In
protocols such random numbers are often called nonce. What is the purpose of
this nonce? Well, if an aĴacker records A’s answer, it will not make sense to
replay this message, because next time this protocol is run, the nonce B sends
out will be different. So if we run this protocol, what can B infer? It has sent out
an (unpredictable) nonce to A and received this challenge back, but encoded
under the key KAB. If B assumes only A and B know the key KAB and the
nonce is unpredictable, then B is able to infer it must be talking to A. Of course
the implicit assumption on this inference is that nobody else knows about the
key KAB and nobody else can decrypt the message. B of course can decrypt
the answer from A and check whether the answer corresponds to the challenge
(nonce) B has sent earlier.

But what about A? Can A make any inferences about whom it talks to? It
dutifully answered the challenge andhopes his or her bank, say, will be the only
one to understand her answer. But is this the case? No! Let us consider again
an aĴacker Eve who has control over the network. She could have intercepted
the message HELLO and just replied herself to A using a random number…for
example one which she observed in a previous run of this protocol. Remember

4http://en.wikipedia.org/wiki/SYN_flood

5

http://en.wikipedia.org/wiki/SYN_flood

that if a message is sent without curly braces it is sent in clear text. A would
encrypt the nonce with the key KAB and send it back to Eve. She just throws
away the answer. A would hope that she talked to B because she followed the
protocol, but unfortunately she cannot be sure who she is talking to—it might
be Eve.

The solution is to follow a mutual challenge-response protocol. There A al-
ready starts off with a challenge (nonce) on her own.

A → B : NA
B → A : {NA, NB}KAB
A → B : NB

As seen, B receives this nonce, NA, adds his own nonce, NB and encrypts it with
the key KAB. A receives this message, is able to decrypt it since we assume she
has the key KAB too, and sends back the nonce of B. Let us analyse which
inferences A and B can make after the protocol has run. B received a challenge
and answered correctly to A (inside the encryptedmessage). An aĴackerwould
not be able to answer this challenge correctly because the aĴacker is assumed to
not be in the possession of the key KAB; so is not able to generate this message.
It could also not have been the case that it is an old message replayed, because
Awould send out each time a fresh nonce. Sowith this protocol you can ensure
also for A that it talks to B. I leave you to argue that B can be sure to talk to
A. Of course these arguments will depend on the assumptions that only A and
B know the key KAB and that nobody can break the encryption and that the
nonces are fresh each time the protocol is run.

The purpose of the nonces, the randomnumbers that are sent around, might
be a bit opaque. Because they are unpredictable they fulfil an important role in
protocols. Suppose

1. I generate a nonce and send it to you encrypted with a key we share

2. you increase it by one, encrypt it under a key I know and send it back to
me

In our notation this would correspond to the protocol

I → Y : {N}KIY
Y → I : {N + 1}KIY

What can I infer from this simple exchange:

• you must have received my message (it could not just be deflected by
somebody on the network, because the response required some calcula-
tion; doing the calculation and sending the answer requires the key KIY)

• you could only have generated your answer after I have sent you my ini-
tial message (since my N is always new, it could not have been a message
that was generated before I myself knew what N is)

6

• if only you and me know the key KIY, the message must have come from
you

Even if this does not seem much information we can glean from such an ex-
change, it is in fact the basic building block in protocols for establishing some
secret or for achieving some security goal (like authentication). This is what I
meant by magic: we send around “just” some random numbers, but actually
can use them to make some meaningful inferences.

While themutual challenge-response protocol solves the authenticationprob-
lem, there are some limitations. One is of course that it requires a pre-shared
secret key. That is something that needs to be established beforehand. Not all
situations allow such an assumption. For example if I am awhistle-blower (say
Snowden) and want to talk to a journalist (say Greenwald) then I might not
have a secret pre-shared key.

Another limitation is that such mutual challenge-response systems often
work in the same system in the “challenge mode” but also in the “response
mode”. For example if two serverswant to talk to each other—theywould need
the protocol in response mode, but also if they want to talk to other servers in
challenge mode. Similarly if you are in an military aircraft you have to chal-
lenge everybody you see, in case there is a friend amongst the targets you like
to shoot, but you also have to respond to any of your own anti-aircraft guns on
the ground, lest they shoot you. In these situations you have to be careful to
not decode, or answer, your own challenge. Recall the protocol is

A → B: NA
B → A: {NA, NB}KAB
A → B: NB

but it does not specify who is A andwho is B. If the protocol works in response
and in challenge mode, then A will be A in one instance, but B in the other. I
hope this makes sense. Let us look at the details and let us assume our adver-
sary is E who just deflects our messages back to us.

challenge mode: response mode:
1. A → E: NA
2. E → A: NA
3. A → E: {NA, N′

A}KAB
4. E → A: {NA, N′

A}KAB
5. A → E: N′

A

In the first step we challenge E with a nonce we created. Since we also run the
protocol in “response mode”, E can now feed us the same challenge in step 2.
We do not know where it came from (it’s over the air), but if we are in a fighter
aircraft we beĴer quickly answer it, otherwise we risk to be shot. So we add
our own challenge N′

A and encrypt it under the secret key KAB (step 3). Now
E does not need to know this key in order to form the correct answer for the
first protocol. It will just replay this message back to us in the challenge mode

7

(step 4). I happily accept this message—after all it is encrypted under the se-
cret key KAB and it contains the correct challenge from me, namely NA. So I
accept that E is a friend and send even back the challenge N′

A. The problem
is that E now starts firing at me and I have no clue what is going on. I might
suspect, erroneously, that an idiot must have leaked the secret key. Because
I followed in both cases the protocol to the leĴer, but somehow E, unknow-
ingly to me with my help, managed to disguise as a friend. As a fighter-pilot, I
would be a bit peeved at that moment and would have preferred the designer
of this challenge-response protocol had been a tad smarter. For one thing they
violated the best practice in protocol design of using the same key, KAB, for
two different purposes—namely challenging and responding. They beĴer had
used two different keys. This would have averted this aĴack and would have
saved me a lot of inconvenience.

Trusted Third Parties

One limitation the protocols we discussed so far have is that they pre-suppose
a secret shared key. As already mentioned, this is a convenience we cannot
always assume. How to establish a secret key then? Well, if both parties, say
A and B, mutually trust a third party, say S, then they can use the following
protocol:

A → S : A, B
S → A : {KAB}KAS and {{KAB}KBS}KAS
A → B : {KAB}KBS
A → B : {m}KAB

The assumption in this protocol is that A and S share a secret key, and also B
and S (S being the trusted third party). The goal is that A can send B a message
m under a shared secret key KAB, which at the beginning of the protocol does
not exist yet. How does this protocol work? In the first step A contacts S and
says that it wants to talk to B. In turn S invents a new key KAB and sends two
messages back to A: one message is {KAB}KAS which is encrypted with the key
A and S share, and also the message {{KAB}KBS}KAS which is encrypted with
KAS but also a second time with KBS. The point of the second message is that
it is a message intended for B. So A receives both messages and can decrypt
them—in the first case it obtains the key KAB which S suggested to use. In the
second case it obtains a message it can forward to B. B receives this message
and since it knows the key it shares with S obtains the key KAB. Now A and
B can start to exchange messages with the shared secret key KAB. What is the
advantage of S sending A two messages instead of contacting B instead? Well,
there can be a time-delay between the second and third step in the protocol.
At some point in the past A and S need to have come together to share a key,
similarly B and S. After that B does not need to be “online” anymore until A
actually starts sending messages to B. A and S can completely on their own
negotiate a new key.

8

The major limitation of this protocol however is that I need to trust a third
party. And in this case completely, because S can of course also read easily
all messages A sends to B. The problem is that I cannot really think of any
institution who could serve as such a trusted third party. One would hope the
government would be such a trusted party, but in the Snowden-era we know
that this is wishful thinking in the West, and if I lived in Iran or North Korea,
for example, I would not even start to hope for this.

The cryptographic “magic” of public-private keys seems to offer an elegant
solution for this, but as we shall see in the next section, this requires some
very clever protocol design and does not solve the authentication problem com-
pletely.

Averting Person-in-the-Middle AĴacks

The idea of public-private key encryption is that one can publish the key Kpub

which people can use to encrypt messages for me and I can use my private key
Kpriv to be the only one that can decrypt them. While this sounds all good, it
relies on the ability that people can associatemewithmy public key. That is not
as trivial as it sounds. For example, if I would be the government, say Theresa
Mayhem, and try to find outwho are the troublemakers in the country, I would
publish an innocent looking webpage and say I am The Guardian newspaper
(or alternatively The Sun for all the juicy stories), publish a public key on it, and
then just wait for incoming messages.

This problem is supposed to be solved by using certificates. The purpose of
certification organisations is that they verify that a public key, say Kpub

Bob , really
belongs to Bob. This is also the mechanism underlying the HTTPS protocol.
The problem is that this system is essentially completely broken…but this is a
story for another time. Suffice to say for now that one of the main certification
organisations, VeriSign, has limited its liability to $100 in case it issues a false
certificate. This is really a joke and really the wrong incentive for the certifi-
cation organisations to clean up their mess. The problem is compounded that
browser vendors also play a crucial role for this to work (and they might have
completely different incentives according to which they operate).

The problemwewant to study closer now is that protocols based on public-
private key encryption are susceptible to simple person-in-the-middle aĴacks.
Consider the following protocolwhere A and B aĴempt to exchange secretmes-
sages using public-private keys.

• A sends public key to B

• B sends public key to A

• A sends a message encrypted with B’s public key,
B decrypts it with its private key

• B sends a message encrypted with A’s public key,
A decrypts it with its private key

9

In our formal notation for protocols, this would look as follows:

A → B : Kpub
A

B → A : Kpub
B

A → B : {A, m}
Kpub

B

B → A : {B, m′}
Kpub

A

Since we assume an aĴacker, say E, has complete control over the network, E
can intercept the first two messages and substitutes her own public key. The
resulting protocol run would be

1. A → E : Kpub
A

2. E → B : Kpub
E

3. B → E : Kpub
B

4. E → A : Kpub
E

5. A → E : {A, m}
Kpub

E

6. E → B : {E, m}
Kpub

B

7. B → E : {B, m′}
Kpub

E

8. E → A : {E, m′}
Kpub

A

where in steps 6 and 8, E can modify the messages by including the E in the
message. Both messages are received encrypted with E’s public key; therefore
it can decrypt them and repackage them with new content. A and B have no
idea that they talking to an aĴacker. To them all messages look legit. Because
E can modify messages, it seems very difficult to defend against this aĴack.

But there is a clever trick…dare I say some magic which makes this aĴack
very difficult to perform on people who know each other—but not necessar-
ily have a shared key. Modify the protocol above so that A and B send their
messages in two halves, like

1. A → B : Kpub
A

2. B → A : Kpub
B

3. {A, m}
Kpub

B
7→ H1, H2

{B, m′}
Kpub

A
7→ M1, M2

4. A → B : H1

5. B → A : {H1, M1}Kpub
A

6. A → B : {H2, M1}Kpub
B

7. B → A : M2

10

The idea is that in step 3, A encrypts themessage (with B’s public key) and then
splits the encrypted message into two halves. Say the encrypted message is

0 X 1 p e U V T G J K 0 X I 7 G + H 7 0 m M j A M 8 p i Y 0 s I︸ ︷︷ ︸
{A,m}

Kpub
B

then A splits it up into two halves

0 X 1 p e U V T G J K 0 X I 7 G︸ ︷︷ ︸
H1

+ H 7 0 m M j A M 8 p i Y 0 s I︸ ︷︷ ︸
H2

Similarly B splits its message into two halves M1 and M2. However, A initially
only sends the first half H1 to B. Which B answers with the message consisting
of the received H1 and its own first half M1 encrypted with A’s public key. The
message in step 5. A receives this message, decrypts it and only when the H1
matches with its first half it send out earlier, A will send out the second half; see
step 6. For this, A adds the received M1 and encrypts both parts with B’s public
key. Finally B checks whether the received M1 matches with its first half, and
if yes sends A its second half M2. Now A and B are in the possession of H1 and
H2, respectively M1 and M2, and can decrypt the corresponding messages.

Now the big question is, why on earth does this spliĴing of messages in
half and additional message exchange help with defending against person-in-
the-middle aĴacks? Well, let’s try to be an aĴacker. As before we intercept the
messages where public keys are exchanged and inject our own.

1. A → E : Kpub
A

2. E → B : Kpub
E

3. B → E : Kpub
B

4. E → A : Kpub
E

Now A and B build the message halves:

{A, m}
Kpub

E
7→ H1, H2 {B, m′}

Kpub
E

7→ M1, M2

and A sends E its first half of the message.

5. A → E : H1

Neither E nor B can do much with this message. Remember it is only half of
some “garbled” text that cannot be decrypted. E could try to forward the mes-
sage to B and see what its reply is.

6. E → B : H1
7. B → E : {H1, M1}Kpub

E

11

Although E can decrypt the message with its private key, but it only gets the
halves H1 and M1 which are of no use yet. In order to get more information it
can send the message to A with A’s public key.

8. E → A : {H1, M1}Kpub
A

A would receive this message, decrypt it and find out it matches with its expec-
tation. It therefore sends out the message

9. A → E : {H2, M1}Kpub
E

Now E is in the possession of H1 and H2, which it can join together in order to
obtain {A, m}

Kpub
E

which it can decrypt. It seems like from now on all is lost,
but let’s see: in order to stay undetected it must send a message to B. It now
has two options: one is to use the newly obtained knowledge and modify A’s
message to be

{E, m}
Kpub

B
7→ H′

1, H′
2

But notice since E changed themessage, it will now receive twodifferent halves.
Let us call them H′

1 and H′
2. If E now sends B the H′

2, B will be in the possession
of H1 and H′

2. But after joining both halves it will not be able to decrypt the
resultingmessage—the two halves simply do not fit. It can send out the original
H2 as follows:

10. E → B : {H2, M1}Kpub
B

In this case B can make sense out of the message and as a result sends E back
its second half M2.

11. B → E : M2

E might be ecstatic by now, because it has now also received M1 and M2 which
it can join to get {B, m′}

Kpub
E
. It can decrypt this message but still is not finished

completely, because it has to send A amessage. It could try to build themessage
{E, m′}

Kpub
A
, but like above A would not be able to make sense out of the two

halves (which again do not fit together). So one option is to send M2.
With this the protocol has ended. E was able to decrypt all messages, but

what messages did A and B receive and fromwhom? Was E able to modify the
messages? If yes, were A and B able to find out that something strange is going
on and probably not talk on this channel anymore? I leave you to think about
it.5

5

ConsiderthecasewhereAsendsthemessage“Howisyourgrandmother?”to
B,andBsendthemessage“HowistheweatherinLondontoday”toA.Another
possibility:whatifAandBincludeavoicemessageintheremessages.

12

I hope you have thought about all these questions. E cannot modify the re-
ceived messages—A and B would find this out. To stay undetected, E can only
forward the messages (unmodified) and this is all what A and B need in order
to establish a shared secret. For example they can use the Hellman-Diffie key
exchange protocol (see further reading) which works, even if E can decrypt all
messages.

All good? Unfortunately, there is a way to defeat this lockstep protocol—
the name of this protocol that halves the messages. The problem is E can create
completely fake messages. Let us look at this possibility: E intercepts again the
keys from A and B, and substitutes its own keys.

1. A → E : Kpub
A

2. E → B : Kpub
E

3. B → E : Kpub
B

4. E → A : Kpub
E

Now A and B build again their message halves:

{A, m}
Kpub

E
7→ H1, H2 {B, m′}

Kpub
E

7→ M1, M2

A sends its first half H1.

5. A → E : H1

At this stage of the protocol, also E creates two messages and halves them, say

{E, mE}Kpub
E

7→ C1, C2 {E, m′
E}Kpub

E
7→ D1, D2

But notice that E has to make up these messages out of thin air. No informa-
tion from A and B is usable yet—remember the half H1 on its own cannot be
decrypted. E can then send C1 to B, which dutifully responds

6. E → B : C1
7. B → E : {C1, M1}Kpub

E

Next E has to send a message to A—it can use the made up D1 and the H1
received earlier.

8. E → A : {H1, D1}Kpub
A

A can verify it received H1 and thus sends out

9. A → E : {H2, D1}Kpub
E

With this E is in the possession of both halves from A. In order to get the reply
from B, E can send the message

13

10. E → B : {C2, M1}Kpub
E

and B can verify that it received M1. So it answer with

11. B → E : M2

Finally E can complete the protocol with sending D2 to A:

12. E → A : D2

A and B receive expected messages and were able to verify their first halves.
That means they do not suspect anything dodgy going on: E has successfully
managed a man-in-the middle aĴack. In case A and B are computers, there is
not much that can prevent this aĴack. In case they are humans, there are a few
things they can do. For example A and B can craft their messages such that
they include a specific question only A and B are likely to be able to answer,
or include a voice message which identifies A and B by their voice. The point
is E should not be able to create legit looking messages. Humans can do this if
they have someminimal knowledge of the protocol partner (for example know
their voice from TV); but computers cannot. The conclusion is that there is no
protocol that can establish a trusted connection without any preshared infor-
mation. The solution that has evolved over the years is to use certificates which
have been created by an authority we (or beĴer the browser) already trust.

Key Fob Protocol
Recall from the beginning that a person-in-themiddle aĴack can easily bemounted
at the key fob and car protocol unless we are careful. If you look at actual key
fob protocols, they use a variant of the protocol described above. Suppose C is
the car and T is the key fob (transponder). The HiTag2 protocol used in cars of
VW & friends is as follows:

1. C generates a random number N

2. C calculates {N}K 7→ F, G

3. C → T: N, F

4. T calculates {N}K 7→ F′, G′

5. T checks that F = F′

6. T → C: N, G′

7. C checks that G = G′

The assumption is that the key K is only known to the car and the transponder.
The claim is that C and T can authenticate to each other. Again, I leave it to
you to find out, if this protocol is immune from person-in-the-middle aĴacks.
(Hint: Does it establish a trusted connection from “zero”?)

14

Further Reading

• A nice video explaining the Hellman-Diffie key exchange technique is
here

https://www.youtube.com/watch?v=YEBfamv-_do

The main point of this technique is that no sensitive information is sent
over the network—both parties create the key together, but on their com-
puter, not over the network. While the technique is cryptographic magic,
it can be aĴacked when messages can be manipulated during transit. Re-
member that the lockstep protocol can only be aĴacked by either pas-
sively forwarding the messages (without being able to modify them) or
by creating complete fake messages.

• A blogpost that describes the first few milliseconds of an HTTPS connec-
tion is at

http://www.moserware.com/2009/06/
first-few-milliseconds-of-https.html

It disentangles every message sent between a client and a server.

• If you want to know more about how cars can be hijacked, the paper

http://www.cs.ru.nl/~rverdult/Gone_in_360_Seconds_Hijacking_
with_Hitag2-USENIX_2012.pdf

is quite amusing to read. Obviously an even more amusing paper would
“DismantlingMegamos Crypto: Wirelessly Lockpicking a Vehicle Immo-
bilizer” by the same authors, but because of the court injunction by VW,
we are denied this entertainment. UPDATE: This paper is now in the
public domain.

• Man-in-the-middle-aĴacks from the “wild” are described with real data
in the blog post

http://www.renesys.com/2013/11/mitm-internet-hijacking

The conclusion in this post is thatman-in-the-middle-aĴacks can be launched
from any place on Earth—it is not required that you sit in the “middle”
of the communication of two people. You just have to route their traffic
through a node you own.

• An article in The Guardian from 2013 reveals how GCHQ and the NSA
at a G20 Summit in 2009 sniffed emails from Internet cafes, monitored
phone calls from delegates and aĴempted to listen on phone calls which
were made by Russians and which were transmiĴed via satellite links:

15

https://www.youtube.com/watch?v=YEBfamv-_do
http://www.moserware.com/2009/06/first-few-milliseconds-of-https.html
http://www.moserware.com/2009/06/first-few-milliseconds-of-https.html
http://www.cs.ru.nl/~rverdult/Gone_in_360_Seconds_Hijacking_with_Hitag2-USENIX_2012.pdf
http://www.cs.ru.nl/~rverdult/Gone_in_360_Seconds_Hijacking_with_Hitag2-USENIX_2012.pdf
http://www.renesys.com/2013/11/mitm-internet-hijacking

http://www.theguardian.com/uk/2013/jun/16/
gchq-intercepted-communications-g20-summits

…all in the name of having a beĴer position for negotiations. Hmmm…

• A paper guessing how the NSA can decrypt so much of the encrypted
Internet traffic:

https://weakdh.org/imperfect-forward-secrecy.pdf

16

http://www.theguardian.com/uk/2013/jun/16/gchq-intercepted-communications-g20-summits
http://www.theguardian.com/uk/2013/jun/16/gchq-intercepted-communications-g20-summits
https://weakdh.org/imperfect-forward-secrecy.pdf

