
Security Engineering

Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides: KEATS (also homework is there)

SEN 11, King’s College London – p. 1/20



Imagine you have a completely innocent email
message, like birthday wishes to your
grandmother. Why should you still encrypt
this message and your grandmother take the
effort to decrypt it?

(Hint: The answer has nothing to do with preserving the
privacy of your grandmother and nothing to do with
keeping her birthday wishes super-secret. Also nothing to
do with you and grandmother testing the latest encryption
technology, nor just for the sake of it.)

SEN 11, King’s College London – p. 2/20



M.C.Escher, Amazing World (from Gödel, Escher, Bach by D.Hofstadter)

SEN 11, King’s College London – p. 3/20



Interlock Protocols
A Protocol between a car C and a key transponder T:

1 C generates a random number N
2 C calculates (F,G) = {N}K
3 C → T: N,F

4 T calculates (F′,G′) = {N}K
5 T checks that F = F′

6 T → C: N,G′

7 C checks that G = G′

SEN 11, King’s College London – p. 4/20



Zero-Knowledge Proofs

Essentially every NP-problem can be used for
ZKPs

modular logarithms: Alice chooses public A, B, p;
and private x

Ax ≡ B mod p

SEN 11, King’s College London – p. 5/20



Modular Arithmetic

It is easy to calculate

? ≡ 46 mod 12

A: 10

SEN 11, King’s College London – p. 6/20



Modular Arithmetic

It is easy to calculate

10 ≡ 46 mod 12

A: 10

SEN 11, King’s College London – p. 6/20



Modular Logarithm
Ordinary, non-modular logarithms:

10? = 17

⇒ log1017 = 1.2304489 . . .
⇒ 101.2304489 = 16.999999

Conclusion: 1.2304489 is very close to the true
solution, slightly low

SEN 11, King’s College London – p. 7/20



Modular Logarithm
Ordinary, non-modular logarithms:

10? = 17

⇒ log1017 = 1.2304489 . . .

⇒ 101.2304489 = 16.999999

Conclusion: 1.2304489 is very close to the true
solution, slightly low

SEN 11, King’s College London – p. 7/20



Modular Logarithm
Ordinary, non-modular logarithms:

10? = 17

⇒ log1017 = 1.2304489 . . .
⇒ 101.2304489 = 16.999999

Conclusion: 1.2304489 is very close to the true
solution, slightly low

SEN 11, King’s College London – p. 7/20



Modular Logarithm
Ordinary, non-modular logarithms:

10? = 17

⇒ log1017 = 1.2304489 . . .
⇒ 101.2304489 = 16.999999

Conclusion: 1.2304489 is very close to the true
solution, slightly low

SEN 11, King’s College London – p. 7/20



Modular Logarithm
In contrast, modular logarithms behave much
differently:

2? ≡ 88319671 mod 97330327

Lets say I ‘found’ 28305819 and I try

228305819 ≡ 88032151 mod 97330327

Slightly lower. I might be tempted to try
28305820…but the real answer is 12314.

SEN 11, King’s College London – p. 8/20



Modular Logarithm
In contrast, modular logarithms behave much
differently:

2? ≡ 88319671 mod 97330327

Lets say I ‘found’ 28305819 and I try

228305819 ≡ 88032151 mod 97330327

Slightly lower. I might be tempted to try
28305820…but the real answer is 12314.

SEN 11, King’s College London – p. 8/20



Modular Logarithm
In contrast, modular logarithms behave much
differently:

2? ≡ 88319671 mod 97330327

Lets say I ‘found’ 28305819 and I try

228305819 ≡ 88032151 mod 97330327

Slightly lower. I might be tempted to try
28305820…

but the real answer is 12314.

SEN 11, King’s College London – p. 8/20



Modular Logarithm
In contrast, modular logarithms behave much
differently:

2? ≡ 88319671 mod 97330327

Lets say I ‘found’ 28305819 and I try

228305819 ≡ 88032151 mod 97330327

Slightly lower. I might be tempted to try
28305820…but the real answer is 12314.

SEN 11, King’s College London – p. 8/20



Commitment Stage
1 Alice generates z random numbers r1, ..., rz, all

less than p− 1.
2 Alice sends Bob for all 1..z

hi = Ari mod p

3 Bob generates random bits b1, ..., bz by flipping a
coin

4 For each bit bi, Alice sends Bob an si where
bi = 0: si = ri
bi = 1: si = (ri − rj) mod (p− 1)

where rj is the lowest j with bj = 1
SEN 11, King’s College London – p. 9/20



Commitment Stage
1 Alice generates z random numbers r1, ..., rz, all

less than p− 1.
2 Alice sends Bob for all 1..z

hi = Ari mod p

3 Bob generates random bits b1, ..., bz by flipping a
coin

4 For each bit bi, Alice sends Bob an si where
bi = 0: si = ri
bi = 1: si = (ri − rj) mod (p− 1)

where rj is the lowest j with bj = 1
SEN 11, King’s College London – p. 9/20

Alice ri: 4 9 1 3
Bob bi: 0 1 0 1

↑
j



Confirmation Stage
1 For each bi Bob checks whether si conforms to

the protocol
bi = 0: Asi ≡ hi mod p
bi = 1: Asi ≡ hi ∗ h−1

j mod p

Bob was sent
h1, . . . , hz,
r1 − rj, r2 − rj, …, rz − rj mod p− 1

where the corresponding bits were 1; Bob does
not know rj, he does not know any ri where the
bit was 1

SEN 11, King’s College London – p. 10/20



Confirmation Stage
1 For each bi Bob checks whether si conforms to

the protocol
bi = 0: Asi ≡ hi mod p
bi = 1: Asi ≡ hi ∗ h−1

j mod p

Bob was sent
h1, . . . , hz,
r1 − rj, r2 − rj, …, rz − rj mod p− 1

where the corresponding bits were 1; Bob does
not know rj, he does not know any ri where the
bit was 1

SEN 11, King’s College London – p. 10/20

Asi = Ari−rj

= Ari ∗A−rj

= hri ∗ h−1
rj mod p



Proving Stage

1 Alice proves she knows x, the discrete log of B
she sends

sz+1 = (x− rj)
2 Bob confirms

Asz+1 ≡ B ∗ h−1
j mod p

In order to cheat, Alice has to guess all bits in
advance. She has only 1

2
z chance of doing so.

SEN 11, King’s College London – p. 11/20



Proving Stage

1 Alice proves she knows x, the discrete log of B
she sends

sz+1 = (x− rj)
2 Bob confirms

Asz+1 ≡ B ∗ h−1
j mod p

In order to cheat, Alice has to guess all bits in
advance. She has only 1

2
z chance of doing so.

SEN 11, King’s College London – p. 11/20



How can Alice cheat?
Alice needs to coordinate what she sends as hi (in
step 2), si (in step 4) and sz+1 (in step 6).

for sz+1 she solves the easy
Asz+1 ≡ B ∗ y mod p

for y.
if she can guess j (first 1) then she sends y as hj
and 0 as sj.
however she does not know rj because she would
need to solve

Arj ≡ y mod p

SEN 11, King’s College London – p. 12/20



How can Alice cheat?
Alice needs to coordinate what she sends as hi (in
step 2), si (in step 4) and sz+1 (in step 6).

for sz+1 she solves the easy
Asz+1 ≡ B ∗ y mod p

for y.

if she can guess j (first 1) then she sends y as hj
and 0 as sj.
however she does not know rj because she would
need to solve

Arj ≡ y mod p

SEN 11, King’s College London – p. 12/20



How can Alice cheat?
Alice needs to coordinate what she sends as hi (in
step 2), si (in step 4) and sz+1 (in step 6).

for sz+1 she solves the easy
Asz+1 ≡ B ∗ y mod p

for y.
if she can guess j (first 1) then she sends y as hj
and 0 as sj.

however she does not know rj because she would
need to solve

Arj ≡ y mod p

SEN 11, King’s College London – p. 12/20



How can Alice cheat?
Alice needs to coordinate what she sends as hi (in
step 2), si (in step 4) and sz+1 (in step 6).

for sz+1 she solves the easy
Asz+1 ≡ B ∗ y mod p

for y.
if she can guess j (first 1) then she sends y as hj
and 0 as sj.
however she does not know rj because she would
need to solve

Arj ≡ y mod p

SEN 11, King’s College London – p. 12/20



How can Alice cheat?
Alice still needs to decide on the other hi and si.
They have to satisfy the test:

Asi ?≡ hi ∗ h−1
j mod p

Lets say she choses the si at random, then she
needs to solve

Asi ≡ z ∗ h−1
j mod p

for z. It still does not allow us to find out the ri.
Let us call an hi calculated in this way as bogus.

SEN 11, King’s College London – p. 13/20



How can Alice cheat?
Alice still needs to decide on the other hi and si.
They have to satisfy the test:

Asi ?≡ hi ∗ h−1
j mod p

Lets say she choses the si at random, then she
needs to solve

Asi ≡ z ∗ h−1
j mod p

for z.

It still does not allow us to find out the ri.
Let us call an hi calculated in this way as bogus.

SEN 11, King’s College London – p. 13/20



How can Alice cheat?
Alice still needs to decide on the other hi and si.
They have to satisfy the test:

Asi ?≡ hi ∗ h−1
j mod p

Lets say she choses the si at random, then she
needs to solve

Asi ≡ z ∗ h−1
j mod p

for z. It still does not allow us to find out the ri.
Let us call an hi calculated in this way as bogus.

SEN 11, King’s College London – p. 13/20



How can Alice cheat?
Alice has to produce bogus hi for all bits that are
going to be 1 in advance.

Lets say bi = 1 where Alice guessed 0: She already
has sent hi and hj and now must find a correct si
(which she chose at random at first)

Asi ≡ hi ∗ h−1
j mod p

If she knew ri and rj, then easy: si = ri − rj. But
she does not. So she will be found out.

SEN 11, King’s College London – p. 14/20



How can Alice cheat?
Alice has to produce bogus hi for all bits that are
going to be 1 in advance.

Lets say bi = 1 where Alice guessed 0: She already
has sent hi and hj and now must find a correct si
(which she chose at random at first)

Asi ≡ hi ∗ h−1
j mod p

If she knew ri and rj, then easy: si = ri − rj. But
she does not. So she will be found out.

SEN 11, King’s College London – p. 14/20



How can Alice cheat?
Alice has to produce bogus hi for all bits that are
going to be 1 in advance.

Lets say bi = 0 where Alice guessed 1: She has to
send an si so that

Asi ≡ hi mod p
She does not know ri. So this is too hard and she
will be found out.

SEN 11, King’s College London – p. 15/20



Buffer Overflow Attacks
the problem arises from the way C/C++ organises
its function calls

main
prog.

fact(n)

n=4
res=24n=

3

res=6

stack

ret
sp

43

SEN 11, King’s College London – p. 16/20



Buffer Overflow Attacks
the problem arises from the way C/C++ organises
its function calls

main
prog.

fact(n)

n=4
res=24n=

3

res=6

stack

ret
sp

43

SEN 11, King’s College London – p. 16/20



Buffer Overflow Attacks
the problem arises from the way C/C++ organises
its function calls

main
prog.

fact(n)
n=4

res=24n=
3

res=6

stack

ret
sp

4

3

SEN 11, King’s College London – p. 16/20



Buffer Overflow Attacks
the problem arises from the way C/C++ organises
its function calls

main
prog.

fact(n)
n=4

res=24n=
3

res=6

stack

ret
sp

4

3

SEN 11, King’s College London – p. 16/20



Buffer Overflow Attacks
the problem arises from the way C/C++ organises
its function calls

main
prog.

fact(n)

n=4

res=24

n=
3

res=6

stack

ret
sp

43

SEN 11, King’s College London – p. 16/20



Buffer Overflow Attacks
the problem arises from the way C/C++ organises
its function calls

main
prog.

fact(n)

n=4
res=24n=

3

res=6

stack

ret
sp

43

SEN 11, King’s College London – p. 16/20



Buffer Overflow Attacks
the problem arises from the way C/C++ organises
its function calls

main
prog.

fact(n)

n=4
res=24

n=
3

res=6

stack

ret
sp

4

3

SEN 11, King’s College London – p. 16/20



Buffer Overflow Attacks
the problem arises from the way C/C++ organises
its function calls

main
prog.

fact(n)

n=4
res=24

n=
3

res=6

stack

ret
sp

4

3

SEN 11, King’s College London – p. 16/20



Buffer Overflow Attacks
the problem arises from the way C/C++ organises
its function calls

main
prog.

fact(n)

n=4
res=24n=

3

res=6

stack

ret
sp

43

SEN 11, King’s College London – p. 16/20



main
prog.

fact(n)

n=4 user
input

stack

4
ret
sp

buffer

SEN 11, King’s College London – p. 17/20



main
prog.

fact(n)

n=4 user
input

stack

4
ret
sp

buffer

SEN 11, King’s College London – p. 17/20



main
prog.

fact(n)
n=4

user
input

stack

4
ret
sp

buffer

SEN 11, King’s College London – p. 17/20



main
prog.

fact(n)
n=4

user
input

stack

4
ret
sp

buffer

SEN 11, King’s College London – p. 17/20



main
prog.

fact(n)
n=4 user

input

stack

4
ret
sp

buffer

SEN 11, King’s College London – p. 17/20



main
prog.

fact(n)
n=4 user

input

stack

4
@a#
!?w;p

buffer

SEN 11, King’s College London – p. 17/20



main
prog.

fact(n)
n=4 user

input

stack

4
@a#
!?w;p

buffer

SEN 11, King’s College London – p. 17/20



main
prog.

fact(n)
n=4 user

input

stack

4
@a#
!?w;p

buffer

SEN 11, King’s College London – p. 17/20



Coming Back To…

Imagine you have a completely innocent email
message, like birthday wishes to your
grandmother. Why should you still encrypt
this message and your grandmother take the
effort to decrypt it?

Any wild guesses?
Bruce Schneier
NSA Surveillance and What To Do About It
https://www.youtube.com/watch?v=QXtS6UcdOMs

SEN 11, King’s College London – p. 18/20

https://www.youtube.com/watch?v=QXtS6UcdOMs


Coming Back To…

Imagine you have a completely innocent email
message, like birthday wishes to your
grandmother. Why should you still encrypt
this message and your grandmother take the
effort to decrypt it?

Any wild guesses?

Bruce Schneier
NSA Surveillance and What To Do About It
https://www.youtube.com/watch?v=QXtS6UcdOMs

SEN 11, King’s College London – p. 18/20

https://www.youtube.com/watch?v=QXtS6UcdOMs


Coming Back To…

Imagine you have a completely innocent email
message, like birthday wishes to your
grandmother. Why should you still encrypt
this message and your grandmother take the
effort to decrypt it?

Any wild guesses?
Bruce Schneier
NSA Surveillance and What To Do About It
https://www.youtube.com/watch?v=QXtS6UcdOMs

SEN 11, King’s College London – p. 18/20

https://www.youtube.com/watch?v=QXtS6UcdOMs


Terrorists use encrypted mobile-messaging apps. The
spy agencies argue that although they can follow the
conversations on Twitter, they “go dark” on the
encrypted message apps. To counter this “going-dark
problem”, the spy agencies push for the implementation
of back-doors in iMessage and Facebook and Skype and
everything else UK or US-made, which they can use
eavesdrop on conversations without the conversants’
knowledge or consent.

What is the fallacy in the spy agencies going-dark
argument?

SEN 11, King’s College London – p. 19/20



Even good passwords consisting of 8 characters, can be
broken in around 50 days (obviously this time varies a
lot and also gets shorter and shorter over time). Do you
think it is good policy to require users to change their
password every 3 months (as King’s did until recently)?
Under which circumstance should users be required to
change their password?

SEN 11, King’s College London – p. 20/20


