Access Control and Privacy Policies (8)

Email: christian.urban at kcl.ac.uk

Office: S1.27 (1st floor Strand Building)
Slides: KEATS (also homework is there)

Last Week

Andrew Secure RPC Protocol: A and B share a key K_{AB} and want to identify each other

- ullet A sends $B:A,N_A$
- ullet B sends $A:\{N_A,K_{AB}'\}_{K_{AB}}$
- ullet A sends $B:\{N_A\}_{K_{AB}'}$

Protocols

A sends $B:\dots$

• by convention A, B are named principals Alice... but most likely they are programs, which just follow some instructions

Protocols

```
A sends B:\ldots B sends A:\ldots B
```

- by convention A, B are named principals Alice... but most likely they are programs, which just follow some instructions
- indicates one "protocol run", or session, which specifies some order in the communication
- there can be several sessions in parallel (think of wifi routers)

Last Week

 $m{A}$ and $m{B}$ share the key $m{K}_{AB}$ and want to identify each other

- ullet A sends $B:A,N_A$
- ullet B sends $A:\{N_A,K'_{AB}\}_{K_{AB}}$
- ullet A sends $B:\{N_A\}_{K_{AB}'}$

A reflection attack: an intruder I impersonates B.

A sends $I:A,N_A$

A reflection attack: an intruder I impersonates B.

 $A \operatorname{sends} I : A, N_A$ $I \operatorname{sends} A : B, N_A$

A reflection attack: an intruder I impersonates B.

A sends $I:A,N_A$ I sends $A:B,N_A$

A sends $I:\{N_A,\!K_{\!AB}'\}_{K_{\!AB}}$

A reflection attack: an intruder I impersonates B.

```
A sends I:A,N_A I sends A:B,N_A
```

I sends $A:\{N_A,K_{AB}'\}_{K_{AB}}$ A sends $I:\{N_A,K_{AB}'\}_{K_{AB}}$

A reflection attack: an intruder I impersonates B.

```
A \operatorname{sends} I: A, N_A \qquad \qquad I \operatorname{sends} A: B, N_A
```

I sends $A:\{N_A,K_{AB}'\}_{K_{AB}}$ A sends $I:\{N_A,K_{AB}'\}_{K_{AB}}$

A sends $I:\{N_A\}_{K_{AB}'}$

A reflection attack: an intruder I impersonates B.

```
A sends I:A,N_A I sends A:B,N_A I sends A:\{N_A,K_{AB}'\}_{K_{AB}} A sends I:\{N_A,K_{AB}'\}_{K_{AB}}
```

A sends $I:\{N_A\}_{K_{AB}'}$ I sends $A:\{N_A\}_{K_{AB}'}$

APP 08, King's College London, 20 November 2012 - p. 5/17

A reflection attack: an intruder I impersonates B.

```
A sends I:A,N_A I sends A:B,N_A I sends A:\{N_A,K'_{AB}\}_{K_{AB}} A sends I:\{N_A,K'_{AB}\}_{K_{AB}} I sends A:\{N_A\}_{K'_{AB}}
```

Sounds stupid: "...answering a question with a counter question"

Identify Friend or Foe

198?: war between Angola (supported by Cuba) and Namibia (supported by SA)

Identify Friend or Foe

1987: war between Angola (supported by Cuba) and Namibia (supported by SA)

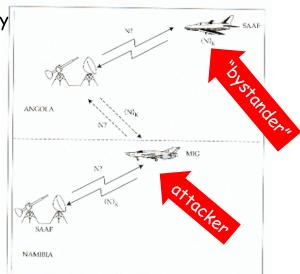


Figure 2.2 The MIG-in-the middle attack.

Identify Friend or Foe

1987: war between Angola (supported by Cuba) and Namibia (supported by SA)

by stander. ANGOLA N? arracker SAAF NAMIBIA

being outsmarted by Angola/Cuba ended SA involvement

Figure 2.2 The MIG-in-the middle attack.

Encryption to the Rescue?

ullet $A \operatorname{sends} B: \{A, N_A\}_{K_{AB}}$ encryption

ullet B sends $A:\{N_A,K_{AB}'\}_{K_{AB}}$

ullet A sends $B:\{N_A\}_{K'_{AB}}$

Encryption to the Rescue?

- ullet $A \operatorname{sends} B: \{A, N_A\}_{K_{AB}}$ encryption
- ullet B sends $A:\{N_A,K_{AB}'\}_{K_{AB}}$
- ullet A sends $B:\{N_A\}_{K_{AB}'}$

means you need to send a separate "Hello" signal (bad), or worse share a single key between many entities

Possible Kinds of Attacks

- reflection attacks
- man-in-the-middle attacks
- replay attacks
- timing attacks
- changing environment / changing assumptions