
Access Control and
Privacy Policies (2)

Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides: KEATS (also home work is there)

APP 02, King’s College London, 2 October 2012 – p. 1/15

Homework

. . . I have a question about the homework.

Is it required to submit the homework before
the next lecture?

Thank you!
Anonymous

APP 02, King’s College London, 2 October 2012 – p. 2/15

SmartWater

APP 02, King’s College London, 2 October 2012 – p. 3/15

seems helpful for preventing
cable theft

wouldn’t be helpful to make
your property safe, because of
possible abuse

security is always a tradeoff

Plaintext Passwords from IEEE
On 25 September 2012, a report on a data breach at IEEE:

IEEE is a standards organisation (not for profit)

many standards in CS are by IEEE

100k plain-text passwords were recorded in logs

the logs were openly accessible on their FTP server

http://ieeelog.com

APP 02, King’s College London, 2 October 2012 – p. 4/15

http://ieeelog.com

Plaintext Passwords from IEEE
On 25 September 2012, a report on a data breach at IEEE:

IEEE is a standards organisation (not for profit)

many standards in CS are by IEEE

100k plain-text passwords were recorded in logs

the logs were openly accessible on their FTP server

http://ieeelog.com

APP 02, King’s College London, 2 October 2012 – p. 4/15

http://ieeelog.com

Virgin Mobile (USA)

http://arstechnica.com/security/2012/09/
virgin-mobile-password-crack-risk/

for online accounts passwords must be 6 digits
you must cycle through 1M combinations (online)

he limited the attack on his own account to 1
guess per second, and
wrote a script that cleared the cookies set after
each guess

APP 02, King’s College London, 2 October 2012 – p. 5/15

http://arstechnica.com/security/2012/09/virgin-mobile-password-crack-risk/
http://arstechnica.com/security/2012/09/virgin-mobile-password-crack-risk/

Virgin Mobile (USA)

http://arstechnica.com/security/2012/09/
virgin-mobile-password-crack-risk/

for online accounts passwords must be 6 digits
you must cycle through 1M combinations (online)

he limited the attack on his own account to 1
guess per second, and
wrote a script that cleared the cookies set after
each guess

APP 02, King’s College London, 2 October 2012 – p. 5/15

http://arstechnica.com/security/2012/09/virgin-mobile-password-crack-risk/
http://arstechnica.com/security/2012/09/virgin-mobile-password-crack-risk/

Smash the Stack for Fun. . .
“smashing the stack attacks” or “buffer overflow
attacks”
one of the most popular attacks
(> 50% of security incidents reported at CERT
are related to buffer overflows)

made popular in an article by Elias Levy
(also known as Aleph One):

“Smashing The Stack For Fun and Profit”

http://www.phrack.org, Issue 49, Article 14

APP 02, King’s College London, 2 October 2012 – p. 6/15

http://www.phrack.org

The Problem

The basic problem is that library routines look as
follows:

1 void strcpy(char *src, char *dst) {
2 int i = 0;
3 while (src[i] != "\0") {
4 dst[i] = src[i];
5 i = i + 1;
6 }
7 }

the resulting problems are often remotely
exploitable
can be used to circumvents all access control

APP 02, King’s College London, 2 October 2012 – p. 7/15

my_float is printed twice:

1 void foo (char *bar)
2 {
3 float my_float = 10.5; // in hex: \x41\x28\x00\x00
4 char buffer[28];
5

6 printf("my float value = %f\n", my_float);
7 strcpy(buffer, bar);
8 printf("my float value = %f\n", my_float);
9 }

10

11 int main (int argc, char **argv)
12 {
13 foo("my string is too long !!!!! ");
14 return 0;
15 }

APP 02, King’s College London, 2 October 2012 – p. 8/15

APP 02, King’s College London, 2 October 2012 – p. 9/15

APP 02, King’s College London, 2 October 2012 – p. 9/15

APP 02, King’s College London, 2 October 2012 – p. 9/15

1 int match(char *s1, char *s2) {
2 while(*s1 != ’\0’ && *s2 != ’\0’ && *s1 == *s2){
3 s1++; s2++;
4 }
5 return(*s1 - *s2);
6 }
7

8 void welcome() { printf("Welcome to the Machine!\n"); exit(0); }
9 void goodbye() { printf("Invalid identity, exiting!\n"); exit(1); }

10

11 main(){
12 char name[8];
13 char pw[8];
14

15 printf("login: ");
16 get_line(name);
17 printf("password: ");
18 get_line(pw);
19

20 if(match(name, pw) == 0)
21 welcome();
22 else
23 goodbye();
24 }

APP 02, King’s College London, 2 October 2012 – p. 10/15

A programmer might be careful, but still introducing
vulnerabilities:

1 // Since gets() is insecure and produces lots of warnings,
2 // I use my own input function instead.
3 char ch;
4 int i;
5

6 void get_line(char *dst) {
7 char buffer[8];
8 i = 0;
9 while ((ch = getchar()) != ’\n’) {

10 buffer[i++] = ch;
11 }
12 buffer[i] = ’\0’;
13 strcpy(dst, buffer);
14 }

APP 02, King’s College London, 2 October 2012 – p. 11/15

Payloads

the idea is you store some code as part to the
buffer
you then override the return address to execute
this payload

normally you start a root-shell

difficulty is to guess the place where to “jump”

APP 02, King’s College London, 2 October 2012 – p. 12/15

Payloads

the idea is you store some code as part to the
buffer
you then override the return address to execute
this payload

normally you start a root-shell
difficulty is to guess the place where to “jump”

APP 02, King’s College London, 2 October 2012 – p. 12/15

Payloads (2)

another difficulty is that the code is not allowed
to contain \x00:

xorl %eax, %eax

1 void strcpy(char *src, char *dst) {
2 int i = 0;
3 while (src[i] != "\0") {
4 dst[i] = src[i];
5 i = i + 1;
6 }
7 }

APP 02, King’s College London, 2 October 2012 – p. 13/15

Format String Vulnerability

string is nowhere used:

1 #include<stdio.h>
2 #include<string.h>
3

4 main(int argc, char **argv)
5 {
6 char *string = "This is a secret string\n";
7

8 printf(argv[1]);
9 }

this vulnerability can be used to read out the stack

APP 02, King’s College London, 2 October 2012 – p. 14/15

Protections against BO Attacks

use safe library functions
ensure stack data is not executable (can be
defeated)
address space randomisation (makes
one-size-fits-all more difficult)
choice of programming language (one of the
selling points of Java)

APP 02, King’s College London, 2 October 2012 – p. 15/15

