
Access Control and
Privacy Policies (1)

Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides: KEATS

APP 01, King's College London, 25. September 2012 -- p. 1/33

APP 01, King's College London, 25. September 2012 -- p. 2/33

Security Engineers
Security engineers require a particular
mindset:

..

``Security engineers --- at least the good ones --- see the
world differently. They can't walk into a store without
noticing how they might shoplift. They can't use a
computer without wondering about the security
vulnerabilities. They can't vote without trying to figure
out how to vote twice. They just can't help it.'' Bruce
Schneier

APP 01, King's College London, 25. September 2012 -- p. 3/33

Chip-and-PIN

Chip-and-PIN was introduced in the UK in 2004
before that customers had to sign a receipt

Is Chip-and-PIN a more secure system?

(Some other countries still use the old method.)

APP 01, King's College London, 25. September 2012 -- p. 4/33

Yes …

..
``Chip-and-PIN is so effective in this country [UK] that
fraudsters are starting to move their activities overseas,''
said Emile Abu-Shakra, spokesman for Lloyds TSB (in
the Guardian, 2006).

mag-stripe cards cannot be cloned anymore
stolen or cloned cards need to be used abroad
fraud on lost, stolen and counterfeit credit cards
was down £60m (24%) on 2004's figure

APP 01, King's College London, 25. September 2012 -- p. 5/33

But let's see …

APP 01, King's College London, 25. September 2012 -- p. 6/33

Bank

costumer / you

But let's see …

APP 01, King's College London, 25. September 2012 -- p. 6/33

Bank

costumer / you

.....

But let's see …

APP 01, King's College London, 25. September 2012 -- p. 6/33

Bank

costumer / you

.....

.....

.....

But let's see …

APP 01, King's College London, 25. September 2012 -- p. 6/33

Bank

costumer / you

.....

.....

.....

card
terminal
producer

.....

Chip-and-PIN

A ``tamperesitant'' terminal playing Tetris on
youtube.
(http://www.youtube.com/watch?v=wWTzkD9M0sU)

APP 01, King's College London, 25. September 2012 -- p. 7/33

http://www.youtube.com/watch?v=wWTzkD9M0sU
http://www.youtube.com/watch?v=wWTzkD9M0sU

Chip-and-PIN

in 2006, Shell petrol stations stopped accepting
Chip-and-PIN after £1m had been stolen from
customer accounts
in 2008, hundreds of card readers for use in
Britain, Ireland, the Netherlands, Denmark, and
Belgium had been expertly tampered with shortly
after manufacture so that details and PINs of
credit cards were sent during the 9 months before
over mobile phone networks to criminals in
Lahore, Pakistan

APP 01, King's College London, 25. September 2012 -- p. 8/33

Chip-and-PIN is Broken

man-in-the-middle attacks by the group around
Ross Anderson

APP 01, King's College London, 25. September 2012 -- p. 9/33

on BBC Newsnight
in 2010 or youtube

http://www.youtube.com/watch?v=JPAX32lgkrw

Chip-and-PIN is Really Broken

same group successfully attacked this year card
readers and ATM machines
the problem: several types of ATMs generate
poor random numbers, which are used as nonces

APP 01, King's College London, 25. September 2012 -- p. 10/33

The Problem …

APP 01, King's College London, 25. September 2012 -- p. 11/33

Bank

terminal
producer

costumer / you

.....

.....

.....

.....

the burden of proof for fraud and financial liability
was shifted to the costumer

Being Screwed Again

Responsibility
``You understand that you are financially
responsible for all uses of RBS Secure.''
https://www.rbssecure.co.uk/rbs/tdsecure/terms_of_use.jsp

APP 01, King's College London, 25. September 2012 -- p. 12/33

https://www.rbssecure.co.uk/rbs/tdsecure/terms_of_use.jsp

Web Applications

APP 01, King's College London, 25. September 2012 -- p. 13/33

Servers from
Dot.com Inc.

...

Client(s)

What are pitfalls and best practices?

Web Applications

APP 01, King's College London, 25. September 2012 -- p. 13/33

Servers from
Dot.com Inc.

.....
GET request

Client(s)

What are pitfalls and best practices?

Web Applications

APP 01, King's College London, 25. September 2012 -- p. 13/33

Servers from
Dot.com Inc.

.....
webpage

Client(s)

What are pitfalls and best practices?

Web Applications

APP 01, King's College London, 25. September 2012 -- p. 13/33

Servers from
Dot.com Inc.

.....
POST data

Client(s)

What are pitfalls and best practices?

Scala + Play

a simple response from the server:

1 package c o n t r o l l e r s
2 import play . api .mvc._
3
4 object Application extends Control ler {
5
6 // answering a GET request
7 val index = Action { request =>
8 Ok(” Hello world ! ”)
9 }

10 }

alternative response:
Ok(”<H1>Hello world!</H1>”).as(HTML)

APP 01, King's College London, 25. September 2012 -- p. 14/33

1 object Application extends Control ler {
2
3 // GET request -> present log in form
4 val index = Action { request =>
5
6 val form =
7 ”””<form method=”post”>
8 Login : <input type=”text ” name=”log in”>

9 Password : <input type=”password” name=”password”>

10 <input type=”submit”></form>”””
11
12 Ok(form) . as (HTML)
13 }
14
15 // POST data : process ing the log in data
16 val rece ive = Action { request =>
17
18 val form_data = Form (tuple (” log in ” -> text , ”password” -> text))
19
20 val (login , password) = form_data . bindFromRequest () (request) . get
21
22 Ok(”Received log in : ” + log in + ” and password : ” + password)
23 }
24 }

APP 01, King's College London, 25. September 2012 -- p. 15/33

Cookies

APP 01, King's College London, 25. September 2012 -- p. 16/33

Servers from
Dot.com Inc.

.......
GET request
..

read a cookie
Client

Cookies

APP 01, King's College London, 25. September 2012 -- p. 16/33

Servers from
Dot.com Inc.

.......
GET request
..

read a cookie
Client

Cookies

APP 01, King's College London, 25. September 2012 -- p. 16/33

Servers from
Dot.com Inc.

.......
webpage

..

write a cookie
Client

Cookies

APP 01, King's College London, 25. September 2012 -- p. 16/33

Servers from
Dot.com Inc.

.......
webpage

..

write a cookie
Client

cookies: max 4KB data
cookie theft, cross-site scripting attacks
session cookies, persistent cookies, HttpOnly cookies,
third-party cookies, zombie cookies

Cookies

APP 01, King's College London, 25. September 2012 -- p. 16/33

Servers from
Dot.com Inc.

.......
webpage

..

write a cookie
Client

cookies: max 4KB data
cookie theft, cross-site scripting attacks
session cookies, persistent cookies, HttpOnly cookies,
third-party cookies, zombie cookies

..

EU Privacy Directive about Cookies:
``In May 2011, a European Union law was passed stating
that websites that leave non-essential cookies on
visitors' devices have to alert the visitor and get
acceptance from them. This law applies to both
individuals and businesses based in the EU regardless of
the nationality of their website's visitors or the location
of their web host. It is not enough to simply update a
website's terms and conditions or privacy policy. The
deadline to comply with the new EU cookie law was
26th May 2012 and failure to do so could mean a fine of
up to £500,000.'' →BBC News

While cookies are per web-page, this can be
easily circumvented.

APP 01, King's College London, 25. September 2012 -- p. 17/33

Pet Store
Dot.com

Dating.com
Evil-Ad-No
Privacy.com

you

.....

.....
.........

My First Webapp

GET request:
...1 read the cookie from client
...2 if none is present, set visits to 0
...3 if cookie is present, extract visits counter
...4 if visits is greater or equal 10,

print a valued customer message
otherwise just a normal message

...5 increase visits by 1 and store new cookie with
client

APP 01, King's College London, 25. September 2012 -- p. 18/33

1 object Application extends Control ler {
2
3 def gt_cookie (c : Option [Cookie]) : Int = c .map(_. value) match {
4 case Some(s) i f (s . f o r a l l (_. i s D i g i t)) => s . toInt
5 case _ => 0
6 }
7
8 def mk_cookie(i : Int) : Cookie = {
9 Cookie (” v i s i t s ” , i . toStr ing)

10 }
11
12 // GET request : read cookie data f i r s t
13 def index = Action { request =>
14
15 val v i s i t s_cookie = request . cookies . get (” v i s i t s ”)
16 val v i s i t s = gt_cookie (v i s i t s_cookie)
17
18 val msg1 = ”You are a valued customer who has v i s i t e d th i s s i t e %d times . ”
19 val msg2 = ”You have v i s i t e d th i s s i t e %d times . ”
20 val msg =
21 i f (v i s i t s >= 10) msg1 . format (v i s i t s) e l s e msg2 . format (v i s i t s)
22
23 //send with new cookie
24 Ok(msg) . as (HTML) . withCookies (mk_cookie(v i s i t s + 1))
25 }
26 }

cookie value encoded as hash
APP 01, King's College London, 25. September 2012 -- p. 19/33

data integrity needs to be ensured
APP 01, King's College London, 25. September 2012 -- p. 20/33

1 object Application extends Control ler {
2
3 //SHA-1 , SHA-256
4 def mk_hash(s : Str ing) : Str ing = {
5 val hash_fun = MessageDigest . getInstance (”SHA-1 ”)
6 hash_fun . d igest (s . getBytes) .map{ ”%02x” . format (_) } . mkString
7 }
8
9 def gt_cookie (c : Option [Cookie]) : Int =

10 c .map(_. value . s p l i t (”/”)) match {
11 case Some(Array (s , h))
12 i f (s . f o r a l l (_. i s D i g i t) && mk_hash(s) == h) => s . toInt
13 case _ => 0
14 }
15
16 def mk_cookie(i : Int) : Cookie = {
17 val s = i . toStr ing
18 Cookie (” v i s i t s ” , s + ”/” + mk_hash(s))
19 }
20
21 def index = Action { request => . . . }
22 }

the counter/hash pair is intended to prevent tampering
APP 01, King's College London, 25. September 2012 -- p. 21/33

SHA-1

SHA-1 is a cryptographic hash function
(MD5, SHA-256, SHA-512, …)
message → digest
no known attack exists, except brute force

but dictionary attacks are very effective for
extracting passwords (later)

APP 01, King's College London, 25. September 2012 -- p. 22/33

SHA-1

SHA-1 is a cryptographic hash function
(MD5, SHA-256, SHA-512, …)
message → digest
no known attack exists, except brute force

but dictionary attacks are very effective for
extracting passwords (later)

APP 01, King's College London, 25. September 2012 -- p. 22/33

1 object Application extends Control ler {
2
3 val s a l t = ”my secre t key”
4
5 //SHA-1 , SHA-256 + s a l t
6 def mk_hash(s : Str ing) : Str ing = {
7 val hash_fun = MessageDigest . getInstance (”SHA-1 ”)
8 hash_fun . d igest ((s + s a l t) . getBytes) .map{ ”%02x” . format (_) } . mkString
9 }

10
11 def gt_cookie (c : Option [Cookie]) : Int =
12 c .map(_. value . s p l i t (”/”)) match {
13 case Some(Array (s , h))
14 i f (s . f o r a l l (_. i s D i g i t) && mk_hash(s) == h) => s . toInt
15 case _ => 0
16 }
17
18 def mk_cookie(i : Int) : Cookie = {
19 val s = i . toStr ing
20 Cookie (” v i s i t s ” , s + ”/” + mk_hash(s))
21 }
22
23 def index = Action { request => . . . }
24 }

APP 01, King's College London, 25. September 2012 -- p. 23/33

.....
should be random

.....

Unix Passwords

passwords are not stored in clear text
instead /etc/shadow contains

name:1QIGCa$/ruJs8AvmrknzKTzM2TYE.:other_info

$ is separator
1 is MD5 (actually SHA-512 is used nowadays, 6)
QIGCa is salt
ruJs8AvmrknzKTzM2TYE → password + salt

(openssl passwd -1 -salt QIGCa pippo)

APP 01, King's College London, 25. September 2012 -- p. 24/33

Password Blunders

in late 2009, when an SQL injection attack
against online games service RockYou.com
exposed 32 million plaintext passwords
1.3 million Gawker credentials exposed in
December 2010 containing unsalted(?) MD5
hashes
June 6th, 2012, 6 million unsalted SHA-1
passwords were leaked from linkedIn

Web user maintains 25 separate accounts but uses just 6.5
passwords

APP 01, King's College London, 25. September 2012 -- p. 25/33

Brute Forcing Passwords
How fast can hackers crack SHA-1 passwords?

The answer is 2 billion attempts per second
using a Radeon HD 7970

password length time
5 letters 5 secs
6 letters 500 secs
7 letters 13 hours
8 letters 57 days
9 letters 15 years

5 letters ≈ 1005 = 10 billion combinations
(1 letter - upper case, lower case, digits, symbols ≈ 100)

APP 01, King's College London, 25. September 2012 -- p. 26/33

Brute Forcing Passwords
How fast can hackers crack SHA-1 passwords?
The answer is 2 billion attempts per second
using a Radeon HD 7970

password length time
5 letters 5 secs
6 letters 500 secs
7 letters 13 hours
8 letters 57 days
9 letters 15 years

5 letters ≈ 1005 = 10 billion combinations
(1 letter - upper case, lower case, digits, symbols ≈ 100)

APP 01, King's College London, 25. September 2012 -- p. 26/33

graphics card
ca. £300

Passwords

How to recover from a breakin?

Do not send passwords in plain text.
Security questions are tricky to get right.
QQ (Chinese Skype) authenticates you via
contacts.

APP 01, King's College London, 25. September 2012 -- p. 27/33

Passwords

How to recover from a breakin?

Do not send passwords in plain text.
Security questions are tricky to get right.
QQ (Chinese Skype) authenticates you via
contacts.

APP 01, King's College London, 25. September 2012 -- p. 27/33

This Course

break-ins (buffer overflows)
access control
(role based, data security / data integrity)
protocols
(specification)
access control logic
privacy

Scott McNealy:
``You have zero privacy anyway. Get over it.''

APP 01, King's College London, 25. September 2012 -- p. 28/33

Books + Homework
there is no single book I am following

The question ``Is this relevant for the exams'' is
not appreciated!
Whatever is in the homework sheets (and is not
marked optional) is relevant for the exam. No
code needs to be written.

APP 01, King's College London, 25. September 2012 -- p. 29/33

Books + Homework
there is no single book I am following

The question ``Is this relevant for the exams'' is
not appreciated!
Whatever is in the homework sheets (and is not
marked optional) is relevant for the exam. No
code needs to be written.

APP 01, King's College London, 25. September 2012 -- p. 29/33

Take-Home Points

Never store passwords in plain text.

Always salt your hashes!

Use an existing algorithm; do not write your own!

APP 01, King's College London, 25. September 2012 -- p. 30/33

Thinking as a Defender
What are you trying to protect?
What properties are you trying to enforce?

Who are the attackers? Capabilities?
Motivations?
What kind of attack are we trying to protect?
Who can fix any vulnerabilities?

What are the weaknesses of the system?
What will successful attacks cost us?
How likely are the attacks?

Security almost always is not free!
APP 01, King's College London, 25. September 2012 -- p. 31/33

The Security Mindset

How things can go wrong.
Think outside the box.

The difference between being criminal is to only
think about how things can go wrong.

APP 01, King's College London, 25. September 2012 -- p. 32/33

Maps in Scala
map takes a function, say f, and applies it to every
element of the list:

APP 01, King's College London, 25. September 2012 -- p. 33/33

List(1, 2, 3, 4, 5, 6, 7, 8, 9)

List(1, 4, 9, 16, 25, 36, 49, 64, 81)

