
Access Control and
Privacy Policies (7)

Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides: KEATS (also homework is there)

APP 07, King’s College London, 13 November 2012 – p. 1/22



Judgements

Γ ` F

Gamma
stands for a collection of formulas
(“assumptions”)

a single formula

entails sign

Gimel (Phoenician), Gamma (Greek), C and G (Latin), Gim (Arabic),
?? (Indian), Ge (Cyrillic)

APP 07, King’s College London, 13 November 2012 – p. 2/22



Judgements

Γ ` F

Gamma
stands for a collection of formulas
(“assumptions”)

a single formula

entails sign

Gimel (Phoenician), Gamma (Greek), C and G (Latin), Gim (Arabic),
?? (Indian), Ge (Cyrillic)

APP 07, King’s College London, 13 November 2012 – p. 2/22



Judgements

Γ ` F

Gamma
stands for a collection of formulas
(“assumptions”)

a single formula

entails sign

Gimel (Phoenician), Gamma (Greek), C and G (Latin), Gim (Arabic),
?? (Indian), Ge (Cyrillic)

APP 07, King’s College London, 13 November 2012 – p. 2/22



Inference Rules

Γ ` F1 Γ ` F2

Γ ` F1 ∧ F2

conclusion

premisses

APP 07, King’s College London, 13 November 2012 – p. 3/22



Inference Rules

Γ ` F1 Γ ` F2

Γ ` F1 ∧ F2

conclusion

premisses

APP 07, King’s College London, 13 November 2012 – p. 3/22

P saysF ` Q saysF ∧ P saysG



Inference Rules

Γ ` F1 Γ ` F2

Γ ` F1 ∧ F2

conclusion

premisses

APP 07, King’s College London, 13 November 2012 – p. 3/22

P saysF︸ ︷︷ ︸
Γ

` Q saysF︸ ︷︷ ︸
F1

∧P saysG︸ ︷︷ ︸
F2



Γ ` F1 ⇒ F2 Γ ` F1

Γ ` F2

Γ ` F
Γ ` P saysF

APP 07, King’s College London, 13 November 2012 – p. 4/22



Digression: Proofs in CS

Formal proofs in CS sound like science fiction?

Completely irrelevant!

in 2008, verification of a small C-compiler

in 2010, verification of a micro-kernel operating
system (approximately 8700 loc)

200k loc of proof
25 - 30 person years
found 160 bugs in the C code (144 by the proof)

APP 07, King’s College London, 13 November 2012 – p. 5/22



Digression: Proofs in CS

Formal proofs in CS sound like science fiction?
Completely irrelevant!

in 2008, verification of a small C-compiler

in 2010, verification of a micro-kernel operating
system (approximately 8700 loc)

200k loc of proof
25 - 30 person years
found 160 bugs in the C code (144 by the proof)

APP 07, King’s College London, 13 November 2012 – p. 5/22



Digression: Proofs in CS

Formal proofs in CS sound like science fiction?
Completely irrelevant!

in 2008, verification of a small C-compiler

in 2010, verification of a micro-kernel operating
system (approximately 8700 loc)

200k loc of proof
25 - 30 person years
found 160 bugs in the C code (144 by the proof)

APP 07, King’s College London, 13 November 2012 – p. 5/22



Bob Harper
(CMU)

Frank Pfenning
(CMU)

published a proof about a
specification in a journal
(2005),∼31pages

Andrew Appel
(Princeton)

relied on their proof in a
security critical application

APP 07, King’s College London, 13 November 2012 – p. 6/22



Bob Harper
(CMU)

Frank Pfenning
(CMU)

published a proof about a
specification in a journal
(2005),∼31pages

Andrew Appel
(Princeton)

relied on their proof in a
security critical application

APP 07, King’s College London, 13 November 2012 – p. 6/22



Proof-Carrying Code

APP 07, King’s College London, 13 November 2012 – p. 7/22

Idea:

user:
untrusted

code

developer
—

web
server

proof-
checker

code

certificate
a proof



Proof-Carrying Code

APP 07, King’s College London, 13 November 2012 – p. 7/22

Idea:

user:
untrusted

code

developer
—

web
server

proof-
checker

code

certificate
a proof



Proof-Carrying Code

APP 07, King’s College London, 13 November 2012 – p. 7/22

Idea:

user:
untrusted

code

developer
—

web
server proof-

checker

code

certificate
a proof



APP 07, King’s College London, 13 November 2012 – p. 8/22

Spec Proof Alg

1st
solution Spec+ex Proof Alg

2nd
solution Spec Proof Alg-ex

3rd
solution Spec Proof Alg

2h



APP 07, King’s College London, 13 November 2012 – p. 8/22

Spec Proof Alg

1st
solution Spec+ex Proof Alg

2nd
solution Spec Proof Alg-ex

3rd
solution Spec Proof Alg

2h



APP 07, King’s College London, 13 November 2012 – p. 8/22

Spec Proof Alg

1st
solution Spec+ex Proof Alg

2nd
solution Spec Proof Alg-ex

3rd
solution Spec Proof Alg

2h



APP 07, King’s College London, 13 November 2012 – p. 8/22

Spec Proof Alg

1st
solution Spec+ex Proof Alg

2nd
solution Spec Proof Alg-ex

3rd
solution Spec Proof Alg

2h



APP 07, King’s College London, 13 November 2012 – p. 8/22

Spec Proof Alg

1st
solution Spec+ex Proof Alg

2nd
solution Spec Proof Alg-ex

3rd
solution Spec Proof Alg

2h



Mars Pathfinder Mission 1997

despite NASA’s famous testing procedure, the
lander crashed frequently on Mars
problem was an algorithm not used in the OS

APP 07, King’s College London, 13 November 2012 – p. 9/22



Priority Inheritance Protocol
an algorithm that is widely used in real-time
operating systems
hash been “proved” correct by hand in a paper in
1983
but the first algorithm turned out to be
incorrect, despite the “proof”

we specified the algorithm and then proved that
the specification makes “sense”
we implemented our specification in C on top of
PINTOS (Stanford)
our implementation was much more efficient than
their reference implementation

APP 07, King’s College London, 13 November 2012 – p. 10/22



Priority Inheritance Protocol
an algorithm that is widely used in real-time
operating systems
hash been “proved” correct by hand in a paper in
1983
but the first algorithm turned out to be
incorrect, despite the “proof”

we specified the algorithm and then proved that
the specification makes “sense”
we implemented our specification in C on top of
PINTOS (Stanford)
our implementation was much more efficient than
their reference implementation

APP 07, King’s College London, 13 November 2012 – p. 10/22



Regular Expression Matching

0 5 10 15 20 25 30
0

5

10

15

20

25

30

as

se
cs

Python

Scala V1

Scala V2 with simplifications

0 2000 4000 6000 8000 10000
0

1

2

3

4

5

6

as

se
cs

Scala Internal

Scala V3

I needed a proof in order to make sure my
program is correct

End Digression.
(Our small proof is 0.0005% of the OS-proof.)

APP 07, King’s College London, 13 November 2012 – p. 11/22



Regular Expression Matching

0 5 10 15 20 25 30
0

5

10

15

20

25

30

as

se
cs

Python

Scala V1

Scala V2 with simplifications

0 2000 4000 6000 8000 10000
0

1

2

3

4

5

6

as

se
cs

Scala Internal

Scala V3

I needed a proof in order to make sure my
program is correct

End Digression.
(Our small proof is 0.0005% of the OS-proof.)

APP 07, King’s College London, 13 November 2012 – p. 11/22



Regular Expression Matching

0 5 10 15 20 25 30
0

5

10

15

20

25

30

as

se
cs

Python

Scala V1

Scala V2 with simplifications

0 2000 4000 6000 8000 10000
0

1

2

3

4

5

6

as

se
cs

Scala Internal

Scala V3

I needed a proof in order to make sure my
program is correct

End Digression.
(Our small proof is 0.0005% of the OS-proof.)

APP 07, King’s College London, 13 November 2012 – p. 11/22



One More Thing
I arrived at King’s last year
Maxime Crochemore told me about a string
algorithm (suffix sorting) that appeared at a
conference in 2007 (ICALP)
“horribly incomprehensible”, no implementation,
but claims to be the best O(n + k) algorithm

Jian Jiang found 1 error and 1 superfluous step
he received 88% for the project and won the
prize for the best 7CCSMPRJ project
no proof . . . yet

APP 07, King’s College London, 13 November 2012 – p. 12/22



One More Thing
I arrived at King’s last year
Maxime Crochemore told me about a string
algorithm (suffix sorting) that appeared at a
conference in 2007 (ICALP)
“horribly incomprehensible”, no implementation,
but claims to be the best O(n + k) algorithm

Jian Jiang found 1 error and 1 superfluous step
he received 88% for the project and won the
prize for the best 7CCSMPRJ project
no proof . . . yet

APP 07, King’s College London, 13 November 2012 – p. 12/22



Trusted Third Party

Simple protocol for establishing a secure
connection via a mutually trusted 3rd party
(server):

Message 1 A→ S : A,B
Message 2 S → A : {KAB}KAS

and {{KAB}KBS
}KAS

Message 3 A→ B : {KAB}KBS

Message 4 A→ B : {m}KAB

APP 07, King’s College London, 13 November 2012 – p. 13/22



Encrypted Messages

Alice sends a message m

Alice says m

Alice sends an encrypted message m
(with key K)

Alice says {m}K

Decryption of Alice’s message
Γ ` Alice says {m}K Γ ` Alice saysK

Γ ` Alice says m

APP 07, King’s College London, 13 November 2012 – p. 14/22



Encrypted Messages

Alice sends a message m

Alice says m

Alice sends an encrypted message m
(with key K)

Alice says {m}K

Decryption of Alice’s message
Γ ` Alice says {m}K Γ ` Alice saysK

Γ ` Alice says m

APP 07, King’s College London, 13 November 2012 – p. 14/22



Encrypted Messages

Alice sends a message m

Alice says m

Alice sends an encrypted message m
(with key K)

Alice says {m}K

Decryption of Alice’s message
Γ ` Alice says {m}K Γ ` Alice saysK

Γ ` Alice says m

APP 07, King’s College London, 13 November 2012 – p. 14/22



Encryption

Encryption of a message
Γ ` Alice says m Γ ` Alice saysK

Γ ` Alice says {m}K

APP 07, King’s College London, 13 November 2012 – p. 15/22



Trusted Third Party
Alice calls Sam for a key to communicate with Bob
Sam responds with a key that Alice can read and
a key Bob can read (pre-shared)
Alice sends the message encrypted with the key
and the second key it recieved

A sends S : Connect(A,B)
S sends A : {KAB}KAS

and {{KAB}KBS
}KAS

A sends B : {KAB}KBS

A sends B : {m}KAB

APP 07, King’s College London, 13 November 2012 – p. 16/22



Sending Rule

Γ ` P says F Γ ` P sends Q : F

Γ ` Q says F

P sendsQ : F
def
=

(P saysF )⇒ (Q saysF )

APP 07, King’s College London, 13 November 2012 – p. 17/22



Sending Rule

Γ ` P says F Γ ` P sends Q : F

Γ ` Q says F

P sendsQ : F
def
=

(P saysF )⇒ (Q saysF )

APP 07, King’s College London, 13 November 2012 – p. 17/22



Trusted Third Party

A sends S : Connect(A,B)
S says (Connect(A,B)⇒

{KAB}KAS
∧ {{KAB}KBS

}KAS
)

S sends A : {KAB}KAS
∧ {{KAB}KBS

}KAS

A sends B : {KAB}KBS

A sends B : {m}KAB

Γ ` B saysm?

APP 07, King’s College London, 13 November 2012 – p. 18/22



Trusted Third Party

A sends S : Connect(A,B)
S says (Connect(A,B)⇒

{KAB}KAS
∧ {{KAB}KBS

}KAS
)

S sends A : {KAB}KAS
∧ {{KAB}KBS

}KAS

A sends B : {KAB}KBS

A sends B : {m}KAB

Γ ` B saysm?

APP 07, King’s College London, 13 November 2012 – p. 18/22



Challenge-Response Protocol

an engine E and a transponder T share a key K

E sends out a nonce N (random number) to T

T responds with {N}K

if E receives {N}K from T , it starts engine

APP 07, King’s College London, 13 November 2012 – p. 19/22



Challenge-Response Protocol

E says N (start)
E sends T : N (challenge)
(T says N)⇒ (T sends E : {N}K∧

T sends E : Id(T )) (response)
T says K (key)
T says Id(T ) (identity)
(E says {N}K ∧ E says Id(T ))⇒

start_engine(T ) (engine)

Γ ` start_engine(T )?
APP 07, King’s College London, 13 November 2012 – p. 20/22



Exchange of a Fresh Key

assumption KAB is only known to A and B

A sendsB : A, {NA}KAB

B sendsA : {NA + 1, NB}KAB

A sendsB : {NB + 1}KAB

B sendsA : {Knew
AB , Nnew

B }KAB

We hope Knew
AB is only known to A and B.

Nnew
B is to be used in future messages

APP 07, King’s College London, 13 November 2012 – p. 21/22



Exchange of a Fresh Key

assumption KAB is only known to A and B

A sendsB : A, {NA}KAB

B sendsA : {NA + 1, NB}KAB

A sendsB : {NB + 1}KAB

B sendsA : {Knew
AB , Nnew

B }KAB

We hope Knew
AB is only known to A and B.

Nnew
B is to be used in future messages

APP 07, King’s College London, 13 November 2012 – p. 21/22



The Attack

An intruder I convinces B to accept an old
compromised key

A sendsB : A, {NA}KAB

B sendsA : {NA + 1, NB}KAB

A sendsB : {NB + 1}KAB

B sendsA : {Knew
AB , Nnew

B }KAB

APP 07, King’s College London, 13 November 2012 – p. 22/22



The Attack

An intruder I convinces B to accept an old
compromised key

A sendsB : A, {NA}KAB

B sendsA : {NA + 1, NB}KAB

A sendsB : {NB + 1}KAB

B sendsA : {Knew
AB , Nnew

B }KAB

APP 07, King’s College London, 13 November 2012 – p. 22/22


