
Security Engineering (9)

Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides: KEATS (also homework is there)

SEN 09, King’s College London – p. 1/41

SEN 09, King’s College London – p. 2/41

Old-Fashioned Eng. vs. CS

bridges:
engineers can “look” at a
bridge and have a pretty
good intuition about
whether it will hold up or not
(redundancy; predictive
theory)

code:
programmers have very
little intuition about their
code; often it is too
expensive to have
redundancy; not
“continuous”

SEN 09, King’s College London – p. 3/41

Trusting Computing Base
When considering whether a system meets some
security objectives, it is important to consider
which parts of that system are trusted in order to
meet that objective (TCB).

The smaller the TCB, the less effort it takes to get
some confidence that it is trustworthy, by doing a
code review or by performing some (penetration)
testing.
CPU, compiler, libraries, OS, NP ̸= P, random number generator, …

SEN 09, King’s College London – p. 4/41

Trusting Computing Base
When considering whether a system meets some
security objectives, it is important to consider
which parts of that system are trusted in order to
meet that objective (TCB).

The smaller the TCB, the less effort it takes to get
some confidence that it is trustworthy, by doing a
code review or by performing some (penetration)
testing.
CPU, compiler, libraries, OS, NP ̸= P, random number generator, …

SEN 09, King’s College London – p. 4/41

Dijkstra on Testing

“Program testing can be a very effective way to
show the presence of bugs, but it is hopelessly
inadequate for showing their absence.”

unfortunately attackers exploit bugs (Satan’s
computer vs Murphy’s)

SEN 09, King’s College London – p. 5/41

Proving Programs to be Correct
Theorem: There are infinitely many prime numbers.
Proof …

similarly

Theorem: The program is doing what it is supposed to
be doing.
Long, long proof …

This can be a gigantic proof. The only hope is to have help
from the computer. ‘Program’ is here to be understood to be
quite general (protocols, OS, …).

SEN 09, King’s College London – p. 6/41

Mars Pathfinder Mission 1997

despite NASA’s famous testing procedures, the
lander crashed frequently on Mars
a scheduling algorithm was not used in the OS

SEN 09, King’s College London – p. 7/41

SEN 09, King’s College London – p. 8/41

a

a

time0

low priority

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

SEN 09, King’s College London – p. 8/41

a

a

time0

low priority

high priority

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

SEN 09, King’s College London – p. 8/41

a

a

time0

low priority

high priority

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

SEN 09, King’s College London – p. 8/41

a

a

locked a resource

time0

low priority

high priority

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

SEN 09, King’s College London – p. 8/41

a

a

locked a resource

time0

low priority

high priority

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

SEN 09, King’s College London – p. 8/41

a

a

locked a resource

time0

low priority

high priority

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

SEN 09, King’s College London – p. 8/41

a

a

locked a resource

time0

low priority

high priority

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

SEN 09, King’s College London – p. 8/41

a

a

locked a resource

time0

low priority

high priority

medium pr.

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

SEN 09, King’s College London – p. 8/41

a

a

locked a resource

time0

low priority

high priority

medium pr.

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

SEN 09, King’s College London – p. 8/41

a

a

locked a resource

time0

low priority

high priority

medium pr.

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

SEN 09, King’s College London – p. 8/41

a

a

locked a resource

time0

low priority

high priority

medium pr.

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

SEN 09, King’s College London – p. 8/41

a

a

locked a resource

…

time0

low priority

high priority

medium pr.

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

SEN 09, King’s College London – p. 8/41

a

a

locked a resource

time0

low priority

high priority

medium pr.

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

SEN 09, King’s College London – p. 8/41

a

alocked a resource

time0

low priority

high priority

medium pr.

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

SEN 09, King’s College London – p. 8/41

a

alocked a resource

time0

low priority

high priority

medium pr.

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

Priority Inheritance Scheduling

Let a low priority process L temporarily inherit
the high priority of H until L leaves the critical
section unlocking the resource.

Once the resource is unlocked L returns to its
original priority level.

SEN 09, King’s College London – p. 9/41

SEN 09, King’s College London – p. 10/41

a

a

AL BL AR BR

time0

low priority

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

SEN 09, King’s College London – p. 10/41

a

a

AL BL AR BR

time0

low priority

high priority

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

SEN 09, King’s College London – p. 10/41

a

a

AL BL AR BR

A

time0

low priority

high priority

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

SEN 09, King’s College London – p. 10/41

a

a

AL BL AR BR

A B

time0

low priority

high priority

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

SEN 09, King’s College London – p. 10/41

a

a

AL BL

AR BR

A B

time0

low priority

high priority

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

SEN 09, King’s College London – p. 10/41

a

a

AL BL

AR BR

A B

time0

low priority

high priority

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

SEN 09, King’s College London – p. 10/41

a

a

AL BL

AR

BR

A B

time0

low priority

high priority

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

SEN 09, King’s College London – p. 10/41

a

a

AL BL

AR

BR

A B

time0

low priority

high priority

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

SEN 09, King’s College London – p. 10/41

a

a

AL BL

AR

BR

A B

time0

low priority

high priority

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

SEN 09, King’s College London – p. 10/41

a

a

AL BL

AR

BR

A B

time0

low priority

high priority

medium pr.

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

SEN 09, King’s College London – p. 10/41

a

a

AL BL

AR

BR

A B

time0

low priority

high priority

medium pr.

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

Priority Inheritance Scheduling

Let a low priority process L temporarily inherit
the high priority of H until L leaves the critical
section unlocking the resource.

Once the resource is unlocked L returns to its
original priority level. BOGUS

…L needs to switch to the highest remaining
priority of the threads that it blocks.

this error is already known since around 1999

SEN 09, King’s College London – p. 11/41

Priority Inheritance Scheduling

Let a low priority process L temporarily inherit
the high priority of H until L leaves the critical
section unlocking the resource.

Once the resource is unlocked L returns to its
original priority level. BOGUS

…L needs to switch to the highest remaining
priority of the threads that it blocks.

this error is already known since around 1999

SEN 09, King’s College London – p. 11/41

by Rajkumar, 1991
“it resumes the priority it had at the point of entry into
the critical section”

SEN 09, King’s College London – p. 12/41

by Jane Liu, 2000
“The job Jl executes at its inherited priority until it
releases R; at that time, the priority of Jl returns to its
priority at the time when it acquires the resource R.”
gives pseudo code and totally bogus data structures
interesting part “left as an exercise”

SEN 09, King’s College London – p. 13/41

by Laplante and Ovaska, 2011 ($113.76)
“when [the task] exits the critical section that caused the
block, it reverts to the priority it had when it entered
that section”

SEN 09, King’s College London – p. 14/41

by Silberschatz, Galvin, and Gagne, 2013
(OS-bible)
“Upon releasing the lock, the [low-priority] thread will
revert to its original priority.”

SEN 09, King’s College London – p. 15/41

Priority Scheduling
a scheduling algorithm that is widely used in
real-time operating systems
has been “proved” correct by hand in a paper in
1983
but this algorithm turned out to be incorrect,
despite its “proof”

we corrected the algorithm and then really
proved that it is correct
we implemented this algorithm in a small OS
called PINTOS (used for teaching at Stanford)
our implementation was much more efficient
than their reference implementation

SEN 09, King’s College London – p. 16/41

Priority Scheduling
a scheduling algorithm that is widely used in
real-time operating systems
has been “proved” correct by hand in a paper in
1983
but this algorithm turned out to be incorrect,
despite its “proof”

we corrected the algorithm and then really
proved that it is correct
we implemented this algorithm in a small OS
called PINTOS (used for teaching at Stanford)
our implementation was much more efficient
than their reference implementation

SEN 09, King’s College London – p. 16/41

Design of AC-Policies

”what you specify is what you get but
not necessarily what you want…”

main work by Chunhan Wu (PhD-student)

SEN 09, King’s College London – p. 17/41

Testing Policies

core
system

your system

policy +

SEN 09, King’s College London – p. 18/41

Testing Policies

core
system

your system

policy +

a seed
virus, Trojan

SEN 09, King’s College London – p. 18/41

Testing Policies

core
system

your system

policy +

tainted

SEN 09, King’s College London – p. 18/41

Testing Policies

core
system

your system

policy +

tainted

SEN 09, King’s College London – p. 18/41

Testing Policies

core
system

your system

policy +

tainted

SEN 09, King’s College London – p. 18/41

Testing Policies

core
system

your system

policy +

tainted

…

SEN 09, King’s College London – p. 18/41

Big Proofs in CS (1)
Formal proofs in CS sound like science fiction?
Completely irrelevant! Lecturer gone mad?

in 2008, verification of a small C-compiler
“if my input program has a certain behaviour, then the
compiled machine code has the same behaviour”
is as good as gcc -O1, but much less buggy

SEN 09, King’s College London – p. 19/41

Big Proofs in CS (1)
Formal proofs in CS sound like science fiction?
Completely irrelevant! Lecturer gone mad?
in 2008, verification of a small C-compiler

“if my input program has a certain behaviour, then the
compiled machine code has the same behaviour”
is as good as gcc -O1, but much less buggy

SEN 09, King’s College London – p. 19/41

Fuzzy Testing C-Compilers
tested GCC, LLVM, others by randomly
generating C-programs
found more than 300 bugs in GCC and also many
in LLVM (some of them highest-level critical)

about CompCert:

“The striking thing about our CompCert results is that
the middle-end bugs we found in all other compilers are
absent. As of early 2011, the under-development version
of CompCert is the only compiler we have tested for
which Csmith cannot find wrong-code errors. This is
not for lack of trying: we have devoted about six
CPU-years to the task.”

SEN 09, King’s College London – p. 20/41

Big Proofs in CS (2)
in 2010, verification of a micro-kernel operating
system (approximately 8700 loc)

used in helicopters and mobile phones
200k loc of proof
25 - 30 person years
found 160 bugs in the C code (144 by the proof)

“Real-world operating-system kernel with an end-to-end
proof of implementation correctness and security
enforcement”

unhackable kernel (New Scientists, September
2015)

SEN 09, King’s College London – p. 21/41

Big Proofs in CS (2)
in 2010, verification of a micro-kernel operating
system (approximately 8700 loc)

used in helicopters and mobile phones
200k loc of proof
25 - 30 person years
found 160 bugs in the C code (144 by the proof)

“Real-world operating-system kernel with an end-to-end
proof of implementation correctness and security
enforcement”

unhackable kernel (New Scientists, September
2015)

SEN 09, King’s College London – p. 21/41

Big Proofs in CS (3)

verified TLS implementation

verified compilers (CompCert, CakeML)

verified distributed systems (Verdi)

verified OSes or OS components
(seL4, CertiKOS, Ironclad Apps, …)

verified cryptography

SEN 09, King’s College London – p. 22/41

How Did This Happen?

Lots of ways!
better programming languages

basic safety guarantees built in
powerful mechanisms for abstraction and modularity

better software development methodology
stable platforms and frameworks
better use of specifications
If you want to build software that works or is secure, it is
helpful to know what you mean by “work” and by “secure”!

SEN 09, King’s College London – p. 23/41

Goal
Remember the Bridges example?
Can we look at our programs and somehow
ensure they are secure/bug free/correct/secure?

Very hard: Anything interesting about programs
is equivalent to halting problem, which is
undecidable.

Solution: We avoid this “minor” obstacle by
being as close as possible of deciding the halting
problem, without actually deciding the halting
problem. ⇒ yes, no, do not know (static analysis)

SEN 09, King’s College London – p. 24/41

Goal
Remember the Bridges example?
Can we look at our programs and somehow
ensure they are secure/bug free/correct/secure?

Very hard: Anything interesting about programs
is equivalent to halting problem, which is
undecidable.

Solution: We avoid this “minor” obstacle by
being as close as possible of deciding the halting
problem, without actually deciding the halting
problem. ⇒ yes, no, do not know (static analysis)

SEN 09, King’s College London – p. 24/41

Goal
Remember the Bridges example?
Can we look at our programs and somehow
ensure they are secure/bug free/correct/secure?

Very hard: Anything interesting about programs
is equivalent to halting problem, which is
undecidable.

Solution: We avoid this “minor” obstacle by
being as close as possible of deciding the halting
problem, without actually deciding the halting
problem. ⇒ yes, no, do not know (static analysis)

SEN 09, King’s College London – p. 24/41

What is Static Analysis?

depending on some initial input, a program
(behaviour) will “develop” over time.

SEN 09, King’s College London – p. 25/41

What is Static Analysis?

SEN 09, King’s College London – p. 26/41

What is Static Analysis?

SEN 09, King’s College London – p. 27/41

What is Static Analysis?

to be avoided

SEN 09, King’s College London – p. 28/41

What is Static Analysis?

this needs more work

SEN 09, King’s College London – p. 29/41

What is Static Analysis?

for example no key is leaked

SEN 09, King’s College London – p. 30/41

Concrete Example: Sign-Analysis
⟨Exp⟩ ::= ⟨Exp⟩ + ⟨Exp⟩

| ⟨Exp⟩ * ⟨Exp⟩
| ⟨Exp⟩ = ⟨Exp⟩
| ⟨num⟩
| ⟨var⟩

⟨Stmt⟩ ::= ⟨label⟩ :
| ⟨var⟩ := ⟨Exp⟩
| jmp? ⟨Exp⟩ ⟨label⟩
| goto ⟨label⟩

⟨Prog⟩ ::= ⟨Stmt⟩ …⟨Stmt⟩
SEN 09, King’s College London – p. 31/41

a := 1
n := 5

top: jmp? n = 0 done
a := a * n
n := n + -1
goto top

done:

Concrete Example: Sign-Analysis
⟨Exp⟩ ::= ⟨Exp⟩ + ⟨Exp⟩

| ⟨Exp⟩ * ⟨Exp⟩
| ⟨Exp⟩ = ⟨Exp⟩
| ⟨num⟩
| ⟨var⟩

⟨Stmt⟩ ::= ⟨label⟩ :
| ⟨var⟩ := ⟨Exp⟩
| jmp? ⟨Exp⟩ ⟨label⟩
| goto ⟨label⟩

⟨Prog⟩ ::= ⟨Stmt⟩ …⟨Stmt⟩
SEN 09, King’s College London – p. 32/41

n := 6
m1 := 0
m2 := 1

top: jmp? n = 0 done
tmp := m2
m2 := m1 + m2
m1 := tmp
n := n + -1
goto top

done:

Concrete Example: Sign-Analysis
⟨Exp⟩ ::= ⟨Exp⟩ + ⟨Exp⟩

| ⟨Exp⟩ * ⟨Exp⟩
| ⟨Exp⟩ = ⟨Exp⟩
| ⟨num⟩
| ⟨var⟩

⟨Stmt⟩ ::= ⟨label⟩ :
| ⟨var⟩ := ⟨Exp⟩
| jmp? ⟨Exp⟩ ⟨label⟩
| goto ⟨label⟩

⟨Prog⟩ ::= ⟨Stmt⟩ …⟨Stmt⟩
SEN 09, King’s College London – p. 33/41

Eval
[n]env

def
= n

[x]env
def
= env(x)

[e1 + e2]env
def
= [e1]env + [e2]env

[e1 ∗ e2]env
def
= [e1]env ∗ [e2]env

[e1 = e2]env
def
=

{
1 if [e1]env = [e2]env
0 otherwise

def eval_exp(e: Exp, env: Env) : Int = e match {
case Num(n) => n
case Var(x) => env(x)
case Plus(e1, e2) => eval_exp(e1, env) + eval_exp(e2, env)
case Times(e1, e2) => eval_exp(e1, env) * eval_exp(e2, env)
case Equ(e1, e2) =>

if (eval_exp(e1, env) == eval_exp(e2, env)) 1 else 0
}

SEN 09, King’s College London – p. 34/41

A program

a := 1
n := 5

top: jmp? n = 0 done
a := a * n
n := n + -1
goto top

done:

Some snippets

”” a := 1
n := 5

top: jmp? n = 0 done
a := a * n
n := n + -1
goto top

done:

top: jmp? n = 0 done
a := a * n
n := n + -1
goto top

done:

done:

SEN 09, King’s College London – p. 35/41

Eval for Stmts
Let sn be the snippets of a program

[nil]env
def
= env

[Label(l :) :: rest]env
def
= [rest]env

[x := e :: rest]env
def
= [rest](env[x:=[e]env])

[jmp? e l :: rest]env
def
=

{
[sn(l)]env if [e]env = 1
[rest]env otherwise

[goto l :: rest]env
def
= [sn(l)]env

Start with [sn(””)]∅

SEN 09, King’s College London – p. 36/41

Eval in Code
def eval(sn: Snips) : Env = {

def eval_stmts(sts: Stmts, env: Env) : Env = sts match {
case Nil => env
case Label(l)::rest => eval_stmts(rest, env)
case Assign(x, e)::rest =>

eval_stmts(rest, env + (x -> eval_exp(e, env)))
case Jmp(b, l)::rest =>

if (eval_exp(b, env) == 1) eval_stmts(sn(l), env)
else eval_stmts(rest, env)

case Goto(l)::rest => eval_stmts(sn(l), env)
}

eval_stmts(sn(””), Map())
}

SEN 09, King’s College London – p. 37/41

The Idea

a := 1
n := 5

top: jmp? n = 0 done
a := a * n
n := n + -1
goto top

done:

⇒
a := ’+’
n := ’+’

top: jmp? n = ’0’ done
a := a * n
n := n + ’-’
goto top

done:

Replace all constants and variables by either +, - or 0. What
we want to find out is what the sign of a and n is (they
should always positive).

SEN 09, King’s College London – p. 38/41

Sign Analysis?

e1 e2 e1 + e2
- - -
- 0 -
- + -, 0, +
0 x x
+ - -, 0, +
+ 0 +
+ + +

e1 e2 e1 ∗ e2
- - +
- 0 0
- + -
0 x 0
+ - -
+ 0 0
+ + +

SEN 09, King’s College London – p. 39/41

[n]env
def
=

{+} if n > 0
{−} if n < 0
{0} if n = 0

[x]env
def
= env(x)

[e1 + e2]env
def
= [e1]env ⊕ [e2]env

[e1 ∗ e2]env
def
= [e1]env ⊗ [e2]env

[e1 = e2]env
def
= {0,+}

def aeval_exp(e: Exp, aenv: AEnv) : Set[Abst] = e match {
case Num(0) => Set(Zero)
case Num(n) if (n < 0) => Set(Neg)
case Num(n) if (n > 0) => Set(Pos)
case Var(x) => aenv(x)
case Plus(e1, e2) =>

aplus(aeval_exp(e1, aenv), aeval_exp(e2, aenv))
case Times(e1, e2) =>

atimes(aeval_exp(e1, aenv), aeval_exp(e2, aenv))
case Equ(e1, e2) => Set(Zero, Pos)

}

SEN 09, King’s College London – p. 40/41

Sign Analysis
We want to find out whether a and n are always
positive?
After a few optimisations, we can indeed find this
out.

if returns + or 0
branch into only one dircection if you know
if x is +, then x + -1 cannot be negative

What is this good for? Well, you do not need
underflow checks (in order to prevent
buffer-overflow attacks).

SEN 09, King’s College London – p. 41/41

